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away from the zero of a. Thus, by monotonicity, (−Gnn(z))−1 has no zero in
(βj , αj+1).

If (a(z)) has a zero at βj , then (−Gnn(βj ))−1 = ∞, (−Gnn(αj+1)) = 0, and
(−G)−1 is finite and monotone in all of (βj , αj+1), so always strictly negative.
Similarly, if a(z) has a zero at αj , (−Gnn(z))−1 is strictly positive on (βj , αj+1).

In all cases, (−Gnn(z))−1 is nonvanishing on (βj , αj+1), so noGnn(z) has a pole
in those intervals, so σ(J ) ⊂ e. By the fact that Gnn(x + i0) is pure imaginary,
Craig’s theorem (Theorem 5.4.19) implies the spectrum is purely a.c. Since

Im(a2
nm(x + i0, J+n )) = Im((−m(x + i0, J−n ))−1) = 1

2 Im((−Gnn(x + i0))−1)

we see that the a.c. spectrum is of multiplicity 2.

Remarks and Historical Notes. This is the second half of the theory developed
by Flaschka–McLaughlin–Krichever–van Moerbeke quoted (with background) in
the Notes to the last section.

By the discussion in Example 5.13.4 and the remark after Corollary 5.13.3, if m
obeys all the conditions for a function inMe, except it is finite and nonzero at ∞−
rather than a pole, then the once-strippedm1 is inMe. So every such Jacobi matrix
is an almost periodic one with b1 modified.

In the periodic case, the Dirichlet data points are the roots of pp−1(z), which are
eigenvalues of the truncated matrix Jp−1;F , so associated to solutions of
(J − λ)u = 0 with un=0 = un=p = 0, thus Dirichlet eigenvalues, which is the
reason for the name. Alternatively, in terms of the operators J±0 of the truncated
full-line problem, Dirichlet data in the interior of a gap are eigenvalues of J+0
if in S+ and of J−0 if in S−.

There are basically two ways of thinking of the isospectral torus, Te: a set of
whole-line Jacobi matrices or as their restrictions to the half-line (which, by almost
periodicity, determine the whole-line matrix). The half-line objects are defined as
the set of minimal Herglotz functions. The whole-line objects are the set of reflec-
tionless whole-line J ’s with σess(J ) = �ac(J ) = e. That every such object lies in
the isospectral torus, as we have defined it, will be the major theme in Section 7.5,
which will also discuss the history of this point of view.

Among all almost periodic Jacobi matrices, the finite gap ones are unusual in
that, generically, one expects infinitely many gaps and Cantor spectrum. For results
on such generic Cantor spectrum, see [28, 29, 121, 172].

APPENDIX TO SECTION 5.13:

A CHILD’S GARDEN OF ALMOST PERIODIC FUNCTIONS

As we have seen, Jacobi parameters induced by the minimal Herglotz functions as-
sociated to a general finite gap set are quasiperiodic, and so almost periodic. In this
appendix, we discuss the general definition of quasiperiodic and almost periodic.

Given a function, f , on Z and n ∈ Z, we define fn on Z by

fn(m) = f (n+m) (5.13A.1)
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Given a bounded function, f , on Z, we define

‖f ‖∞ = sup
n

|f (n)| (5.13A.2)

and let C(Z) be the set of all bounded functions in this norm.

Definition. A function, f , from Z to C is called almost periodic (in Bochner sense)
if and only if f is bounded and {fn}n∈Z has compact closure in ‖·‖∞.

Definition. A Bohr almost periodic function on Z is a bounded function, f , so that
for any ε, there is an L so that for all m ∈ Z, there is an n so that |n−m| ≤ L and

‖fn − f ‖∞ < ε (5.13A.3)

Let T1 be the circle ∂D = {z | |z| = 1}, Tn = ×n
j=1 T

1, the n-dimensional
torus, and T∞, the countably infinite product. We will think of Tn as ∂Dn and use
(z1, . . . , zn) as coordinates. Notice that we use additive notation for Z but multi-
plication for T.

