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of (13.1.34) and (13.1.37) but with ϕ±
n the solution of (13.1.27) with

different boundary conditions than ϕ1 = 1, ϕ0 = 0. Presumably, the
other solution has ϕ−1 = 0, ϕ0 = 1, and the two choices of boundary
condition at +2 and −2 yield the four inverses. The restriction on
whether a dγ lies in the range of the other maps is connected with
whether this second solution is positive for +2 and sign alternating for
−2.

13.3. Canonical Moments and the Geronimus Relations

Thus far, we have emphasized the role of Verblunsky coefficients as
the recursion coefficients for the Φn. But, as we saw in Section 3.1,
they also measure relative positions of cn among all values consistent
with c0, . . . , cn−1. For OPRL, the recursion coefficients and relative
positions are very different. In this section, we obtain the relation
between the Jacobi parameters and these relative positions, and also
see that the relation between the relative position parameters for µ
and Sz(µ) is simple. This will lead to another illuminating proof of the
direct Geronimus relations.

Throughout, we fix an interval [a, b] ⊂ R and we will consider mo-
ments of measures supported on [a, b] (below [a, b] will be either [−2, 2]
or [0, 1]). Given ρ ∈ M+,1([a, b]), let cj(ρ) be its moments given by

cj(ρ) =

∫ b

a

xn dρ(x) (13.3.1)

For each fixed ρ0 and k, {ρ ∈ M+,1([a, b]) | cj(ρ) = cj(ρ0), j =
0, 1, . . . , k − 1} is a compact convex set, so the set of values of ck(ρ)
as ρ runs through this set is a bounded closed interval [c−k (ρ0), c

+
k (ρ0)].

We will prove below that if ρ0 is nontrivial, then c+k 6= c−k . We thus
define the canonical moments, pk(ρ0), for k = 1, 2, . . . by

pk(ρ0) =
[ck(ρ0) − c−k (ρ0)]

[c+k (ρ) − c−k (ρ0)]
(13.3.2)

We will also prove that ρ0 nontrivial implies ck(ρ0) ∈
(c−k (ρ0), c

+
k (ρ0)), so

0 < pk(ρ0) < 1 (13.3.3)

Note. It is unfortunate that the standard symbol, pk, used for the
canonical moments is also used for the orthonormal OPRL. In this
section, we will only use the monic polynomials, so pk only stands for
the canonical moments.
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Notice the pk depend not only on ρ but also on [a, b]. We will see
below that any set of pk’s in (0, 1) can occur, that is, the pk’s are a
map of the nontrivial measures supported on [a, b] to (0, 1).

It will also be useful to define

qk(ρ) = 1 − pk(ρ) ζ1 = p1, ζk = qk−1pk k ≥ 2 (13.3.4)

The relation of the α’s to p’s is trivial!

Theorem 13.3.1. Let µ ∈ M+,1(∂D) and γ = Sz(µ) viewed as a
measure on [−2, 2]. Then

pk(γ) = 1
2
(1 + αk−1(dµ)) (13.3.5)

qk(γ) = 1
2
(1 − αk−1(dµ)) (13.3.6)

ζk(γ) = 1
4
(1 + αk−1(dµ))(1 − αk−2(dµ)) (13.3.7)

where, as usual, α−1 = 1.

Proof. (13.3.6) and (13.3.7) follow from (13.3.5). To prove that,
note that

ck(γ) =

∫
(z + z−1)k dµ(θ)

= ck(dµ) + f(c0, . . . , ck−1)

so the map of α to p is the unique orientation-preserving affine map of
[−1, 1] onto [0, 1], that is, 1

2
(1 + α). �

Below, we will prove the following:

Theorem 13.3.2. Let γ be a measure on [−2, 2], pk its canonical
moments, and {an, bn}∞n=1 its Jacobi parameters. Then

a2
n+1 = 16ζ2n+2ζ2n+1 (13.3.8)

bn+1 = 4ζ2n+1 + 4ζ2n − 2 (13.3.9)

