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For a proof, see, for example, Browder [160, p. 236].
The motivating special case is X = ∂D and A the ‖ · ‖∞ closure of

the polynomials. Then Â is D̄ and each ϕ ∈ D̄ has a unique representing
measure. If ϕ = reiψ ∈ D, then dµϕ(θ) = Pr(ψ, θ)

dθ
2π

and (2.6.17) is
(2.6.13)!

The classes of algebra where it is known that each ϕ ∈ Â has a
unique representing measure are Dirichlet algebras, where {Re f | f ∈
A} is ‖ · ‖∞-dense in CR(X), the real functions in A, and logmodular
algebras where {log|f | | f ∈ A, f is invertible} is ‖·‖∞-dense in CR(X).
The condition of uniqueness is far from automatic. For the case X = D

and A, the ‖ · ‖∞ closure of the polynomials, representations of, say,
f 7→ f(0) are highly nonunique.

The history leading to Theorem 2.6.5 is complex. The earliest hints
of such a result are in Arens-Singer [54]. Bochner [134] made the im-
portant observation that ideas of Helson-Lowdenslager [513] used to
prove Szegő-type theorems for the polydisk were more widely applica-
ble. This led to proofs by Wermer [1105] for Dirichlet algebras and by
Hoffman [550] for logmodular algebras. In particular, Hoffman’s paper
is partly expository and extremely clear.

The realization that all that is really needed is uniqueness of rep-
resenting measures is due to Lumer [742]. There have been extensions
from C(X) to general measure spaces; see Barbey-König [79] and ref-
erences therein. Interestingly enough, the Function Algebra literature
invariably refers to the “Szegő-Kolmogorov-Krein” theorem, ignoring
Verblunsky and Geronimus (see the Notes to Section 2.3).

2.7. Szegő Asymptotics and Analysis of Difference Equations

As we have shown, if
∑∞

j=0|αj| < ∞, then it is easily seen (see

(1.5.16)) that supn,z∈D
|Φn(z)| < ∞, from which (1.5.11) implies Φ∗

n(z)

converges uniformly on D. That one has convergence inside D if only∑∞
j=0|αj |2 < ∞ is one of the wonderful consequences of Szegő’s theo-

rem, but its proof in Section 2.4 is a little bit magical. In this section,
our goal is to discuss some general subtle results in the theory of dif-
ference equations which provide a second proof that Φ∗

n(z) has a limit
when |z| < 1 and

∑∞
j=0|αj|2 < ∞. From this point of view, the exis-

tence of a limit for

(
z −ᾱn

−αnz 1

)
. . .

(
z −ᾱ0

−α0z 1

)
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will depend on the fact that the limit of individual matrices, namely,
( z 0

0 1 ), has eigenvalues of distinct magnitude and that the ℓ2 terms are
off-diagonal.

The results we will focus on are discrete analogs of ordinary dif-
ferential equations results of Levinson and of Hartman-Wintner. We
start with Levinson’s theorems. We look for solutions of

u(n+ 1) = B(n)u(n) n = 1, 2, . . . (2.7.1)

where u ∈ Cd and B(n) is a d× d matrix with

det(B(n)) 6= 0 n = 1, 2, . . . (2.7.2)

We will start out with the case

B(n) = B0 + (δB)(n) (2.7.3)

where
∞∑

n=1

‖δB(n)‖ <∞ (2.7.4)

Theorem 2.7.1 (Discrete Levinson Theorem). Suppose (2.7.2)–
(2.7.4) hold where B0 has distinct eigenvalues λ1, . . . , λd with eigen-
vectors e1, . . . , ed. Then there exist initial conditions u(j)(1) so that, as
n→ ∞, the solutions, u(j), of (2.7.1) obey

λ−nj u(j)(n) → ej (2.7.5)

Remarks. 1. If (δB)(n) ≡ 0, the solutions are λnj ej , so this is a
perturbation theorem.

2. It is not hard to see that the u(j)(n) are linearly independent,

and so a basis of solutions. For if
∑d

j=0 aju
(j) ≡ 0, order the λ’s so

|λd| ≥ |λd−1| ≥ · · · ≥ |λ1| (2.7.6)

Then, in an inner product where {eℓ}dℓ=1 are orthonormal,

〈ed, λ−nd (
∑d

j=1 aju
(j)(n))〉 → ad, so ad = 0. In this way, one sees in-

ductively that all aj = 0.

3. This result is related to the Poincaré-Perron theorem (see The-
orem 9.6.5). It has stronger hypotheses and a stronger conclusion.