The main theorem at the center of the theory is:

Theorem 5.13A.1. Let f be a bounded function on Z. The following are equi-
valent:
(1) f is (Bochner) almost periodic.
(2) f is Bohr almost periodic.
(3) f is a uniform limit of finite sums of the form

gN(n) =
N∑
j=1

aj e
2πiα(N)j n (5.13A.4)

for α1, . . . , α
(N)
N ∈ R/Z.

(4) There exists a continuous function F on T∞ and {zj }∞j=1 in T∞ so that

f (n) = F(zn) (5.13A.5)

where (zn)j = znj .
Remarks. 1. If F depends on only finitely many variables (equivalently, F can be
viewed as a function of a finite-dimensional torus), f is called quasiperiodic.

2. In Theorem 5.13.10, we have functions of the form (5.13A.5) on a finite-
dimensional torus, but only for n ≥ 0. So the question comes up how to define
almost periodic functions on n ≥ 0. The answer is as restrictions to n ≥ 0 of
functions almost periodic on Z, there is at most one such extension, for if there were
two, their difference would be an almost periodic function vanishing for n ≥ 0 and,
by the Bohr definition, such a function is identically zero.

It is natural to prove this result in the general context of locally compact abelian
groups. Let G be such a group, μ Haar measure, and Ĝ the set of characters, that
is, continuous homomorphisms of G to ∂D. Besides Z, the example to think about
is R.

Let C(G) stand for bounded continuous functions on G with ‖·‖∞. For f ∈
C(G) and g ∈ G, define fg by

fg(x) = f (x + g) (5.13A.6)
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f is (Bochner) almost periodic if {fg}g∈G has compact closure in ‖·‖∞. f is called
Bohr almost periodic if and only if for all ε, there is a compact set K so that for all
g, there is h in g +K so that

‖fn − f ‖∞ ≤ ε (5.13A.7)

The general form of Theorem 5.13A.1 is:

Theorem 5.13A.2. Let G be a separable compact abelian group. Let f ∈ C(G).
Then the following are equivalent:
(1) f is (Bochner) almost periodic.
(2) f is Bohr almost periodic.
(3) f is a uniform limit of finite sums of the form

gN(x) =
N∑
j=1

ajχ
(N)
j (x) (5.13A.8)

with χ(N)j ∈ Ĝ.
(4) There exists a continuous function F on T∞ to C and a homomorphism ζ :

G→ T∞ so

f (x) = F(ζ(x)) (5.13A.9)

Theorem 5.13A.2 ⇒ Theorem 5.13A.1. Only parts (2) and (4) look a little differ-
ent. For (2), note compact sets in Z are finite and so contained in intervals. As for
(4), note for G = Z, homomorphisms ζ : G → T∞ are given precisely by ζ(1)
since ζ(n) = ζ(1)n (using a product rather than additive notation for T).

(4) ⇒ (3) in Theorem 5.13A.2. Let z1, z2, . . . be coordinates on T∞. Let χj :
G→ ∂D be zj ◦ϕ. Then χj is a character onG, and thus, so is any finite product of
χj ’s. By the Stone–Weierstrass theorem, polynomials in the zj are dense in C(T∞),
and so F is a uniform limit in polynomials in zj . Thus, F ◦ ϕ is a uniform limit of
finite linear combinations of characters.

(3) ⇒ (1) in Theorem 5.13A.2. A set Q in a complete metric space, X, has com-
pact closure if and only if for all ε, there are finitely many q1, . . . , q� in X so that
∪�j=1{q | ρ(q, q�) < ε} contains Q. If f is a limit of fN ’s of the form (5.13A.8),
given ε, pick ε/2 so ‖f − fN‖∞ < ε/2. Since

(fN)g =
N∑
j=1

ajχj (g)χj (5.13A.10)

{(fN)g} ⊂ {∑N
j=1 aj zjχj | |zj | = 1} is compact, and so covered by finitely many

ε/2 balls. Thus, since ‖fg − (fN)g‖∞ = ‖f − fN‖∞, {fg} is covered by finitely
many ε balls.

