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proofs follow his, except that his derivation of (13.1.24) uses (13.1.14) and is more
complicated than our proof using (13.1.22).

The relation (13.1.7) is also from Geronimus [405]; see also [406, Section 30].
Its usefulness was emphasized to me by Peherstorfer.

Damanik-Killip [221] have an interesting alternate discussion of the formu-
lae of this section. They derive the direct relation using Schur functions. Their
derivation of the inverse formula is an inductive argument close to Geronimus, but
their formulae look different since they involve our 1/un and 1/vn, so that our
(vn − un)/(vn + un) is their (u−1

n − v−1
n )/(u−1

n + v−1
n ), and their formulae are for

α2n and α2n+1 in terms of u−1
n and v−1

n rather than Geronimus’ α2n and α2n−1.
Since u−1

n + v−1
n can be used to write un+1 + vn+1, that shift is to be expected.

There are two continuum analogs of the Szegő mapping. One is via Krein
systems. If A = Ā, the transfer matrix for (1.1.32)/(1.1.33) becomes

DA =
(

0 d
dx − A

− d
dx − A 0

)

and

D∗
ADA =

(
H+ 0
0 H−

)

where H± = − d
dx2 + q± and q± = A2 ∓ A′, the analog of the direct Geronimus

relation.
Damanik-Killip [221] introduce a different connection. If − d2

dx2 ± V ≥ 0, they
look at the function ϕ± obeying

−ϕ± ± V ϕ± = 0

with ϕ ± (0) = 0, ϕ±′(0) = 1. If one defines u = ϕ′
+/ϕ+, v = ϕ′

−/ϕ−, their basic
functions are

Γe(x) = 1
2 [u(x) − v(x)] Γo(x) = − 1

2 [u(x) + v(x)]

and their basic equations are

Γ′
e(x) = V (x) + 2Γe(x)Γo(x) Γ′

o(x) = Γ2
o(x) + Γ2

e(x)

and where they analyze α2n, α2n−1 to study certain Jacobi matrices, they analyze
Γo(x),Γe(x) to study certain Schrödinger operators.

13.2. CMV Matrices and the Geronimus Relations

Mathematicians tend to despise Dirac notation, because it can prevent them from making important
distinctions, but physicists love it, because they are always forgetting such distinctions exist and the
notation liberates them from having to remember . . .

— N. D. Mermin

The proof of the Geronimus relations (13.1.23)/(13.1.24) was not difficult, but
we feel an alternate proof of Killip-Nenciu [632] based on the CMV matrix is very
illuminating, so we present it in this section. We will also see that there are four
natural maps of symmetric measures on ∂D to measures on [−2, 2], each with its
Geronimus relations. The second of these four is implicit in the Szegő construction
and the other pair was discovered by Berriochoa, Cachafeiro, and Garćıa-Amor
[116, 117], who use methods like those from Section 13.1 to establish the Geronimus
relations for these cases.
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Let dξ be a measure on ∂D symmetric under z → z−1 = z̄. There is a natural
map M : L2(∂D, dξ) → L2(∂D, dξ) by

(Mf)(z) = f(z−1) (13.2.1)

Clearly,
MzM−1 = z−1 (13.2.2)

so
M(z + z−1)M−1 = (z + z−1) (13.2.3)

Notice that M2 = 1, so

L2(∂D, dξ) = L2
e(∂D, dξ) ⊕ L2

o(∂D, dξ) (13.2.4)

where M = 1 (resp. −1) on L2
e (resp. L2

o). (13.2.3) implies z + z−1 leaves each of
these subspaces fixed, so

z + z−1 = Je ⊕ Jo (13.2.5)

If H(n)
e (resp. H(n)

o ) is the set of Laurent polynomials of degree at most 2n in L2
e

(resp. L2
o), then H(n)

e is of dimension n+1 (resp. n) and is spanned by {zj +z−j}n
j=0

(resp. {zj − z−j}n
j=1). Clearly, Je (resp. Jo) maps H(n)

e to H(n+1)
e (resp. H(n)

o to

H(n+1)
o ) and thus, since Je and Jo are Hermitian, they define Jacobi matrices in the

orthonormalization of the nested subspaces H(0)
e ⊂ H(1)

e ⊂ · · · (i.e., in some basis
ϕj ∈ H(j)

e ∩ [H(j−1)
e ]⊥).