4. The proof works if the λj’s are not distinct so long as as B0

is diagonalizable. Moreover, to construct u(j), we only need that {λ |
|λ| = |λj|} are all free of Jordan anomalies (i.e., their algebraic and
geometric multiplicities are equal). There are some extensions to allow
nontrivial Jordan blocks.
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Proof. We begin with some simplifying remarks. First, we can
suppose that λj = 1 by replacing B(n) and B0 by λ−1

j B(n) and

λ−1
j B0. Second, we will pick an inner product on Cd, in which

{eℓ}dℓ=1 is orthonormal, and the associated norms. Thus, B0 is nor-
mal. Third, if we find u(j)(n0) so that λ−nj B(n) . . .B(n0)u

(j)(n0) → ej,

then since {B(k)}n0−1
k=1 are invertible, we can find u(j)(1). Picking n0

so
∑∞

n0
‖δB(n)‖ < 1, we see that, without loss of generality, we can

suppose (by renumbering)

∞∑

n=1

‖δB(n)‖ < 1 (2.7.7)

Finally, we not only suppose (2.7.6) holds but that |λj−1| < |λj| = 1.
It will be convenient to define P+ as the orthogonal projection onto

the span of eigenspaces for λj, λj+1, . . . , λd and P− = 1 − P+. Thus
(with |λj−1| < 1), we have

‖P−B
k
0‖ ≤ |λj−1|k ‖P+B

−k
0 ‖ ≤ 1 (2.7.8)

for k = 0, 1, 2, . . . since B0 is normal.
To motivate the key to the proof, we begin by rewriting (2.7.1)

in “integral form” (i.e., the analog of going from ODE’s to integral
equations). By induction,

B(n+ k) . . . B(n) − Bk+1
0 = (δB)(n+ k)B(n + k − 1) . . .B(n)

+B0(δB)(n+ k − 1)B(n+ k − 2) . . .B(n)

+ · · ·+Bk
0 (δB)(n)

Thus, if (2.7.1) holds, then

u(n+ k) − Bk
0u(n) =

k−1∑

ℓ=0

B
(k−1−ℓ)
0 (δB)(n+ ℓ)u(n+ ℓ) (2.7.9)

which can be rewritten

u(n) = B−k
0 u(n+ k) −

k−1∑

ℓ=0

B−1−ℓ
0 (δB)(n+ ℓ)u(n+ ℓ) (2.7.10)

If all λ’s are in D, then (2.7.9) is good, because then Bk−1−ℓ
0 remains

bounded. If all λ’s are in C\D, (2.7.10) is good, because then B−1−ℓ
0

remains bounded. This motivates using (2.7.9) on ranP− and (2.7.10)
on ranP+ and suggests we consider the equation

u(n) = ej + (Au)(n) (2.7.11)
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where

(Ax)(n) =

n−1∑

ℓ=0

P−B
n−1−ℓ
0 (δB)(ℓ)x(ℓ) −

∞∑

ℓ=n

P+B
n−1−ℓ
0 (δB)(ℓ)x(ℓ)

(2.7.12)
Let L be the space of sequences x with values in Cd and

‖x‖∞ ≡ sup
n

|x(n)| (2.7.13)

Then, by (2.7.8),

|(Ax)(n)| ≤
[ n−1∑

ℓ=0

|λj−1|n−1−ℓ‖δB(ℓ)‖ +

∞∑

ℓ=n

‖δB(ℓ)‖
]
‖x‖∞ (2.7.14)

showing that the sum in (2.7.12) converges absolutely and defines A as
an operator from L to L with

‖A‖ ≤
∞∑

ℓ=0

‖δB(ℓ)‖ < 1 (2.7.15)

by (2.7.7). Thus, 1−A is invertible, and if ej is the function in L with
constant value ej , we have

(1 −A)−1ej =
∞∑

ℓ=1

Aℓej (2.7.16)

solves (2.7.11).
We want to show that this solution, u, of (2.7.11) solves (2.7.1) and

obeys (2.7.5), that is, u(n) → ej as n → ∞. By the bound (2.7.14),
|(Ax)(n)| → 0 since |λj| < 1 and (2.7.14) says

|(Ax)(n)| ≤
[ ∞∑

ℓ=n/2

‖δB(ℓ)‖ + |λj−1|−n/2−1

n/2∑

ℓ=0

‖δB(ℓ)‖
]
‖x‖∞

Since Ax→ 0, (2.7.11) says that u(n) → ej .
To see that the solution of (2.7.11) obeys (2.7.1), we note that from