Corollary 13.3.3 (Third Proof of the Direct Geronimus Rela-
tions). Let γ = Sz(µ). Let {an, bn}∞n=1 be the Jacobi parameters of γ
and αn the Verblunsky coefficients of µ. Then

a2
n+1 = (1 − α2n−1)(1 − α2

2n)(1 + α2n+1) (13.3.10)

bn+1 = (1 − α2n+1)α2n − (1 + α2n−1)α2n−2 (13.3.11)

Proof. This follows from (13.3.7), (13.3.8), and (13.3.9). For ex-
ample,

4ζ2n+1 + 4ζ2n − 2 = (1 + α2n)(1 − α2n−1) + (1 + α2n−1)(1 − α2n−2) − 2

= α2n(1 − α2n−1) − α2n−2(1 + α2n−1) �
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It will turn out to be easiest to study canonical moments on [0, 1], so
we need to use the affine map of [−2, 2] → [0, 1], that is, x 7→ 1

4
(x+ 2).

Proposition 13.3.4. Let γ̃ be a measure on [0, 1] and γ on [−2, 2]
related by

∫ 1

0

f(x) dγ̃(x) =

∫ 2

−2

f(1
4
(x+ 2)) dγ(x) (13.3.12)

Let Pn (resp. P̃n) and an, bn (resp. ãn, b̃n) be the monic OPRL and
Jacobi parameters for γ (resp. γ̃). Then

Pn(x) = 4nP̃n(1
4
(x+ 2)) (13.3.13)

pn(γ) = pn(γ̃) (13.3.14)

a2
n = 16ã2

n (13.3.15)

bn = 4b̃n − 2 (13.3.16)

Proof. (13.3.12) shows the RHS of (13.3.13) is orthogonal to
{xj}n−1

j=0 in L2([−2, 2], dγ). The 4n makes this side monic. This proves

(13.3.13). Since x 7→ 1
4
(x+2) is affine, the map preserves the canonical

moments, pn, proving (13.3.14).
We start with

P̃n+1(y) = (y − b̃n+1)P̃n(y) − ã2
nP̃n−1(y)

Replace y by 1
4
(x+ 2) and multiply by 4n+1 to get

Pn−1(x) = (x+ 2 − 4b̃n+1)Pn(x) − 16ã2
nPn−1(x)

from which (13.3.15) and (13.3.16) are immediate. �

By the relations (13.3.14), (13.3.15), and (13.3.16), Theorem 13.3.2
is equivalent to

Theorem 13.3.5. Let γ̃ be a measure on [0, 1], pk its canonical

moments, and {α̃n, b̃n}∞n=1 its Jacobi parameters. Then

ã2
n+1 = ζ2n+2ζ2n+1 (13.3.17)

b̃n+1 = ζ2n+1 + ζ2n (13.3.18)

We prove this by exploiting the Hankel determinants given by
(1.2.3) and the Heine formula (1.2.30). Since we will deal with mo-
ments of several putative measures, we will make the measures explicit
and use

H
(n)
ij (dρ) =

∫
xi+j−2 dρ(x) (13.3.19)
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but we only use cn for the moments of dγ so, for example,

H
(n)
ij (x(1 − x) dγ) = ci+j−1 − ci+j (13.3.20)

Define

W2n = H(n+1)(dγ) n = 0, 1, 2, . . . (13.3.21)

W2n+1 = H(n+1)(x dγ) n = 0, 1, 2, . . . (13.3.22)

Y2n = H(n)(x(1 − x) dγ) n = 1, 2, . . . (13.3.23)

Y2n+1 = H(n+1)((1 − x) dγ) n = 0, 1, 2, . . . (13.3.24)

The index is defined so Wk and Yk depend on c0, . . . , ck and are affine
in ck. For example, the lower right corner of Wk has ck and that of Yk

has ck−1 − ck.
We will let

wn = det(Wn) yn = det(Yn)

As in Section 3.1, Dodgson’s equality (Proposition 3.1.5) will play a
major role. In particular, it will imply (see Corollary 13.3.14)

wnyn = wn−1yn+1 + wn+1yn−1 (13.3.25)

We are heading towards proving that {cn}∞n=0 are the moments of a
measure on [0, 1] if and only if all wn and all yn are nonnegative.