This is, of course, an abstraction of the scheme we implemented in terms of
polynomials in the last section. What does it have to do with the CMV matrix?
Look at the relation (4.2.11) of the two CMV bases. When all Verblunsky coeffi-
cients are real, we have, by induction (using the Szegő recursion), that

Φn(z̄) = Φn(z) (13.2.6)

(which just says that all coefficients of Φn are real!) and this implies the same for
χn and xn. Thus, (4.2.11) becomes

xn(z) = χn(z−1) (13.2.7)

or equivalently,
Mχn = xn (13.2.8)

One can also see this by noting M takes the ordered set 1, z, z−1, z2, z−2, . . . to
1, z−1, z, z−2, z2, . . . and since M preserves orthogonality, it respects the Gram-
Schmidt process leading to (13.2.8).

Since M2 = 1, we have
Mxn = χn (13.2.9)

In particular, in the χ basis, we have

Mij = 〈χi,Mχj〉 = 〈Mχi, χj〉
= 〈xi, χj〉

so M is given by the matrix M (see (4.2.16)) of the CMV factorization!
Thus, the key to computing Je and Jo is to diagonalize M. M is, by (4.2.21),

a sum of 2 × 2 matrices of the form Θj given by (4.2.20). Since αj is real, these
matrices have the form( − cos(ϕ) sin(ϕ)

sin(ϕ) cos(ϕ)

)
= S̃ϕ

( −1 0
0 1

)
S̃−1

ϕ (13.2.10)
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where

S̃ϕ =
(

cos(ϕ
2 ) sin(ϕ

2 )
− sin(ϕ

2 ) cos(ϕ
2 )

)
(13.2.11)

This follows from cos(ϕ) = cos2(ϕ
2 ) − sin2(ϕ

2 ), sin(ϕ) = 2 cos(ϕ
2 ) sin(ϕ

2 ) and can
be understood geometrically by noting the left side is a reflection that takes

(
0
1

)
to(

sin(ϕ)
cos(ϕ)

)
and so is a rotation by the half-angle conjugating the reflection

(−1 0
0 1

)
(see

Figure 13.1). Alternatively, one can compute the eigenvectors of Θ.

���������	
��	�

���
�
��

�
�����

��
�

Figure 13.1. Why S̃ϕ has half angles

Since cos(ϕ
2 ) =

√
(1 + cos(ϕ))/2 sin(ϕ

2 ) =
√

(1 − cos(ϕ))/2 , (13.2.10) can be
rewritten for Θj ,

S(α)Θ(α)S(α)−1 =
( −1 0

0 1

)
(13.2.12)

where (α real, ρ = (1 − |α2|)1/2)

Θ(α) =
(

α ρ
ρ −α

)
S(α) =

1√
2

( √
1 − α −√

1 + α√
1 + α

√
1 − α

)
(13.2.13)

which can be checked directly by noting that
√

1 − α
√

1 + α = ρ and (
√

1 − α)2 −
(
√

1 + α)2 = −2α.
Thus, we define

S =

⎛
⎜⎜⎜⎝

1
S(α1)

S(α3)
. . .

⎞
⎟⎟⎟⎠ (13.2.14)
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It follows that SMS−1 = R where

R =

⎛
⎜⎜⎜⎜⎜⎝

1
−1

1
−1

. . .

⎞
⎟⎟⎟⎟⎟⎠

(13.2.15)

and if B = SLS−1, then

S(C + C−1)S = RB + BR (13.2.16)

Now we see, since R2 = 1,

R(RB + BR) = RB + RBR
= (RB + BR)R

(this is just (13.2.3)). Thus, RB + BR vanishes on odd off-diagonals. Since S, L,
and S−1 are tridiagonal, B is 7-diagonal and thus, so are RB and BR and, a priori,
RB + RB, but since the diagonals 1 and 3 from the main diagonal vanish, there
are only three nonvanishing diagonals.