(1) ⇒ (2) in Theorem 5.13A.2. Given ε, pick g1, . . . , gN inG so every fg is within
ε of some fgj . Let K = {−g1, . . . ,−gN }, which is finite, and so compact. If
‖fg − fgj ‖∞ < ε, then ‖fg−gj − f ‖∞ < ε and h = g − gj ∈ g +K .
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Remark. Once we have (2) ⇒ (1), this implies the compact K in Bohr almost
periodic can be taken as a finite set!

Lemma 5.13A.3. If f is Bohr almost periodic, then f is uniformly compact, that
is, for any ε, there is a neighborhood N of the identity e ∈ G so that if x − y ∈ N ,
then |f (x)− f (y)| < ε.
Proof. Each fy is continuous at e, so given ε, there is Ny , a neighborhood of e,
so that w ∈ Ny ⇒ |fy(w) − fy(e)| < ε/4, so if w,w′ ∈ Ny , then |fy(w) −
fy(w

′)| < ε/2. By continuity of addition, we can findMy , a neighborhood of e, so
My +My ⊂ Ny . Thus, if

w,w′, w′′ ∈ My ⇒ |fy+w′′(w′)− fy+w′′(w)| < ε

2
(5.13A.11)

If K is compact, we have K ⊂ ∪y∈K(y + My), so pick y1, . . . , y� so K ⊂
∪�j=1(yj +Myj ) andMK = ∩�j=1Myj . Thus, by (5.13A.11),

y ∈ K, w,w′ ∈ MK ⇒ |fy(w)− fy(w′)| < ε

2
(5.13A.12)

Given ε, let K compact be chosen so (5.13A.7) holds for ε/4 and pick MK as
above. Suppose x − y ∈ MK . By Bohr almost periodicity, there is h ∈ K so that
‖fh−y − f ‖∞ < ε/4. Thus, ‖fh − fy‖∞ < ε/4, so by (5.13A.12),

w,w′ ∈ MK ⇒ |fy(w)− fy(w′)| < ε (5.13A.13)

Taking w = x − y and w′ = e, we see

x − y ∈ MK ⇒ |f (x)− f (y)| < ε (5.13A.14)

which is uniform continuity.

(2) ⇒ (1) in Theorem 5.13A.2. By Lemma 5.13A.3, f is uniformly continuous,
which implies x → fx is continuous as a map of G to C(G). Given ε, let K be the
compact set so that (5.13A.7) holds for ε/2. Since x → fx is continuous, {fx}x∈K
is compact, so we can find x1, . . . , x� in K whose ε/2 balls cover this set of f ’s.
Given any y ∈ G, there is x ∈ K so ‖f−y+x − f ‖∞ < ε/2, so ‖fy − fx‖ < ε/2
and fy is within ε of some fxj . Thus, {fy}y∈G is covered by finitely many ε balls.
Since ε is arbitrary, f is (Bochner) almost periodic.

(1) ⇒ (4) in Theorem 5.13A.2. This final step is the most elaborate and elegant.
Let H ⊂ C(G) be the closure of {fx}x∈G. H is called the hull of f . Define
ϕ0 : G→ H by

ϕ0(x) = fx (5.13A.15)

Since (1) ⇒ (2) ⇒ f is uniformly continuous, ϕ0 is continuous. Since ‖px −
qx‖∞ = ‖p − q‖∞, we see that

‖fx+y − fx ′+y ′ ‖∞ ≤ ‖fx − fx ′ ‖∞ + ‖fy − fy ′ ‖∞ (5.13A.16)

that is,

‖ϕ0(x + y)− ϕ0(x
′ + y ′)‖ ≤ ‖ϕ0(x)− ϕ0(x

′)‖ + ‖ϕ0(y)− ϕ0(y
′)‖ (5.13A.17)
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Let h, h′ ∈ H . Picking xn, yn ∈ G so ϕ(xn) → h, ϕ(yn) → h′, we see, by
(5.13A.17), that ϕ(xn + yn) is Cauchy, which allows us to define h + h′ (“+” is
map of H × H to H , not to be confused with adding the functions!). It is easy
to see this turns H into a compact group. Since H is a metric space, compactness
implies separability. By definition, ϕ is a homomorphism.