Proposition 13.3.6. Let f be a continuous function on [0, 1] and
define

f [n](x) =

n∑

j=0

(
n

j

)
xj(1 − x)n−jf

(
j

n

)
(13.3.26)

Then
(i) ‖f [n] − f‖∞ → 0 as n→ ∞.
(ii) If f is a polynomial of degree ℓ, so is each f [n] and the coefficients

converge to those of f as n→ ∞.

Remark. f [n] are called the Bernstein polynomials for f . That
they approximate f is an expression of the law of large numbers that
for fixed x and large n,

(
n
j

)
xj(1 − x)n−j is concentrated near those j’s

with j ∼ xn. The proof even uses this law of large numbers intuition
in a somewhat disguised form. Notice that this proposition proves
Weierstrass’ theorem on the density of the polynomials.

Proof. (i) Define

E
(n)
x (h(j, x)) ≡

n∑

j=0

(
n

j

)
xj(1 − x)n−jh(j, x) (13.3.27)
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Since
n∑

j=0

(
n

j

)
(x+ a)j(1 − x)n−j = (1 + a)n (13.3.28)

we see, taking ( d
da

)ℓ
∣∣
a=0

, that

E
(n)
x (j(j − 1) . . . (j − ℓ)) = xℓ+1n(n− 1) . . . (n− ℓ) (13.3.29)

from which

E
(n)
x

((
x− j

n

)2)
= x2 − 2x2 + x2

(
1 − 1

n

)
+
x

n

=
1

n
x(1 − x) ≤ 1

4n
(13.3.30)

for 0 ≤ x ≤ 1.
For any bounded function f ,

|f(x) − f(y)| ≤ sup
|x−y|≤δ

|f(x) − f(y)|+ 2
(x− y)2

δ2
‖f‖∞

Thus, by (13.3.30),

|f [n](x) − f(y)| ≤ E
(n)
x

(∣∣∣∣f(x) − f

(
j

n

)∣∣∣∣
)

≤ sup
|x−y|≤δ

|f(x) − f(y)|+ 1

2δ2n
‖f‖∞ (13.3.31)

Taking δ so small that the sup is less than ε/2 (since f is continuous)
and then n ≥ ‖f‖∞/(δ2ε), we see, for such n, that ‖f [n] − f‖∞ ≤ ε,
proving (i).

(ii) Since jℓ+1 = j(j − 1) . . . (j − ℓ)+ polynomial in j of degree ℓ,

(13.3.29) implies E
(n)
x (( j

n
)ℓ+1) = xℓ+1+ polynomial in x of degree ℓ with

coefficients of O(1/n). �

We can use this to discuss solubility of the Hausdorff moment prob-
lem (moment problem on [0, 1]).

Lemma 13.3.7. Let A be an n × n Hermitian matrix and for k =
1, 2, . . . , n, let dk be the determinant of the k × k matrix {aij}1≤i,j≤k.
Then A is strictly positive definite if and only if each dk > 0.