Let He (resp. Ho) be the vectors, ϕ, in �2 with Rϕ = ϕ (resp. Rϕ = −ϕ), that
is, with ϕ labelled (ϕ0, ϕ1, ϕ2, . . . ) so He is the set of vectors (u1, 0, u2, 0, u3, . . . ),
that is, ϕ2n = un−1 for n = 0, 1, 2, . . . and ϕ2n+1 = 0. Similarly, Ho is these ϕ’s
with ϕ2n−1 = un and ϕ2n = 0. We thus have

RB + BR = S(C + C−1)S = Je ⊕ Jo

where Je and Jo are tridiagonal.
With these wordy preliminaries out of the way, we are ready to prove

Theorem 13.2.1. We have for y = e or o,

Jy =

⎛
⎜⎜⎜⎝

b(y) a
(y)
1 0 . . .

a
(y)
1 b

(y)
2 a

(y)
2 . . .

0 a
(y)
2 b

(y)
3 . . .

. . . . . . . . . . . .

⎞
⎟⎟⎟⎠ (13.2.17)

where

b
(e)
n+1 = α2n(1 − α2n−1) − α2n−2(1 + α2n−1) (13.2.18)

(a(e)
n+1)

2 = (1 + α2n+1)(1 − α2
2n)(1 − α2n−1) (13.2.19)

b
(o)
n+1 = α2n(1 − α2n+1) − α2n+2(1 + α2n+1) (13.2.20)

(a(o)
n+1)

2 = (1 − α2n+3)(1 − α2
2n+2)(1 + α2n+1) (13.2.21)

Moreover, Je is the Jacobi matrix for the spectral measure γe ≡ Sz(ξ) given by
(13.1.1)/ (13.1.4) and Jo is the Jacobi matrix for the spectral measure

dγo ≡ c2(4 − |x|2) d(Sz(ξ))(x) (13.2.22)

with
c = [2(1 − |α0|2)(1 − α1)]−1/2 (13.2.23)

In particular, if dξ(θ) = w(θ) dθ
2π + dµs(θ), then

fe(x) = π−1(4 − x2)−1/2w

(
arccos

(
x

2

))
(13.2.24)
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fo(x) = cπ−1(4 − x2)1/2w

(
arccos

(
x

2

))
(13.2.25)

where dγy(x) = fy(x) dx + dγy,s.

Remarks. 1. (13.2.18)/(13.2.19) are, of course, just (13.1.23)/(13.1.24) and this
is just the promised second proof.

2. By changing the signs of the δj , we can flip the sign of the off-diagonal terms,
which is one reason we only list the a2

n+1.
3. As usual, we interpret α−1 = −1.
4. Notice that for αn ≡ 0, dγo is the free Jacobi matrix measure with an ≡ 1,

bn = 0. This can also be seen by looking at the measure (13.2.22).

Proof. For ϕ,ψ both in He (resp. both in Ho), 〈ϕ, (RB + BR)ψ〉 = 2〈ϕ,Bψ〉
(resp. −2〈ϕ,Bψ〉), so we need only compute matrix elements of B. It will be
convenient to use Dirac notation |n〉 for δn and so 〈δn,Bδm〉 = 〈n|B|m〉.

Since Je is tridiagonal in {|2j〉}∞j=0 basis, we need to compute

b
(e)
n+1 = 2〈2n|B|2n〉 (13.2.26)

[a(e)
n+1]

2 = [2〈2n + 2|B|2n〉]2 (13.2.27)

We write B = SLSt since S−1 = S∗ = St since S is unitary and real. S and St

take |2n〉 to |2n − 1〉 and |2n − 1〉 to |2n〉. And L maps |2n − 1〉 to |2n − 2〉 and
|2n − 2〉 to |2n − 1〉. We cannot go to |2n − 2〉 and get back. It follows that

〈2n|B|2n〉 = |〈2n|S|2n〉|2〈2n|L|2n〉 + |〈2n − 1|S|2n〉|2〈2n − 1|L|2n − 1〉 (13.2.28)

and we use

〈2n|L|2n〉 = Θ(α2n)11 = α2n (13.2.29)