(2.7.12),

(Ax)(n+ 1) = B0[(Ax)(n)] + (δB)(n)x(n) (2.7.17)

Thus, if u solves (2.7.11), we have

u(n+ 1) = ej + (Au)(n+ 1)

= B0ej +B0(Au)(n) + (δB)(n)u(n)

= (B0 + δB)(n)u(n)

since B0ej = ej . Thus, u solves (2.7.1). �
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In the basis where B0 is diagonal, it is only the off-diagonal elements
that need to be ℓ1 if we strengthen the condition on the eigenvalues
and slightly modify the conclusion:

Theorem 2.7.2. Let B(n) obey (2.7.2) and

B(n) = B0(n) + (δB)(n) (2.7.18)

where (2.7.4) holds, each B0(n) is diagonal, and B0(n) → B∞, a di-
agonal matrix with eigenvalues λ1, λ2, . . . , λd. Suppose for all i 6= j,
|λi| 6= |λj|. Then for each j, there is a solution u(j)(n) of (2.7.1) so
that [ n∏

ℓ=1

bjj(ℓ)

]−1

u(j)(n) → ej (2.7.19)

Proof. Relabel so |λd| > |λd−1| > · · · > |λ1|. By replacing B(n)
by bjj(n)−1Bn, we can suppose bjj(n) = 1. Since for k < j,

lim sup
n→∞

|bkk(n)| < 1 (2.7.20)

and for k > j,
lim sup
n→∞

|bkk(n)|−1 < 1 (2.7.21)

we see

sup
n,ℓ,k<j

∣∣∣∣
n+ℓ∏

m=n

bkk(m)

∣∣∣∣ + sup
n,ℓ,k>j

∣∣∣∣
n+ℓ∏

m=n

bkk(m)

∣∣∣∣
−1

<∞ (2.7.22)

and for k < j,

lim
n→∞

n∏

m=n/2

bkk(m) = 0 (2.7.23)

we can mimic the proof of Theorem 2.7.1. By (2.7.22), there is C so
that

‖P−B0(n+ ℓ) . . . B0(n)‖ < C ‖P+B0(n)−1 . . . B0(n+ ℓ)−1‖ < C

Thus, so long as
∑

n ‖(δB)(n)‖ < C−1, ‖A‖ < 1. (2.7.23) is used to
prove ‖(Ax)(n)‖ → 0 for all x ∈ ℓ∞. �

If |λj+1| = |λj|, it can happen that both
supn

∏n
m=1|bjj(m)/bj+1 j+1(m)| and supn

∏n
m=1|bj+1 j+1(m)/bjj(m)|

are infinite, so one cannot place ej+1 in either P+ or P− and get
boundedness! That is why we assume |λi| 6= |λj|. That said, there are
assumptions that allow |λj| = |λj+1|; see the discussion in the Notes.
This dichotomy of lim sup|µk| < 1 or lim inf|µk| > 1 being good is seen
also in the following, which we will need to handle off-diagonal terms
that are only ℓ2:
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Proposition 2.7.3. Let bn ∈ ℓt with 1 ≤ t <∞, and let µ1, µ2, . . .
be given so that either
(i)

lim sup
j→∞

|µj| < 1 (2.7.24)

or
(ii)

lim inf
j→∞

|µj| > 1 (2.7.25)

Then there is a solution qn of

qn+1 = µnqn + bn (2.7.26)

with qn ∈ ℓt.

Proof. If (i) holds, define q1 = 0 and

qn = bn−1 + µn−1bn−2 + µn−1µn−2bn−3 + · · ·+ µn−1 . . . µ2b1 (2.7.27)

By (i), there is r < 1 and C > 1 so that for all j and k,
∣∣∣∣
j+k∏

ℓ=j

µℓ

∣∣∣∣ ≤ Crk (2.7.28)

so (2.7.27) implies

|qn| ≤ C
∑

1≤k≤n

rn−k|bk| (2.7.29)

= C
∑

0≤k≤n−1

rk|bn−k|

By the fact that ‖ · ‖t is a norm (i.e., Minkowski’s inequality),

‖q‖t ≤ C

∞∑

k=0

rk‖b·−k‖t

= C(1 − r)−1‖b‖t <∞ (2.7.30)

If (ii) holds, instead of (2.7.28), we have
∣∣∣∣
j+k∏

ℓ=j

µℓ

∣∣∣∣
−1

≤ Crk (2.7.31)

and we can get to infinity to define the infinite sum

qn = −µ−1
n bn − µ−1

n µ−1
n+1bn+1 . . .− µ−1

n . . . µ−1
n+jbn+j . . . (2.7.32)

