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Proposition 4.1.2 is from [182]. The full GGT representation appeared in
Constantinescu [212] (see also [75, p. 49]). He finds it as the Naimark dilation of
the GGT matrix. Its use to prove Verblunsky’s theorem seems to be new, although
I regard it as a natural step to take, given the GGT representation.

The analysis of the case where dµ has a single point in its essential spectrum is
due to Golinskii, Nevai, and van Assche [466] and is discussed further in the next
section. L. Golinskii [458] discussed the case where the essential spectrum is finite.

In some of the literature, what we call the GGT representation is called “the
Hessenberg matrix.” We have not used this name since “Hessenberg matrix” is
generic for a matrix, M, with Mij = 0 if i > j + 1 and does not even include the
unitarity.

L. Golinskii [456] used the GGT representation to prove an invariance of the
a.c. spectrum if

∑∞
j=0|αj − βj | < ∞ and inf|αj | > 0. Since we will prove this

without the assumption inf|αj | > 0 in Section 4.3, we do not provide the details.
The history of Rakhmanov’s lemma is discussed in Section 4.3. While he used

it to prove his theorem, it should not be confused with his theorem.

4.2. The CMV Representation

In this section we discuss a representation of Cantero, Moral, and Velázquez
[181]. The GGT representation had the attractive property that columns were
finite but, alas, rows were not. The reason was that if H(n) = H(0,n) is the span
of {δ0, δ1, . . . , δn}, then H(0) ⊂ H(1) ⊂ · · · with each H(n) finite-dimensional and
U [H(n)] ⊂ some H(k) (indeed, H(n+1)) with U = multiplication by z. For rows to
be finite, we would need U∗[H(n)] in some H(k), and that is not necessarily true
since 〈ϕj , z

−1ϕk〉 can be nonzero for k fixed and all j ≥ k − 1.
To hope for finite rows and columns, we need to choose H(n) so both multipli-

cation by z and z−1 take H(n) into some H(k). The natural choice is to take H(n)

to be the span of the first n + 1 elements of the ordered set: 1, z, z−1, z2, z−2, . . . .
Clearly, z[H(n)] ⊂ H(n+2), z−1[H(n)] ⊂ H(n+2), which means if {χj}∞j=0 is a basis
with χj ∈ H(j+1) ∩ H(j)⊥, then 〈χj , zχk〉 = 0 if |j − k| ≥ 3, that is, each row and
column has at most five nonzero elements, and in this basis, U ≡ multiplication
by z is five-diagonal. In fact, since either z[H(n)] ⊂ H(n+1) or z−1[H(n)] ⊂ H(n+1)

(depending on whether n is even or odd), each row and column has at most four
nonzero elements. Analyzing small n carefully, one sees the pattern of possible
nonzero elements is ⎛⎜⎜⎜⎜⎜⎜⎝

∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

⎞⎟⎟⎟⎟⎟⎟⎠ (4.2.1)

so there are 2× 4 blocks with the main diagonal slicing at positions (12) and (23).
The key fact is that if the natural choice is made for the χj (i.e., Gram-Schmidt),

the χ’s can be expressed in terms of the ϕ’s and the 〈χj , Uχk〉 in terms of the
Verblunsky coefficients {αj}∞j=0. Before doing so, we want to address the issue of
whether — with a bit more cleverness — one could not arrange for a tridiagonal
or four-diagonal representation. Notice that every tridiagonal matrix is Hessenberg
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(i.e., only one row below the diagonal) and every four-diagonal matrix M has either
M or M t Hessenberg. Thus the following result implies that an infinite unitary
matrix with a cyclic vector cannot be less than five-diagonal:

Proposition 4.2.1. Let U be a unitary matrix on �2(Z+) so that uij = 0 if
i − j /∈ {−1, 0, 1, . . . , n}. Then U is a direct sum of blocks of size at most n + 1.

Proof. By Proposition 4.1.2, U has the form (4.1.17). We will prove that this
implies at least one of β0, β1, . . . , βn is zero. If βj is zero, (4.1.17) shows that M
decomposes into a direct sum of (j + 1) × (j + 1) block and the remaining infinite
block. An inductive argument then shows the original matrix is a sum of blocks of
size at most n + 1. Thus we need only prove one of β0, . . . , βn is zero.