〈2n − 1|L|2n − 1〉 = Θ(α2n−2)22 = −α2n−2 (13.2.30)

|〈2n|S|2n〉|2 = |S(α2n−1)22|2 = 1
2 (1 − α2n−1) (13.2.31)

|〈2n − 1|S|2n〉|2 = |S(α2n−1)12|2 = 1
2 (1 + α2n−1) (13.2.32)

(13.2.23) is immediate from (13.2.26), (13.2.28), (13.2.29), (13.2.30), (13.2.31), and
(13.2.32)

We will be more streamlined for the other calculations:

[a(e)
n+1]

2 = |2〈2n + 2|B|2n〉|2

= |2〈2n + 2|S|2n + 1〉〈2n + 1|L|2n〉〈2n|S|2n〉|2

= |2S(α2n+1)21Θ(α2n)21S(α2n−1)11|2

= (1 + α2n+1)ρ2
2n(1 − α2n−1)

proving (13.2.19).
Similarly,

b
(o)
n+1 = −2〈2n + 1|B|2n + 1〉

= −2[|〈2n + 1|S|2n + 1〉|2〈2n + 1|L|2n + 1〉
+ |〈2n + 2|S|2n + 1〉|2〈2n + 2|L|2n + 2〉]

= −2[S(α2n+1)211Θ(α2n)22 + S(α2n+1)212Θ(α2n+2)11]

= RHS of (13.2.20)
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and

|a(o)
n+1|2 = |2〈2n + 3|B|2n + 1〉|2

= 4|〈2n + 3|S|2n + 3〉〈2n + 3|L|2n + 2〉〈2n + 2|St|2n + 1〉|2

= 4|S(α2n+3)11Θ(α2n+2)21S(α2n+1)21|2
= RHS of (13.2.21)

That provides the calculations of the connection formulae. To check the mea-
sures, we note that |0〉 corresponds to the function 1 in L2(∂D, dξ(θ)) whose spectral
measure for functions of z + z−1 = x is given by∫

f(x) dγe(x) =
∫

f(2 cos θ) dξ(θ)

that is, (13.1.2), so γe = Sz(ξ) as claimed.
To find γo, we note that |1〉 is an odd real, second-degree normalized Laurent

polynomial so c(z − z−1). Since (note
∫

z2 dξ =
∫

z−2 dξ)∫
|z − z−1| dξ =

∫
(2 − 2z2) dξ (13.2.33)

= 2(1 − c2) (13.2.34)

= 2(1 − α2
0)(1 − α1) (13.2.35)

(by (1.3.52)), c is given by (13.2.23). Thus∫
f(x) dγ0(x) =

∫
f(2 cos θ)[4 − (2 cos θ)2]c2 dξ(θ)

yielding (13.2.22). Here we used that z = eiθ means

|z − z−1|2 = 4 sin2 θ = 4 − (2 cos θ)2 �
The above depended on M2 = 1, but L2 = 1 also. Thus, if we look at the

spaces with L = ±1 (i.e., ϕ’s with zϕ(z−1) = ±ϕ(z)), C also is a direct sum of
Jacobi matrices. Explicitly,

T =

⎛
⎜⎜⎜⎝

S(α0)
S(α2)

S(α4)
. . .

⎞
⎟⎟⎟⎠ (13.2.36)

and
T LT −1 = −R (13.2.37)

with R given by (13.2.15). Thus, with B̃ = TMT −1, we have

T (C + C−1)T −1 = J + ⊕ J−

where J+ acts on He and J− on Ho.

Theorem 13.2.2. J± are given by (13.2.18) where

b
(±)
n+1 = ∓[α2n+1(1 ± α2n) − α2n−1(1 ∓ α2n)] (13.2.38)

(a(±)
n+1)

2 = (1 ∓ α2n+2)(1 − α2
2n+1)(1 ± α2n) (13.2.39)

Moreover, the spectral measures dγ± for these Jacobi matrices are given by

dγ± = c2
±(2 ∓ x) d(Sz(ξ))(x) (13.2.40)
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with
c± = [2(1 ∓ α0)]−1/2 (13.2.41)

Remark. As usual, α−1 = 1.