Proof. If A is strictly positive, so is each k× k submatrix, and so
each dk > 0. We prove the converse by induction. If n = 1, d1 = a11 > 0
if d1 > 0. If the theorem is true for (n − 1) × (n − 1) matrices and
each dk > 0, by induction, Ã = (aij)1≤i,j≤n−1 is strictly positive, so its
eigenvalues obey 0 < λ1 ≤ λ2 ≤ · · · ≤ λn−1. The eigenvalues {µℓ}n

ℓ=1
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of A and Ã interlace, so µ1 ≤ λ1 ≤ µ2 ≤ λ2 ≤ · · · ≤ λn−1 ≤ µn. Thus
µ2 . . . µn > 0, and since dn = µ1 . . . µn > 0, we conclude µ1 > 0, that
is, A is strictly positive definite. �

Theorem 13.3.8. Let c0, c1, c2, . . . be a sequence of reals. Then the
following are equivalent:
(i) There is a positive measure, ρ, on [0, 1] with (13.3.1).
(ii) For all j,m,

m∑

k=0

(−1)k

(
m

k

)
ck+j ≥ 0 (13.3.32)

(iii) All the matrices {Wk}∞k=0, {Yk}∞k=1 are positive definite.
Moreover, ρ is nontrivial if and only if all Wk and Yk are strictly posi-
tive definite and that happens if and only if w0 > 0 and if wk > 0 and
yk > 0 for k = 1, . . . .

Proof. We will prove (i) ⇒ (iii) ⇒ (ii) ⇒ (i). It will help to define
a linear function, L, on polynomials by

L

( n∑

j=0

βjx
j

)
=

n∑

j=0

cjβj (13.3.33)

(i) ⇒ (iii). W2k is positive definite if and only if L(Q∗Q) ≥ 0 for each

nonzero polynomial, Q, of degree k, W2k+1 for L(xQ∗Q), Y2k+2 for
L(x(1 − x)Q∗Q), and Y2k+1 for L((1 − x)Q∗Q). If (i) holds, L(Q) =∫
Q(x) dρ(x) and the nonnegativity of these functionals is immediate.

(iii) ⇒ (ii). We have

LHS of (13.3.32) = L(xj(1 − x)m) (13.3.34)

Since xj(1 − x)m = Q∗Q if j,m are even, xQ∗Q if j is odd and m is
even, etc., the positivity in (iii) implies (ii).

(ii) ⇒ (i). Let Q be a polynomial which is positive on [0, 1]. By Propo-

sition 13.3.6, (13.3.32) and (13.3.34) imply L(Q) ≥ 0. For any real Q,
we have L(‖Q‖∞1 ± Q) ≥ 0 so |L(Q)| ≤ c0‖Q‖∞ and L extends to a
positive functional on C([0, 1]), and so is a measure.

Next, to see nontriviality is equivalent to strict positivity, we note
first that if ρ is nontrivial, then L(Q∗Q) > 0 for any Q since the
zeros of Q are finite in number, and similarly for L(xQ∗Q), etc. Thus
nontriviality implies strict positivity. For the converse, if ρ is trivial
and Q has zeros at the support of ρ but is nonzero, then L(Q∗Q) = 0.

Finally, the equivalence to positivity of wk and yk follows from
Lemma 13.3.7. �
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Given c0, . . . , ck−1 so w0, . . . , wk−1 > 0 and y0, . . . , yk−1 > 0, define
c̃±k by

wk(c0, . . . , ck−1, c̃
−
k ) = 0 yk(c0, . . . , ck−1, c̃

+
k ) = 0 (13.3.35)

(We will see eventually that if cj = cj(ρ), then c̃±k (c0(ρ), . . . , ck−1(ρ)) =
c±k (ρ), but we do not know this yet.) Since ck appears in Wk only as
ck in the lower corner, wk = ckwk−2+ const, and thus, since wk−2 > 0,

wk(c0, . . . , ck−1, ck) > 0 ⇔ ck > c̃−k (13.3.36)

Similarly, since yk = (ck−1 − ck)yk−2+ const,

yk(c0, . . . , ck−1, ck) > 0 ⇔ ck < c̃+k (13.3.37)

We have:

Proposition 13.3.9.

c̃+k − c̃−k =
wk−1yk−1

wk−2yk−2

(13.3.38)

and, in particular, this quantity is strictly positive.