By hypothesis, u0,n+j = 0 for j = 1, 2, . . . ,

αn+jβ0 . . . βn . . . βn+j−1 = 0 (4.2.2)

Suppose all of β0, . . . , βn are nonzero. By (4.2.2) for j = 1, αn+1 = 0. But then
βn+1 
= 0 and so, by (4.2.2) for j = 2, implies αn+2 = 0. Thus

β0, . . . , βn all nonzero ⇒ αn+1 = αn+2 = · · · = 0

Looking at (4.1.17), this implies that the first n + 2 rows have zero matrix
elements from columns n + 1 onwards, that is,

uij = 0 if i = 0, 1, . . . , n + 1; j = n + 1, n + 2, . . .

(this is clear from (4.1.18)). If δ0, δ1, . . . is the canonical basis, this says
U∗δ0, . . . , U

∗δn+1 lie in the n + 1-dimensional span of {δ0, . . . , δn}. Thus U∗ is
an isometry from an n + 2-dimensional space to an n + 1-dimensional space — and
we have a contradiction!

Thus, one of β0, . . . , βn must be zero. �
We now define the CMV basis and representation explicitly. Let H(k,�) be

the space of Laurent polynomials spanned by {zj}�
j=k and P(k,�) the orthogonal

projection onto H(k,�) in L2(∂D, dµ). Define

H(n) =

{
H(−k,k) n = 2k
H(−k,k+1) n = 2k + 1

(4.2.3)

and P (n) = projection onto H(n).
Define χ

(0)
n by

χ(0)
n =

{
z−k n = 2k
zk+1 n = 2k + 1

(4.2.4)

and the CMV basis by

χn =
(1 − P (n−1))χ(0)

n

‖(1 − P (n−1))χ(0)
n ‖

(4.2.5)

where we use the nontriviality of dµ to conclude that the χ
(0)
n are linearly dependent,

so (1 − P (n−1))χ(0)
n 
= 0.

Clearly, it is just as natural to take the ordered set 1, z−1, z, z−2, z2, . . . in place
of 1, z, z−1, z2, z−2, . . . . We define

H̃(n) =

{
H(−k,k) n = 2k
H(−k−1,k) n = 2k + 1

(4.2.6)
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and P̃ (n) = projection onto H̃(n).

x(0)
n =

{
zk n = 2k
z−k−1 n = 2k + 1

and the alternate CMV basis by

xn =
(1 − P̃ (n−1))x(0)

n

‖(1 − P̃ (n−1))x(0)
n ‖

It will be convenient to define

σn = χ2n τn = χ2n−1 sn = x2n tn = x2n−1

so σn, sn are labelled by n = 0, 1, 2, . . . and τn, tn by n = 1, 2, . . . .

Proposition 4.2.2. (i) We have that

τn = z−n+1ϕ2n−1 (4.2.7)

σn = z−nϕ∗
2n (4.2.8)

tn = z−nϕ∗
2n−1 (4.2.9)

sn = z−nϕ2n (4.2.10)

(ii)
xn(z) = χn(1/z̄) (4.2.11)

Proof. (i) ϕ2n−1 is (1 − P(0,2n−2))z2n−1/‖ . . . ‖. Since

z�P(k,m)z
−� = P(k+�,m+�)

we have

z−n+1ϕ2n−1 =
[z−n+1(1 − P(0,2n−2))zn−1]zn

‖ . . . ‖
=

(1 − P(−n+1,n−1))zn

‖ . . . ‖

=
(1 − P (2n−2))χ(0)

2n−1

‖ . . . ‖
= χ2n−1 = τn

proving (4.2.7). The proofs of the others are similar if we note that ϕ∗
� = (1 −

P(1,�))1/‖ . . . ‖.
(ii) this is immediate from (i) and (1.1.6). �

The CMV representation, C(dµ), is

Cij(dµ) = 〈χi, zχj〉 (4.2.12)

where {χj}∞j=0 is the CMV basis, and the alternate CMV representation, C̃(dµ), is
the matrix

C̃ij(dµ) = 〈xi, zxj〉 (4.2.13)

where {xj}∞j=0 is the alternate CMV basis (we will see that C̃ is the transpose of
C).
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Proposition 4.2.3. C(dµ) is given by

〈σj−1, zσj〉 = ρ2j−1ρ2j−2 〈σj , zσj〉 = −ᾱ2jα2j−1

〈τj , zσj〉 = −α2j−2ρ2j−1 〈τj+1, zσj〉 = −α2j−1ρ2j

〈σj−1, zτj〉 = ᾱ2j−1ρ2j−2 〈σj , zτj〉 = ᾱ2jρ2j−1

〈τj , zτj〉 = −ᾱ2j−1α2j−2 〈τj+1, zτj〉 = ρ2jρ2j−1

All other matrix elements are zero.