Proof. As in the last theorem, noting that −R is −1 on He and +1 on Ho,

b
(+)
n+1 = −2〈2n|B̃|2n〉

= −2[|〈2n|T |2n〉|2〈2n|M|2n〉 + |〈2n + 1|T |2n〉|2〈2n + 1|M|2n + 1〉]
= −2|S(α2n)11|2Θ(α2n−1)22 − 2|S(α2n)12|2Θ(α2n+1)11
= RHS of (13.2.38) for (+)

while

b
(−)
n+1 = 2〈2n + 1|B̃|2n + 1〉

= 2[|〈2n + 1|T |2n + 1〉|2〈2n + 1|M|2n + 1〉 + |〈2n + 1|T |2n〉|2〈2n|M|2n〉]
= 2|S(α2n)22|2Θ(α2n+1)11 + 2|S(α2n)21|2Θ(α2n−1)22
= RHS of (13.2.38) for (−1)

And we compute

[a(+)
n+1]

2 = 4|〈2n + 2|B̃|2n〉|2

= 4|〈2n + 2|T |2n + 2〉〈2n + 2|M|2n + 1〉〈2n + 1|T t|2n〉|2

= 4|S(α2n+2)11Θ(α2n+1)21S(α2n)12|2
= RHS of (13.2.39) for (+)

and

[a(−)
n+1]

2 = 4|〈2n + 3|B̃|2n + 1〉|2

= 4|〈2n + 3|T |2n + 2〉〈2n + 2|M|2n + 1〉〈2n + 1|T t|2n + 1〉|2

= 4|S(α2n+2)21Θ(α2n+2)21S(α2n)22|2
= RHS of (13.2.39) for (−)

This verifies the connection formulae.
To check the spectral measures, we note that L = CM, since M2 = 1, and

thus,
(Lϕ)(z) = zϕ(z−1)

Recalling that L|0〉 = −|0〉 and L|1〉 = |1〉 and that |0〉 and |1〉 are linear combina-
tions of 1 and z, we see that

|0〉 = c+(1 − z) |1〉 = c−(1 + z)

with

1 = c2
±

(
2 − 2

∫
z dξ

)
= c2

±(2 − 2α0)

so c± are given by (13.2.42). Since

|1 ∓ z|2 = 2 ∓ (2 cos θ)

we see the measures have the claimed form. �
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Example 13.2.3. If αn ≡ 0, we have a
(±)
n ≡ 1, b

(±)
1 = ∓1, b

(±)
n = 0; n ≥ 2.

Just as the free Jacobi matrix (which is connected to the α
(o)
n , b

(o)
n for αn ≡ 0) is

related to Chebyshev polynomials of the second kind and Sz( dθ
2π ) (i.e., a

(e)
n , b

(e)
n for

an ≡ 0) to Chebyshev polynomials of the first kind, these examples are connected
to Chebyshev polynomials of the third and fourth kind. These are defined by

Wn(cos θ) =
cos(n + 1

2 )θ
cos( θ

2 )
(13.2.42)

Vn(cos θ) =
sin(n + 1

2 )θ
sin( θ

2 )
(13.2.43)

By writing out sin(θ) and cos(θ) in terms of eiθ, we have sin(n + 1
2 )θ/ sin( θ

2 ) =∑n
j=−n eijθ = 1 +

∑n
j=1 2 cos(jθ), so

Vn(x) = T0(x) + 2
n∑

j=1

Tj(x) (13.2.44)

If we define

P (+)
n = Vn

(
x

2

)
P (−)

n (x) = Wn

(
x

2

)
(13.2.45)

then

xP (±)
n (x) = P

(±)
n+1 + P

(±)
n−1 n ≥ 1 (13.2.46)

xP±
0 (x) = P±

1 (x) ∓ P±
0 (x) n = 0

which are the OPRL for these images of αn ≡ 0.
The orthogonality measure for Vn is 2 sin2( θ

2 ) dθ
2π = 1

π sin2( θ
2 )/ sin θ d(cos θ),

which leads directly to

dγ+(x) =
1
2

√
2 − x

2 + x
dx (13.2.47)

and similarly,

dγ−(x) =
1
2

√
2 + x

2 − x
dx (13.2.48)

�

Remarks and Historical Notes. The approach to the Geronimus relations for all
four maps from α’s to Jacobi matrices comes from Killip-Nenciu [632]. While it may
well predate them, the earliest place I am aware of (13.2.20)/(13.2.21) appearing
is Berriochoa, Cachafeiro, and Garćıa-Amor [117]. This paper introduced, from
an orthogonal polynomial point of view, the mappings I call dξ → dγ(±) and [116]
computed (13.2.38)/(13.2.39) by methods like those that appear in Section 13.1.