Now we need a fact about compact separable abelian groups (see the Notes):
Such groups have characters that separate points, and by separability, there is
a countable family, {χj }∞j=1 ⊂ Ĥ , that separates points. Let Q : H → T∞ by
Q(h)j = χj (h) and ϕ : G→ T∞ by ϕ = Q ◦ ϕ̃. Q is an injective map since {χj }
separates points. ϕ is a group homomorphism.

SinceH is compact,Q[H ] is closed in T∞. Define F̃ : H → C by F̃ (h) = h(e).
Then F is continuous and

F̃ (ϕ(x)) = F̃ (fx) = fx(e) = f (x) (5.13A.18)

that is, F̃ ◦ ϕ = f . SinceQ is one-one, we can define a function F onQ[H ] so

F ◦Q = F̃ (5.13A.19)

Since Q[H ] is closed, F has an extension to T∞ by the Tietze extension theorem.
We will still use F for this extension. Clearly, (5.13A.19) remains true; F : T∞ →
C and

F ◦ ϕ = F ◦Q ◦ ϕ̃ = F̃ ◦ ϕ̃ = f (5.13A.20)

by (5.13A.18).

Remarks and Historical Notes. The definition of almost periodic functions on R
and their properties is due to Harald Bohr [51, 52], using the definition we gave for
Bohr almost periodic on Z (but for R). The Bochner property (which we codified
in the Bochner definition) is due to Bochner [47, 49].

Sometimes what we call “almost periodic” is called “uniformly almost periodic”
since there are also Besicovitch almost periodic or L2-almost periodic functions,
which we will define below.

For book treatments of the theory, see Besicovitch [44], Bohr [53], Corduneanu
[94], and Levitan–Zhikov [279].

We used the fact that any abelian separable compact group, G, has enough char-
acters to separate points. This is essentially the Peter–Weyl theorem for such groups
(see, e.g., Simon [394]); here is a sketch of the argument explicitly. Let f be a func-
tion on G with f (−x) = f (x). Define T : L2(G)→ L2(G) by

(T h)(x) =
∫
f (x − y)h(y) dμ(y)

where dμ is Haar measure. T is Hilbert–Schmidt (so compact) and selfadjoint.
Moreover, if Ux : L2 → L2 by (Uxf )(y) = f (y − x), then T commutes with

{Ux}. Thus, {Ux} leave each eigenspace invariant. If V is such an eigenspace and is
finite-dimensional, the Ux are commuting unitaries on V, so they have a common
eigenvector χ̃ (x). Thus,

χ̃ (x + y) = (Uxχ̃)(y) = λxχ̃(y)
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and Ux+y = UxUy implies λx+y = λxλy . Since x → Ux is continuous, this shows
χ̃ is continuous and everywhere nonzero: χ(x) = χ̃(x)/χ̃(e) is thus a (continuous)
character. So the characters span Ran(T ). Since we can find fn so Tfn → 1, we see
the characters χ span L2, which implies they separate points.

Further developments depend on the notion of the average of an almost periodic
function. Given an almost periodic function, f , let H be its hull, F̃ the function in
(5.13A.18), and dν normalized Haar on H . We define

Av(f ) =
∫
H

F̃ (x) dν(x) (5.13A.21)

For R or Z, one can prove that

Av(f ) = lim
T→∞

1

2T

∫ T

−T
f (x) dx (5.13A.22)

(or 1
2T+1

∑T
−T f (n) for Z).