Remarks. 1. As usual, α−1 = −1.
2. The terms that have a minus are precisely those with a factor of α� for some

� (thinking of α� and ᾱ� as independent variables).
3. The Θ-factorization below will provide another proof of this that is concep-

tually simpler than the brute force calculation.

Proof. That these are the only nonzero matrix elements follows from the block
structure (4.2.1). By Proposition 4.2.2, the eight matrix elements here correspond
precisely to the eight matrix elements in Proposition 1.5.9(i); for example,

〈σj−1, zσj〉 = 〈z−j+1ϕ∗
2j−2, zz−jϕ∗

2j〉
= 〈ϕ∗

2j−2, ϕ
∗
2j〉

is given by (1.5.72) and

〈σj , zτj〉 = 〈z−jϕ∗
2j , z

2z−jϕ2j−1〉
= 〈ϕ∗

2j , z
2ϕ2j−1〉

is given by (1.5.70). �

Thus

C =

⎛⎜⎜⎜⎜⎜⎜⎝
ᾱ0 ᾱ1ρ0 ρ1ρ0 0 0 . . .
ρ0 −ᾱ1α0 −ρ1α0 0 0 . . .
0 ᾱ2ρ1 −ᾱ2α1 ᾱ3ρ2 ρ3ρ2 . . .
0 ρ2ρ1 −ρ2α1 −ᾱ3α2 −ρ3α2 . . .
0 0 0 ᾱ4ρ3 −ᾱ4α3 . . .

. . . . . . . . . . . . . . . . . .

⎞⎟⎟⎟⎟⎟⎟⎠ (4.2.14)

A similar calculation or Corollary 4.2.6 below shows that

C̃ =

⎛⎜⎜⎜⎜⎝
ᾱ0 ρ0 0 0 0 . . .

ᾱ1ρ0 −ᾱ1α0 ᾱ2ρ1 ρ2ρ1 0 . . .
ρ1ρ0 −ρ1α0 −ᾱ2α1 −ρ2α1 0 . . .

0 0 ᾱ3ρ2 −ᾱ3α2 ᾱ4ρ3 . . .
0 0 ρ3ρ2 −ρ3α2 −ᾱ4α3 . . .

⎞⎟⎟⎟⎟⎠ (4.2.15)

There is a way of writing C as a product that is illuminating and useful for
computations. It involves the pair of bases {χj}∞j=0 and {xj}∞j=0. Define

Mij(dµ) = 〈xi, χj〉 (4.2.16)

Lij(dµ) = 〈χi, zxj〉 (4.2.17)

Proposition 4.2.4. (i)
C = LM (4.2.18)
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(ii)
C̃ = ML (4.2.19)

(iii) M is tridiagonal with a single 1 × 1 block followed by 2 × 2 blocks.
(iv) L is tridiagonal with 2 × 2 blocks.

Proof. (i)

Cij = 〈χi, zχj〉
= 〈z−1χi, χj〉

=
∞∑

�=0

〈z−1χi, x�〉〈x�, χj〉

=
∞∑

�=0

〈χi, zx�〉〈x�, χj〉

=
∞∑

�=0

Li�M�j = (LM)ij

(ii) Similar to (i).
(iii) {χj}2n

j=0 and {xj}2n
j=0 both span the space H(−n,n) generated by {zk}n

k=−n.
Thus {τn, σn} and {tn, sn} are both orthonormal bases for the two-dimensional
space H(−n,n) ∩H⊥

(−n+1,n−1). It follows that M, the change of basis unitary, has a
2 × 2 block structure except for x0 = χ0 = 1 at the start.

(iv) {χj}2n+1
j=0 and {zxj}2n+1

j=0 both span the space H(−n,n+1) generated by
{zk}n+1

k=−n. Thus {σn, τn+1} and {zsn, ztn+1} are orthonormal bases for the two-
dimensional space H(−n,n+1) ∩ H⊥

(−n+1,n), so L has the stated 2 × 2 block struc-
ture. �

Theorem 4.2.5. Let

Θj =
(

ᾱj ρj

ρj −αj

)
(4.2.20)

Then

M =

⎛⎜⎜⎜⎝
1

Θ1

Θ3

. . .

⎞⎟⎟⎟⎠ L =

⎛⎜⎜⎜⎝
Θ0

Θ2

Θ4

. . .