In place of (2.7.29), we have

|qn| ≤ C
∑

k≥n

rk−n+1|bk| (2.7.33)



2.7. SZEGŐ ASYMPTOTICS AND ANALYSIS OF DIFFERENCE EQUATIONS223

which again implies q ∈ ℓt. �

This leads to our final general asymptotic result:

Theorem 2.7.4 (Discrete Hartman-Wintner Theorem). Let B0 be
a diagonal d× d matrix whose diagonal elements λ1, . . . , λd obey |λi| 6=
|λj| for all i 6= j. Let (δB)(n) obey:
(i)

(δB)(n)kk → 0 (2.7.34)

as n→ ∞ for each k.
(ii) ∑

n

|(δB)(n)kj|2 <∞ (2.7.35)

for all k 6= j.
(iii)

det(B(n)) 6= 0 (2.7.36)

Then, for any j, there exists u(j)(1) so the solution u(j)(n) of (2.7.1)
obeys [ n∏

ℓ=1

(λj + (δB(ℓ))jj)

]−1

u(j)(n) → ej (2.7.37)

Proof. By considering only n ≥ N, we can suppose for all j and n,
λj+(δB)(n)jj 6= 0. We begin with the Harris-Lutz transform. Suppose
Q(n) is a d× d matrix with 1 +Q(n) invertible for all n. Clearly, if

w(n) ≡ (1 +Q(n))u(n) (2.7.38)

then u obeys (2.7.1) if and only if

w(n+ 1) = B̃(n)w(n) (2.7.39)

where

B̃(n) = (1 +Q(n + 1))B(n)(1 +Q(n))−1 (2.7.40)

Moreover, if ‖Q(n)‖ → 0, (2.7.37) holds if and only if w(j)(n) obeys
the same asymptotic formula as u(j)(n).

Define B̃0(n) to be B0 plus the diagonal part of (δB)(n) and let
(δC)(n) be the off-diagonal part of (δB)(n).

By (2.7.40),

B̃(n) = B̃0(n) + δ̃B(n) (2.7.41)

where, using B̃0(n) = B̃0(n)(1 +Q(n))(1 +Q(n))−1, we have

δ̃B(n) = [Q(n+1)B̃0(n)−B̃0(n)Q(n)+(1+Q(n+1))(δC)(n)](1+Q(n))−1

(2.7.42)
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This suggests we try to pick Q(n) to obey

Q(n+ 1)B̃0(n) − B̃0(n)Q(n) = −(δC)(n) (2.7.43)

This equation is equivalent to

Q(n + 1)jk[λk + (δB)(n)kk] = Q(n)jk[λj + (δB)(n)jj] − (δC)(n)jk
(2.7.44)

Since (δC)(n)kk = 0, we can take Q(n)kk ≡ 0. For j 6= k, (2.7.44)
precisely has the form of (2.7.26), and |λi| 6= |λj| implies that

lim
n→∞

[λj + (δB)(n)jj]

[λk + (δB)(n)kk]
=

|λj|
|λk|

obeys either (2.7.24) or (2.7.25). It follows that (2.7.43) has a solution
with ∑

‖Q(n)‖2 <∞ (2.7.45)

By (2.7.43), (2.7.42) becomes

(δ̃B)(n) = Q(n+ 1)(δC)(n)(1 +Q(n))−1 (2.7.46)

By (2.7.45) and (2.7.35),
∑ ‖δ̃B‖1 <∞, so Theorem 2.7.2 implies this

theorem. �

We now apply this to OPUC using the recursion relation (1.5.33)
in the form (2.7.1) where

u(n) =

(
Φn(z)
Φ∗
n(z)

)
B(n) =

(
z −ᾱn

−αnz 1

)
(2.7.47)

Clearly, we take

B0 =

(
z 0
0 1

)
(δB)(n) =

(
0 −ᾱn

−αnz 0

)

If z ∈ D, the eigenvalues of B0 obey |z| 6= 1, so if

∞∑

n=0

|αn|2 <∞ (2.7.48)

Theorem 2.7.4 applies.

Theorem 2.7.5. If the Verblunsky coefficients of a set of OPUC
obey (2.7.48), then for all z ∈ D,

lim
n→∞

Φn(z) = 0 lim
n→∞

Φ∗
n(z) = ℓ(z) (2.7.49)

where ℓ is an everywhere nonvanishing analytic function.
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Proof. By Theorem 2.7.4, there exist solutions u(1)(n), u(2)(n) so

z−nu(1)(n) →
(

1

0

)
(2.7.50)

u(2)(n) →
(

0

1

)
(2.7.51)

Since these span all solutions,(
Φn(z)

Φ∗
n(z)

)
= k(z)u(1)(n) + ℓ(z)u(2)(n) (2.7.52)

Since |z| < 1, u(1)(n) → 0, and since (2.7.51) holds, the top components
of u(2)(n) → 0, so Φn(z) → 0.

By (2.7.50)/(2.7.51), lim Φ∗
n(z) = ℓ(z) and the proofs show the

convergence is uniform. ℓ(z) is nonvanishing because (2.2.91) shows
lim Φ∗

n(z) cannot be zero. �

We thus have a “direct” proof of Szegő asymptotics. Do not think
that Φn(z) ∼ u(1)(n), that is, is O(zn). It can be bigger since the upper
component of u(1) only goes to zero. Indeed, we will see (TK) that there x-ref?
are many examples where, for some z ∈ D, Φn(z) has asymptotics
different from zn.

Later, in Section 3.2 (see Proposition 3.2.8, Remark 2, and The-
orem 3.2.11), we will construct solutions, u(n), which go to zero as
n → ∞ and which in general are bounded by Czn. When (2.7.48)
holds, they actually obey z−n (solution) has a nonzero limit.

Remarks and Historical Notes. The techniques and results in this
section were developed initially to study ordinary differential equations
(ODE) of the form

u′(x) = B(x)u(x) (2.7.53)

Levinson’s theorem and the method of proof are due to Levinson [717].
The Hartman-Wintner theorem is due to them [507]. Their proof was
more involved — the idea of making a transformation w(x) = (1 +
Q(x))u(x) to prove the result is due to Harris-Lutz [505]. Eastham’s
book [332] deals with these ODE methods and applications.

In the original papers, (2.7.11) is solved by the method of successive
approximation and an ad hoc convergence argument that is equivalent
to approximating (1−A)−1ej by

∑N
ℓ=1A

ℓej . Later authors (e.g., [570])
noted the more elegant (but equivalent) operator theoretic way of solv-
ing the problem.

These results were carried over to difference equations of the
form (2.7.1) originally by Coffman [212], with later contributions by
Benzaid-Lutz [108] and Janas-Moszyński [570]. Applications of these
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ideas to Jost and Szegő asymptotics for OPRL were found by Damanik-
Simon [233]; see the Notes to Section 13.10. The application here to
Szegő asymptotics for OPUC seems to be new.

To make the argument in Theorem 2.7.2 work, one does not need
|λj| 6= |λk| or even that |bjj| has a limit, but only that for each j 6= k,
either

sup
n≥m

n∏

ℓ=m

∣∣∣∣
bjj(ℓ)

bkk(ℓ)

∣∣∣∣ <∞ (2.7.54)

or that

sup
n≥m

n∏

ℓ=m

∣∣∣∣
bkk(ℓ)

bjj(ℓ)

∣∣∣∣ <∞ (2.7.55)

These conditions imply (2.7.22) for the rescaled B. To get (2.7.23), one
uses a preliminary argument to show that if (2.7.54) holds but (2.7.55)
fails, then, in fact,

lim
n→∞

n∏

ℓ=n/2

∣∣∣∣
bjj(ℓ)

bkk(ℓ)

∣∣∣∣ = 0

For details, see Eastham’s book [332].

2.8. Khrushchev’s Proof of Szegő’s Theorem

In this section, we present a direct “real variable” proof of Szegő’s
theorem due to Khrushchev [641]. Complex analysis only enters
through the fact that for the functions we are looking at, Re f(0) =
1
2π

∫
Re f(eiθ) dθ

2π
. We will only prove (2.3.1), but the same method eas-

ily extends to prove (2.3.21). As an extra bonus, we will obtain a limit
theorem for the functions log(ϕ∗

n(e
iθ)) on ∂D.

We begin with what is essentially a restatement of (2.2.7) when
r = 0:

Proposition 2.8.1. Let dµ = w(θ) dθ
2π

+ dµs be a nontrivial proba-
bility measure on ∂D. Then, for all n,

κ−2
n ≥ exp

(∫ 2π

0

log(w(θ))
dθ

2π

)
(2.8.1)

In particular,

κ−2
∞ ≥ exp

(∫ 2π

0

log(w(θ))
dθ

2π

)
(2.8.2)