To compare their formulae and ours, we note the following dictionary: Their
Φn(0) is our −ᾱn−1, and while their a’s and ours agree, their bn is our bn+1.

Earlier, Peherstorfer [846] considered the measures dγ(±) and their relation of
their OPs to the OPUC. For analogs of (13.1.13) for dγ(o) and dγ(±), see Berriochoa
et al. [117] and Peherstorfer [846]. Peherstorfer [846] has a formula that sheds light
on the relation of (13.2.18)/(13.2.19) to (13.2.20)/(13.2.21). Namely, he shows that
if dµ̃ is related to dµ by αn → −αn (i.e., F̃ (z) = 1/F (z)), then the OPs for dγ̃(o)

are the second kind polynomials for dγ(e). This means that one can get a
(o)
n and
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b
(o)
n from a

(e)
n and b

(e)
n by changing the signs of the α’s and taking n → n+1 (i.e., αj

to αj+2), which gives another — and illuminating — proof of (13.2.20)/(13.2.21)
When the α’s are real, for any integer �, C�M ≡ M� obeys M2

� = 1 and
M�(C + Ct) = (C + Ct)M�, but it is only for � = 0,±1 (M−� = M∗

� and so M−1

and M1 are essentially equivalent) that C + Ct � (M� = ±1) is tridiagonal. [117]
have a result related to this observation and show these four maps are the only ones
within a potential class that map OPUC to OPRL.

We emphasize that dξ → dγ(e) is onto all measures supported on [−2, 2] but
that the other three maps are not surjective. For example,

ran(dξ → dγ(o)) =
{

γ supported in [−2, 2]
∣∣∣∣
∫

(4 − x2)−1 dγ < ∞
}

so, for example, the γ for the Chebyshev polynomials of the first kind (i.e., 1
π (4 −

x2)−1/2 dx) is never a dγ(o).
It should be possible (and is hinted at in [116]) to write down analogs of the

inverse Geronimus relations for the other three maps dξ → dγ(0), dξ → dγ(±)

discussed here. These should have the form of (13.1.34) and (13.1.37) but with ϕ±
n

the solution of (13.1.27) with different boundary conditions than ϕ1 = 1, ϕ0 = 0.
Presumably, the other solution has ϕ−1 = 0, ϕ0 = 1, and the two choices of
boundary condition at +2 and −2 yield the four inverses. The restriction on whether
a dγ lies in the range of the other maps is connected with whether this second
solution is positive for +2 and sign alternating for −2.

13.3. Szegő’s Theorem for OPRL: A First Look

In this section, we will use the Szegő mapping to carry over Szegő’s theorem
to OPRL. Of necessity, our real measures dγ will obey supp(dγ) = [−2, 2]. In
Theorem 13.8.9 and Section 13.9, we will discuss extensions of the theory to some
cases with ess supp(dµ) = [−2, 2], which is why we call this a first look.

The main theorem is the following:

Theorem 13.3.1. Let dγ = f(x) dx + dγs be a measure on [−2, 2]. Let an ≡
an(dγ) and bn ≡ bn(dγ) be its Jacobi parameters, and let αn = αn(Sz−1(dγ)) be
the Verblunsky coefficients of the measure dµ on ∂D with dγ = Sz(dµ). Then the
following are equivalent:
(i)

inf(an . . . a1) > 0 (13.3.1)
(ii)

∞∑
j=0

|αj |2 < ∞ (13.3.2)

(iii) All of the following

(a)
∞∑

n=1

|an − 1|2 + |bn|2 < ∞ (13.3.3)

(b) lim
n→∞ an . . . a1 exists and is nonzero and finite

(c) lim
n→∞

n∑
j=1

bj exists