⎞⎟⎟⎟⎠ (4.2.21)

Remarks. 1. For this reason, we call (4.2.18), (4.2.19) the Θ-factorization.
2. Taking the matrix product and using (4.2.18) provides a new proof of Propo-

sition 4.2.3.
3. In a sense, Theorem 4.2.5 makes Proposition 4.2.4(iii) and (iv) unnecessary.

The direct calculation below shows L and M have the claimed block structure. We
have included Proposition 4.2.4(iii) and (iv) because we feel that its proof explains
why the block structure occurs in a way that a mere calculation does not.

Proof. By (1.5.43),

σn = −α2n−1sn + ρ2n−1tn (4.2.22)
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and by (1.5.25)
τn = ρ2n−1sn + ᾱ2n−1tn (4.2.23)

This implies the formula for M, for example,

〈sn, σn〉 = 〈sn,−α2n−1sn + ρ2n−1tn〉 = −α2n−1

yielding the jj matrix elements of M for j = 3, 5, 7, . . . .
By (1.5.25),

zsn = −ᾱ2nσn + ρ2nτn+1 (4.2.24)

ztn+1 = ρ2nσn − α2nτn+1 (4.2.25)

which yields the formula for L. �

Corollary 4.2.6. C̃ = Ct

Remarks. 1. t is transpose, that is, adjoint without the complex conjugative.
2. This can also be proven using (4.2.11) and the fact that C∗ is multiplication

by z−1 = z̄.

Example 4.2.7. In the free case, dµ = dθ
2π , αj ≡ 0 and

L =

⎛⎜⎜⎜⎜⎜⎝

(
0 1
1 0

)
(

0 1
1 0

)
. . .

⎞⎟⎟⎟⎟⎟⎠

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 (
0 1
1 0

)
(

0 1
1 0

)
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎠

C =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 1
1 0 0

0 0 0 1
1 0 0 0

0 0 0 1
1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠
with ( 0 0 0 1

1 0 0 0 ) blocks. �

Proof. Clearly, Θt
j = Θj so Mt = M and Lt = L. Thus

C̃ = ML = MtLt = (LM)t = Ct �

The first benefit of the CMV representation is our final proof of Verblunsky’s
theorem.
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Theorem 4.2.8 (Fourth Proof of Verblunsky’s Theorem). Let {αj}∞j=0 ∈
×∞

n=0 D. Define Θ by (4.2.20), M,L by (4.2.21), and C = LM. Then C is unitary.
Let dµ be the spectral measure for C and vector, δ0. Then

αj(dµ) = αj

In particular, {αj}∞j=0 are the Verblunsky coefficients of a measure.

Remark. To prove Verblunsky’s theorem using the GGT representation re-
quired some extensive computation to show G({αj}∞j=0) was unitary. In the CMV
representation, the Θ-factorization makes it immediately evident that C({αj}∞j=0)
is unitary.

Proof. Since Θ is unitary (whenever |α| ≤ 1), M, L, and C are unitary. Let
δ0, δ1, . . . be the canonical basis for �2(Z+). From (4.2.14) and Proposition 4.2.3
(which come from multiplication of L and M), we note the following critical matrix
elements in C:

〈δ0, Cδ0〉 = ᾱ0 (4.2.26)

〈δ2n+1, Cδ2n−1〉 = ρ2nρ2n−1 n = 1, 2, 3, . . . (4.2.27)

〈δ2n, Cδ2n+2〉 = ρ2n+1ρ2n n = 0, 1, 2, . . . (4.2.28)

〈δ2n, Cδ2n−1〉 = ᾱ2nρ2n−1 n = 1, 2, 3, . . . (4.2.29)

〈δ2n−2, Cδ2n−1〉 = ᾱ2n−1ρ2n−2 n = 1, 2, 3, . . . (4.2.30)

From (4.2.27), the limiting value 〈δ1, Cδ0〉 = ρ0, and the shape (4.2.1), we see
that

Cn+1δ0 = ρ0ρ1 . . . ρ2nδ2n+1 + l.c.{δ0, . . . , δ2n} (4.2.31)
where l.c.{. . . } means a linear combination of the vectors in {. . . }. From C−1 = C∗,
(4.2.28), and the shape (4.2.1), we see

C−nδ0 = ρ0 . . . ρ2n−1δ2n + l.c.{δ0, . . . , δ2n−1} (4.2.32)

It follows by induction that δ0, δ1, δ2, . . . is obtained by applying the Gram-
Schmidt process to δ0, Cδ0, C−1δ0, C2δ0, C−2δ0, . . . . Thus, if V : �2 → L2(∂D, dµ) so
V CV −1 = multiplication by z and V δ0 = 1, then

V δn = χn(z, dµ)

This means that C is the CMV matrix of dµ, so by (4.2.27)–(4.2.31),

ᾱ0(dµ) = ᾱ0 (4.2.33)

ρ2n(dµ)ρ2n−1(dµ) = ρ2nρ2n−1 (4.2.34)

ρ2n+1(dµ)ρ2n(dµ) = ρ2n+1ρ2n (4.2.35)

ᾱ2n(dµ)ρ2n−1(dµ) = ᾱ2nρ2n−1 (4.2.36)

ᾱ2n−1(dµ)ρ2n−2(dµ) = ᾱ2n−1ρ2n−2 (4.2.37)

Because all ρj 
= 0, the first three equations imply ρj(dµ) = ρj for all j, and
then the last two that αj(dµ) = αj . �

We first turn to the understanding of the change αj → λαj from the CMV
point of view. A glance at (4.2.14) shows that C({λαj}∞j=0) and C({αj}∞j=0) differ
by an infinite rank operator (unless only finitely many α’s are nonzero) unlike the
case for G. This puzzle is resolved by a unitary equivalence. Given λ ∈ ∂D, let
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γ2 = λ. We will pick the square root with Im γ ≥ 0 for definiteness. Let U(λ) be
the diagonal unitary matrix

U(λ) =

⎛⎜⎜⎜⎜⎜⎝
γ̄

γ 0
γ̄

0 γ
. . .

⎞⎟⎟⎟⎟⎟⎠ (4.2.38)

Theorem 4.2.9. Let λ ∈ ∂D. Then
(i) U(λ)C({αj}∞j=0)U(λ)−1 and C({αj}∞j=0) have the same spectral measure asso-

ciated with the vector δ0.
(ii) C({λαj}∞j=0) − U(λ)C({αj}∞j=0)U(λ)−1 is a rank one operator.

Remarks. 1. As the proof shows, the difference is only in column 1, where
C({λαj}∞j=0) has elements (λ̄ᾱ0, ρ0, 0, . . . ) and U(λ)C({aj}∞j=0)U(λ)−1 has elements
(ᾱ0, λρ0, 0, . . . ) = λ(λ̄ᾱ0, ρ0, 0, . . . ).

2. This result and the theory of rank one perturbations in Subsection 1.4.16
provide a CMV proof of Theorem 3.2.14.

3. This result and (1.4.25) provide a new proof of the eigenvalue interlacing in
(c) of Theorem 3.2.16.

Proof. First, since U(λ)−1δ0 = γδ0, if A1 and A2 are the two operators in (i),
then 〈δ0, A

k
1δ0〉 = 〈δ0, A

k
2δ0〉 for all k, so the spectral measures are the same. Let

u(λ) =
(

γ̄ 0
0 γ

)
Then (note that it is u(λ), not u(λ)−1, to the right of Θ)

u(λ)Θ(α)u(λ) = Θ(λα)

so
U(λ)L({αj}∞j=0)U(λ) = L({λαj}∞j=0) (4.2.39)

and
U(λ)−1M({αj}∞j=0)U(λ)−1 = M({λαj}∞j=0) + (λ − 1)P0 (4.2.40)

where P0 is the projection onto δ0. (4.2.40) follows because all M’s have 1 as their
11 matrix element, while U(λ)−1MU(λ)−1 has λ as its matrix element.

Multiplying (4.2.39) by (4.2.40),

U(λ)C({αj}∞j=0)U(λ)−1 = C({λαj}∞j=0) + (λ − 1)L({λαj}∞j=0)P0 (4.2.41)

�

On the other hand, internal variations are more transparent in the CMV rep-
resentation than in the GGT representation:

Theorem 4.2.10. Let {αj}∞j=0 and {α̃j}∞j=0 be two sets of Verblunsky coeffi-
cients so that

α̃j = αj j 
= k, k + 1, . . . , k + � − 1

for some k ∈ {0, 1, 2, . . . } and � ≥ 1. Then C({α̃j}∞j=0) − C({αj}∞j=0) is rank at
most � + 1 if � is odd or k = 0 and at most � + 2 if � is even and k ≥ 1.
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Proof. Suppose first that k is even and � is odd. Write C({α̃}∞j=0) −
C({αj}∞j=0) = δC and similarly for δM and δL. Then

δC = δLM({α}∞j=0) + L({α̃}∞j=0)δM
Clearly, we have that ran(δL) ⊂ span[δk, δk+1, . . . , δk+�]. Moreover, ran(δM) ⊂
span[δk+1, . . . , δk+�−1] and L takes that into span[δk, . . . , δk+�], so ran(δC) ⊂
span[δk, . . . , δk+�] has dimension � + 1.