One defines the Fourier coefficients of f for χ ∈ Ĝ by

f̂ (χ) = Av(χ̄f ) (5.13A.23)

noting that χ̄f is also almost periodic. It is not hard to see that f̂ (χ) is nonzero for
only countably many χ ’s. Indeed, one has a Plancherel theorem∑

χ∈Ĝ
|f̂ (χ)|2 = Av(|f |2) (5.13A.24)

One also has an L2 convergence of Fourier series; if {χj }∞j=1 is a numbering of

those χ ’s with f̂ (χ) �= 0, then

Av

(∣∣∣∣f − N∑
j=1

f̂ (χj )χj

∣∣∣∣2)→ 0 (5.13A.25)

These results are all easy to prove by using the fact that if H is the hull, f̂ (χ) �= 0
implies χ ∈ Ĥ , that is,

χ = χ̃ ◦ ϕ̃ (5.13A.26)

where χ̃ is a character ofH . (5.13A.24) and (5.13A.25) are then expressions of the
fact that characters of H are a basis of L2(H, dν).

For R, one defines Besicovitch almost periodic functions as functions on R, for

which there exists, for any z, a finite sum fN =∑N
j=1 a

(N)
j eiw

(N)
j x with

lim sup
T→∞

1

2T

∫ T

−T
|fn − fN(x)|2 dx ≤ ε (5.13A.27)

The frequency module of f , an almost periodic function, is the set of characters
of G that comes from H , the hull, via (5.13A.26). It is a countable subgroup of Ĝ.
It is generated by {χ | f̂ (χ) �= 0}.
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A function is called limit periodic if it is a uniform limit of periodic functions.
Such functions are obviously almost periodic. A typical example is

f (x) =
∞∑
n=1

2−n cos(2π2−nx) (5.13A.28)

We note that the term quasiperiodic is sometimes used for a very different notion
from our use and that those quasiperiodic functions are not almost periodic.

The set of all almost periodic functions in ‖·‖ is Banach algebra. Its Gel’fand
spectrum (see [150] for the theory of commutative Banach algebras) is called the
Bohr compactification of G. It is huge, containing every hull as a subgroup. One
can construct it by taking Ĝ and putting the discrete topology in it and taking the
dual of that.

5.14 PERIODIC OPUC

We have discussed OPRL with periodic Jacobi matrices in much of this chapter.
The theory of OPUC whose Verblunsky coefficients obey

αn+p = αn (5.14.1)

for all n and some fixed p is the subject of Chapter 11 of [400]. Our goal in this
section is to sketch some parts of this theory, emphasizing the differences to the
OPRL theory.

A major difference is that the transfer matrix for OPRL has determinant 1 since

det

[
1

a

(
z − b −1
a2 0

)]
= 1 (5.14.2)

while in the OPUC case, the m step transfer matrix has determinant zm since

det

[
1

ρ

(
z −ᾱ
−αz 1

)]
= z (5.14.3)

(see (2.4.3)).
The natural discriminant is thus

�(z) = z−p/2Tr(Tp(z)) (5.14.4)

For this reason, it is natural to restrict to the case p even and control p odd by other
means (e.g., by viewing it as period 2p instead of as period p). We shall do this
henceforth.
�(z) is thus a Laurent polynomial (i.e., polynomial in z and z−1). It is real on

∂D, and one can show the associated measure is purely absolutely continuous on
e = �−1([−2, 2]) ⊂ ∂Dwith potentially one pure point per gap. The Carathéodory
function obeys a quadratic equation and extends to a two-sheeted Riemann surface
with branch points at the edges of connected components of e.

The most significant difference from OPRL comes from the following: If e has
� + 1 connected components, in the OPRL case, there are � significant gaps—the
gap on C \ e that goes from β�+1 to ∞ and then −∞ to α1 is not considered for