Proof. Let w1, . . . , wk−1 denote the determinants with c0, . . . , ck−1

and w̃±
k with c0, . . . , ck−1, c̃

±
k , and similarly for y. As noted above,

w̃±
k = wk−2c

±
k + f(c0, . . . , ck−1) (13.3.39)

Since w−
k = 0 (by (13.3.35)), we see from this that

c+k − c−k =
w̃+

k

wk−2
(13.3.40)

By (13.3.25) for n = k − 1, using ỹ+
k = 0 (by (13.3.35)), we have

wk−1yk−1 = w̃+
k yk−2 (13.3.41)

(13.3.40) and (13.3.41) imply (13.3.38). �

Theorem 13.3.10. The map from nontrivial ρ’s in M+,1([0, 1]) is
well-defined, one-one, and onto. Moreover,

c+k − c−k =
wk−1yk−1

wk−2yk−2
(13.3.42)

pk =
wkyk−2

wk−1yk−1
(13.3.43)

qk =
wk−2yk

wk−1yk−1
(13.3.44)

ζk =
wkwk−3

wk−1wk−2

(13.3.45)
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Proof. Given c1, . . . , ck−1 with w0, . . . , wk−1, y1, . . . , yk−1 > 0, by
the above, c̃+k > c̃−k , so we can pick ck in (c−k , c

+
k ) with wk > 0, yk > 0.

In this way, we can inductively complete c1, . . . , ck−1 to an infinite
sequence with all w, y positive and so corresponding to a nontrivial
measure by Theorem 13.3.8.

Thus, given ρ and c0(ρ), . . . , ck−1(ρ), for any choice of ck in (c−k , c
+
k ),

we can extend to a measure. Thus, c̃±k = c±k , and by (13.3.42), pk is
well-defined in (0, 1).

This shows that given any p1, p2, . . . ∈ (0, 1) and c0 = 1, we can
uniquely find c0, c1, . . . with those ρj showing the map is one-one and
onto. Moreover, (13.3.42) holds.

By (13.3.39),

ck − c−k =
wk

wk−2
(13.3.46)

so, by (13.3.2) and (13.3.4), (13.3.43) holds. Similarly,

c+k − ck =
yk

yk−2
(13.3.47)

which leads to (13.3.44). Since ζk = qk−1pk, we get (13.3.45) for k ≥ 3.
This also holds for k = 1, 2 if we interpret w−2 = w−1 = 1. For

k = 1, 2, then, say, ζ1 = w1 = c1 and ζ2 = w2/w0w1. ζ1 = c1 is
immediate and the formula ζ2 holds since (13.3.42) is true for k = 2 if
y0 = 1. �

We now turn to Heine’s formulae by defining two polynomials of
degree m, each an m×m matrix

W2m−1(x) =

∣∣∣∣∣∣∣∣

c0 . . . cm
...

...
cm−1 . . . c2m−1

1 . . . xm

∣∣∣∣∣∣∣∣
W2m(x) =

∣∣∣∣∣∣∣∣

c1 . . . cm+1
...

...
cm . . . c2m

1 . . . xm

∣∣∣∣∣∣∣∣
(13.3.48)

The index on W is the largest index on c. Let Pn be the monic OPRL
for the measure γ with moments cj , and Qn the monic OPRL for x dγ.
Then Heine’s formula implies

Proposition 13.3.11.

Pn(x) =
W2n−1(x)

w2n−2
Qn(x) =

W2n(x)

w2n−1
(13.3.49)

The connection to the y’s is

Proposition 13.3.12.

Wn(1) = yn (13.3.50)
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Proof. In W2n−1(1), subtract column 2 from column 1, then col-
umn 3 from column 2, . . . , finally column n from column n − 1 to
get

W2m−1(1) =

∣∣∣∣∣∣∣∣

c0 − c1 . . . cm−1 − cm cm
...