If k is even and � is even, ran(δL) ⊂ span[δk, δk+1, . . . , δk+�−1], ran(δM) ⊂
span[δk+1, . . . , δk+�] and L takes that into span[δk, . . . , δk+�+1], so ran(δC) ⊂
span[δk, . . . , δk+�+1], which has dimension � + 2.

If k is odd or k = 0, � even, we look at ran(δCt). �
Next, we turn to the case of small essential spectra.

Theorem 4.2.11. Let µ be a nontrivial probability measure on ∂D and let
τ ∈ ∂D. The following are equivalent:
(i) The essential support of dµ is {τ}.
(ii)

lim
n→∞ ᾱn+1αn = −τ (4.2.42)

(iii) For any continuous function f on ∂D,

lim
n→∞

∫
f(eiθ)|ϕn(eiθ)|2 dµ(θ) = f(τ)

(iv) For any continuous function f on ∂D and any k ∈ Z,

lim
n→∞

∫
f(eiθ)ϕn(eiθ)ϕn+k(eiθ) dµ(θ) = f(τ)δk0

(v) We have

lim
n→∞

∫
eiθ|ϕn(eiθ)|2 dµ(θ) = τ (4.2.43)

(vi) We have for any k ∈ Z,

lim
n→∞

∫
eiθϕn(eiθ)ϕn+k(eiθ) dµ(θ) = τδk0 (4.2.44)

Proof. We will show that

��� ����

�����

����

��� ���� ���

(i) ⇒ (iv). (i) means that C−τ1 is compact, which implies f(C)−f(τ)1 is compact,
first for any polynomial (by factorization) and then for any continuous function (by
polynomial approximation). Then ‖(f(C) − f(τ))ϕn‖ → 0, which implies (iv).
(iv) ⇒ (iii) and (iv) ⇒ (vi) as special cases.
(iii) ⇒ (v) and (vi) ⇒ (v) as special cases.
(v) ⇒ (ii). By (4.1.5), the left side of (4.2.43) is −ᾱnαn−1.



4.2. THE CMV REPRESENTATION 271

(ii) ⇒ (i). (4.2.42) implies |αn| → 1 so ρn → 0. A glance at (4.2.14) or Proposi-
tion 4.2.3 shows that all matrix elements of C − τ1 go to zero as the indices go to
infinity. Since C is a five-diagonal matrix, this implies that C − τ1 is compact, so τ
is the only point in its essential spectrum. �

Theorem 4.2.12. If dµ has only N points in its essential spectrum, then

lim
n→∞

N∏
j=1

ρn+j = 0 (4.2.45)

In particular,
lim sup

n→∞
|αn| = 1 (4.2.46)

Proof. This result is easier to prove using the GGT representation, so we will
use that. Let τ1, . . . , τN be the essential spectrum of G. Then

∏N
j=1(G − τj1) is

compact. By (4.1.6),〈
δn+N+1,

N∏
j=1

(G − τj1)δn+1

〉
=

N∏
j=1

ρn+j

Since δn+1 → 0 weakly, compactness implies (4.2.45).
(4.2.45) implies lim inf ρj = 0 so (4.2.46) holds. �

Example 4.2.13. Suppose α2n → 0 and α2n+1 → i. Then

Θ2n →
(

0 1
1 0

)
Θ2n+1 →

( −i 0
0 −i

)
Thus M + i1 is compact. It follows that

LM = −i

⎛⎜⎝ ( 0 1
1 0 )

( 0 1
1 0 )

. . .

⎞⎟⎠ + compact

so the essential spectrum is ±i (since ( 0 1
1 0 ) has eigenvalues ±1). This shows dµ can

have finite essential spectrum without lim inf|αn| = 1. A similar analysis works if
α2n → ζ1 and α2n+1 → ζ2 with either |ζ1| = 1 or |ζ2| = 1. �

Finally, we note that, by Theorem 1.7.18, if C(n) is the principal n×n block of
C, then

Φn(z) = det(z1 − C(n)) (4.2.47)
This implies that

Φ∗
n(z) = zn det( 1

z̄ − C(n))

= det(1 − z̄C(n))

= det(1 − zC(n) ) (4.2.48)

Thus, since log det(A) = Tr(log A) (if ‖1 − A‖ < 1)

log Φ∗
n(z) = Tr(log(1 − z C(n) ))

and so, if
∑∞

n=0|αn|2 < ∞, the Szegő function obeys

log D(z) = lim
n

[− log ϕ∗
n(z)]
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= 1
2 w0 +

∞∑
n=1

zn wn (4.2.49)

where
1
2 w0 = log

( ∞∏
n=0

(1 − |αn|2)1/2

)
(4.2.50)

and

wn = lim
m→∞

Tr((C(m))n)
n

(4.2.51)

It is, of course, tempting to write (4.2.51) as wn = Tr((C)n/n). The problem
with that is that Cn is not trace class; indeed, it is unitary. But C0 is a shift operator
in the standard basis renumbered, so formally, Tr((C0)n) = 0 and at least for n ≥ 2,
Cn − Cn

0 is trace class. Moreover, while C − C0 is not trace class if α is only in �2

and not in �1, the sum of its diagonal elements does converge.
This suggests there is a way to take the limit. In fact,

Theorem 4.2.14. Suppose {αn(dµ)}∞n=1 obeys the Szegő condition
∞∑

n=0

|αn|2 < ∞ (4.2.52)

Then the Szegő function, D, obeys for z ∈ D,

D(0)D(z)−1 = det2

(
(1 − zC̄)
(1 − zC̄0)

)
e+zw1 (4.2.53)

where

w1 = α0 −
∞∑

n=1

αnᾱn−1 (4.2.54)

If
∞∑

n=0

|αn| < ∞ (4.2.55)

then

D(0)D(z)−1 = det
(

(1 − zC̄)
(1 − zC̄0)

)
(4.2.56)

The coefficients wn of (4.2.49) are given by

wn =
Tr(Cn − Cn

0 )
n

(4.2.57)

for all n ≥ 1 if (4.2.55) holds and for n ≥ 2 if (4.2.52) holds. In all cases, one has

wn =
∞∑

j=0

(Cn)jj

n
(4.2.58)

Remark. det2 is the renormalized determinant; see Subsection 1.4.14.

Proof. Let α(N) be the sequence (α0, . . . , αN , 0, 0, . . . ) and DN , d
(N)
j the

associated Szegő functions and terms in (4.2.49). Since DN (z) → D(z) (i.e.,
(ϕ∗

N )−1 → D) uniformly on compact subsets of D and all are nonvanishing in
D, the left-hand sides of (4.2.53), (4.2.54), (4.2.56), (4.2.57), and (4.2.58) converge
as N → ∞. The right sides also converge by the continuity properties of det, det2,
and the trace ideal results for C − C0 in Theorem 4.3.2 below. Thus it suffices to
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prove the results for α(N). In that case, C−C0 is trace class, so (4.2.53) is equivalent
to (4.2.56). (4.2.56) follows from (4.2.48),

Φ∗
n(z) =

Φ∗
n(z)

Φ∗
n(z;αn ≡ 0)

= det
(

(1 − zC̄(n))

(1 − zC̄(n)
0 )

)
and taking n → ∞ using C −C0 trace class in the α(N) case. Since Tr((C(m)

0 )n) = 0
for n > 1, (4.2.57) holds for αN from (4.2.51) and taking m → ∞. That yields
(4.2.58) in general for n ≥ 2. The n = 1 case is just (4.2.54). �

The quantities dn are used in the higher-order sum rules; see Section 2.8 and
[275].

Remarks and Historical Notes. The CMV representation is due to Cantero,
Moral, and Velázquez [181], who also discuss C̃ and the Θ-factorization. Their
formulae look different from ours since what they call the Schur parameters are the
an of (1.5.15), so their an and our αn are related by an = −ᾱn−1. Moreover, they
often write their matrices as the transpose of the ones we write.

The use of the CMV representation to prove Verblunsky’s theorem (Theo-
rem 4.2.8) and the discussion in Theorems 4.2.9 and 4.2.10 are new.

My initial exposure to OPUC was when [464] was submitted to me as an editor
of Communications in Mathematical Physics. In looking over the introduction to
that paper, I was puzzled by the use of polynomials, which I naively assumed would
not usually be a basis. My immediate thought was that it seemed more natural
to get a basis by orthogonalizing the set {1, z, z−1, z2, z−2, . . . }. I did not pursue
this idea, either then or later. I tell this story to illustrate that the CMV basis
is exceedingly natural, and it is surprising that it took over eighty years from the
earliest paper on the subject until CMV had the courage to follow through to the
realization that the basis could be expressed in terms of the ϕn and the CMV
matrix in terms of the αn.

Prior to CMV, matrices in the block structure (4.2.1) or their analog on �2(Z)
occurred in two places: in the study of the strong moment problem on the real line
[575, 588] and in certain models in solid state physics [128, 151]. In particular,
the n = 1 (tridiagonal) case of Proposition 4.2.1 is from [151]. In a preliminary
version of this book, I presented their proof and conjectured that any four-diagonal
matrix was a direct sum of blocks of size up to 3 × 3. Motivated by this, CMV
proved Proposition 4.2.1 in [182]. In this paper, they also have an analog of Propo-
sition 4.1.2 for matrices of the block form (4.2.1).

While not motivated by OPUC, Bourget, Howland, and Joye [151] considered
products much like the ones that arise in the CMV factorization, but Θ is replaced
by the more general

S = eiη

(
ᾱ ρ
ρ̄ −α

)
(4.2.59)

where |α|2 + |ρ|2 = 1. Thus ρ is no longer real and there is the extra phase in
front. S has three phases while Θ has only one. One phase in S can be removed
by using the gauge transformations δn = eiγnδn, but the classes studied by [151]
have twice as many parameters and include CMV as a subset. [151] study mainly
the generalization of the extended CMV operator, E , but also generalizations of C.

Theorem 4.2.11 is from Golinskii, Nevai, and Van Assche [466]. Theorem 4.2.12
is due to L. Golinskii [458]. This last paper has a complete analysis of the case
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where the essential spectrum has two points and, in particular, has Example 4.2.13
with a different (but not unrelated) analysis. See [182] for a further analysis when
there are more than two points in σess but σess is finite.

Theorem 4.2.14 is new.

4.3. Spectral Consequences of the CMV Representation

This section is joint, previously unpublished, work with Leonid Golinskii [467].
We will need trace norm and operator norm estimates, but since it is easy to handle
Ip norms, we will state the basic lemma (Theorem 4.3.2) in that context. For the
properties of trace ideals, see Subsections 1.4.10–1.4.15 and [440, 962].

Lemma 4.3.1. (i) If A is a tridiagonal matrix and 1 ≤ p ≤ 2, then

‖A‖p ≤
(∑

i,j

|aij |p
)1/p

(4.3.1)

(ii) If A is a tridiagonal matrix and 2 ≤ p ≤ ∞, then

‖A‖p ≤ 31−2/p

( ∑
i,j

|aij |p
)1/p

(4.3.2)

where the value of the sum, when p = ∞, is supi,j |aij |.
(iii) If A,B,C,D are any unitary operators, then for 1 ≤ p ≤ ∞,

‖AB − CD‖p ≤ 21−1/p(‖A − C‖p
p + ‖B − D‖p

p)
1/p (4.3.3)

where, if p = ∞, the right side of (4.3.3) means 2 sup(‖A−C‖∞, ‖B −D‖∞).

Proof. (i) When p = 1, the result follows from the facts that ‖ · ‖1 is a norm
and a matrix with a single nonzero entry ai0j0 has trace norm ‖ai0j0‖. For p = 2,
the result is well-known. For general p in (1, 2), we get the result by interpolation.

(ii) For p = ∞, it is obvious that

‖A‖∞ ≤ sup|ai,i−1| + sup|ai,i| + sup|ai,i+1| ≤ 3 sup
i,j

|aij |

since a diagonal operator has norm equal to the sup of its matrix elements. This
proves (4.3.2) for p = ∞. p = 2 is well-known and general p is obtained by
interpolation.

(iii)

‖AB − CD‖p
p ≤ (‖A − C‖p‖D‖∞ + ‖A‖∞‖B − D‖p)p

≤ 2p−1(‖A − C‖p
p + ‖B − D‖p

p)

by Hölder’s inequality on R
2. �

Theorem 4.3.2. Let {αj}∞j=0 and {βj}∞j=0 be two sets of Verblunsky coeffi-
cients. Let Cα and Cβ be their CMV representations. Then for 1 ≤ p ≤ 2,

‖Cα − Cβ‖p ≤ 2
( ∞∑

j=0

|αj − βj |p + |ρj − σj |p
)1/p

(4.3.4)