...
...

cm−1 − cm . . . c2m−2 − c2m−1 c2m−1

0 . . . 0 1

∣∣∣∣∣∣∣∣
which now has a trivial last row, so the determinant is y2m−1. The
proof for n = 2m is identical. �

Proposition 13.3.13. We have, for m ≥ 1,

w2m−1W2m+1(x) = xw2mW2m(x) − w2m+1W2m−1(x) (13.3.51)

and for m ≥ 0,

w2mW2m+2(x) = w2m+1W2m+1(x) − w2m+2W2m(x) (13.3.52)

Proof. If we take W2m+1 given by (13.3.48) and delete the last
two rows and first and last column, we get w2m. If we remove the last
row and first column, we get w2m+1, and the second-to-last row and
last column, W2m−1(x). If we remove the last row and last column,
we get w2m, and the next-to-last row and first column, xW2m(x) (by
factoring an x out of the remaining last row). Thus (13.3.51) is just
Dodgson’s equality.

To obtain (13.3.52), we first write for m ≥ 0,

W2m+2(x) =

∣∣∣∣∣∣∣∣∣∣

1 c0 . . . cm+1

0 c1 . . . cm+2
...

...
...

0 cm+1 . . . c2m+2

0 1 . . . xm+1

∣∣∣∣∣∣∣∣∣∣

and use Dodgson’s equality as before, deleting the last two rows and
first and last column. �

Corollary 13.3.14.

wnyn = wn−1yn+1 + wn+1yn−1

Remark. This is (13.3.25).

Proof. Let x = 1 and use (13.3.50) in the last proposition to get

w2m−1y2m+1 = w2my2m − w2m+1y2m−1

w2my2m+2 = w2m+1y2m+1 − w2m−2y2m

which is (13.3.25) for n = 2m and 2m+ 1. �
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Proposition 13.3.15. We have, for m ≥ 0,

Pm+1(x) = xQm(z) − ζ2m+1Pm(x) (13.3.53)

Qm+1(x) = Pm+1(x) − ζ2m+2Qm(x) (13.3.54)

Proof. Divide (13.3.51) by w2m−1w2m and get

Pm+1(x) = xQm(x) − w2m+1w2m−2

w2m−1w2m

Pm(x)

by using (13.3.49). By (13.3.45), this is (13.3.53). Similarly, (13.3.52)
leads to (13.3.42) by dividing by w2mw2m+1. �

We are now ready to prove the result that implies the the Geronimus
relation:

Proof of Theorem 13.3.5. Multiply (13.3.54) for m = n − 1
by x and use (13.3.53) for m = n and m = n − 1 to replace xQn and
xQn−1. The result is

Pn+1 + ζ2n+1Pn = xPn − ζ2n[Pn + ζ2n−1Pn−1]

which implies

b̃n+1 = ζ2n+1 + ζ2n

ã2
n = ζ2nζ2n−1

which implies (13.3.18). �

Notes and Historical Remarks. The theory of canonical moments
for OPRL was developed in the book of Dette-Studden [279] based in
part on earlier work of Krein [657], Karlin-Studden [614], and Krein-
Nudelman [666]. They discussed the analog of OPUC without appar-
ently being aware of Verblunsky’s work discussed in Section 3.1. They
did not realize the Geronimus connection. That was done in a paper of
Faybusovich-Gekhtman [344], who did not seem to know of Geronimus’
earlier work!

13.4. Szegő’s Theorem for OPRL: A First Look

In this section, we will use the Szegő mapping to carry over
Szegő’s theorem to OPRL. Of necessity, our real measures dγ will obey
supp(dγ) = [−2, 2]. In Theorem 13.9.9 and Section 13.10, we will dis-
cuss extensions of the theory to some cases with ess supp(dµ) = [−2, 2],
which is why we call this a first look.

The main theorem is the following:


