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Notice that our proof of Theorem 3.7.9 also provides an independent proof of
Szegő asymptotics for pn on D when (3.7.2) and (3.7.8) hold. It also only needs

lim sup(a1 . . . an)
−1 ≥ u(0)

which is the easier half of the proof of (3.7.66) (i.e., of (3.6.37)). It then implies the
full (3.7.66).

Notice that (3.7.39) expands pn in terms of e±inθ(x), not un(eiθ(x)) and its conju-
gate. The product of un and u0 is not necessarily L2, but since e±inθ(x) are in L∞,
their products with u0 are in L2.

3.8 THE MOMENT PROBLEM: AN ASIDE

In the next section, we will discuss an application of Szegő’s theorem for OPUC to
the moment problem on the real line. This section is background but also illustrates
the use of OPRL and, in particular, transfer matrices to study the moment problem.

The moment problem in its primeval form is:

Moment Problem: First Form. Given a sequence {cn}∞n=0 of real numbers, when
does there exist a nontrivial measure, dμ, on R with∫

xn dμ(x) = cn (3.8.1)

When a solution exists, is it unique? If it is not unique, what is the structure of the
set of solutions?

Of course, for (3.8.1) to make sense, one needs∫
|x|n dμ <∞ (3.8.2)

By structure of the set of solutions, we mean is it closed in the weak topology?
(This is not obvious since xn is not bounded.) Is it of finite or infinite dimension?
Among the solutions, are there any that are pure point or singular continuous or
purely absolutely continuous?

If there exists a unique solution, we call the moment problem determinate, and
if there are multiple solutions, indeterminate. Since we can replace cn by cn/c0, we
can and will always suppose that c0 = 1.

Often the cn are given by (3.8.1), so existence is trivial. The moment problem
then becomes:

Moment Problem: Second Form. Suppose cn is a sequence given by (3.8.1) for
some nontrivial probability measure, dμ0, on R obeying (3.8.2). Is dμ0 the unique
measure obeying (3.8.1) for the given cn, or are there others? If there are others,
what is the structure of the solutions?

Example 3.8.1. Fix 0 < α real and let cn be given by

cn = N−1
α

∫
xn exp(−|x|α) dx (3.8.3)
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where Nα =
∫

exp(−|x|α) dx is a normalization constant. Below (see later in this
section and then in the next) we will show that this problem is determinate if α ≥ 1
and indeterminate if 0 < α < 1.

There is an obvious necessary condition on the cn’s for there to be any nontrivial
measure.

Proposition 3.8.2. If a solution of the moment problem exists, then for each n =
1, 2, . . . , the Hankel determinants

Hm({cn}∞n=0) = det((cj+k−2)1≤j,k≤m) (3.8.4)

are strictly positive.

Proof. Let {αj }mj=1 lie in Cm. Then

m∑
j,k=1

ᾱjαkcj+k−2 =
∫ ∣∣∣∣∣∣

m−1∑
j=0

αjx
j

∣∣∣∣∣∣
2

dμ (3.8.5)

so Hm is positive as the determinant of a strictly positive matrix.

We will see later (see Theorem 3.8.4) that, conversely, if Hm > 0 for all m, then
the moment problem is soluble. For now, we note that it is easy to see that if each
Hm is positive, there exists a unique nondegenerate inner product on polynomials
with

〈1, xm〉 = cm (3.8.6)

This inner product defines OPs both monic and normalized and Jacobi parameters
{an, bn}∞n=1 ∈ ((0,∞)× R)∞. Thus, we have:

Moment Problem: Third Form. Given a set of Jacobi parameters, {an, bn}∞n=1 ∈
((0,∞)×R)∞, when does there exist a measure, dμ, whose Jacobi parameters are
{an, bn}∞n=1? If one exists, is it unique? If it is not unique, what is the structure of
the set of solutions?

Existence is essentially Favard’s theorem discussed in Section 1.3. Jacobi para-
meters determine moments, so an inner product on polynomials, and (3.8.4) holds.
Thus, Problems 1 and 3 are equivalent. We will see (see Theorem 3.8.4) that in this
form, the moment problem always has solutions, that is, any set of Jacobi parame-
ters can occur.

Proposition 3.8.3. Fix k ≥ 1. Let {cn}2kn=0 be a set of moments with (3.8.4) strictly
positive for m = 1, . . . , k + 1. Then the set of measures in R obeying (3.8.1) for
n = 0, . . . , 2k − 1 and ∫

x2k dμ ≤ c2k (3.8.7)

is a nonempty set, compact in the topology of weak-∗ convergence (i.e., dμ� →
dμ if and only if

∫
f (x) dμ� →

∫
f (x) dμ for all bounded continuous functions

on R).
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Proof. The {cn}2kn=0 define an inner product on polynomials of degree up to k, so
orthonormal polynomials {pj }kj=0, and so Jacobi parameters {an, bn}kn=1. Choose
any value for bk+1 and so get a (k + 1) × (k + 1) finite Jacobi matrix, Jk+1;F . Let
dμ be the spectral measure for this matrix and vector δ1. Then dμ obeys (3.8.1) for
n = 0, . . . , 2k, so there is a solution proving the set is nonempty; indeed, we can
suppose equality in (3.8.7).

Using the fact that the probability measures on [−R,R] are compact, it is easy
to see that the set of probability measures on R obeying∫

|x|≥R
dμ(x) ≤ c2kR

−2k (3.8.8)

for each R is compact in the topology of weak-∗ convergence. Here we use k ≥ 1
to assure weak limits are also probability measures.

(3.8.7) implies (3.8.8). Thus, we need only prove that the set, S, of μ’s obeying
(3.8.1) for m ≤ 2k − 1 and (3.8.7) is weakly closed.

Let

fn;R(x) =

⎧⎪⎨⎪⎩
xn |x| ≤ R
Rn x ≥ R
(−R)n x ≤ −R

(3.8.9)

and suppose dμ� ∈ S converges weakly to dμ. Then∫
f2k;R dμ� ≤ c2k (3.8.10)

so, since f2k;R − R2k has compact support,∫
f2k;R dμ ≤ c2k (3.8.11)

and (3.8.7) holds by the monotone convergence theorem.
By dominated convergence, (3.8.7) implies that for any m = 1, . . . , 2k − 1,

lim
R→∞

∫
fm;R dμ =

∫
xm dμ (3.8.12)

Moreover, for any finite �,∫
|fm;R − xm| dμ� ≤ 2

∫
|x|≥R

|x|m dμ�

≤ 2
∫
|x|≥R

∣∣∣∣ xR
∣∣∣∣2k−m|x|m dμ

≤ 2R−(2k−m)c2k (3.8.13)

so (3.8.12) converges for each � uniformly in �. This plus (3.8.12) plus
∫
xm dμ =

cm implies dμ obeys (3.8.1) for n = 0, . . . , 2k − 1.
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We thus have existence:

Theorem 3.8.4. A set, {cn}∞n=0, of real numbers with c0 = 1 has solutions of the
moment problem if and only if each Hm({cn}∞n=0) (given by (3.8.4)) is strictly pos-
itive. Any set of Jacobi parameters {an, bn}∞n=1 ∈ ((0,∞) × R)∞ is the Jacobi
parameter of some measure.

Remark. The second sentence is essentially Favard’s theorem in the general case;
see Theorem 1.3.9.

Proof. Let Sk be the set of measures given by Proposition 3.8.3. Since Sk is
compact and nonempty, and Sk+1 ⊂ Sk , we see ∩kSk is nonempty. This plus
Proposition 3.8.2 proves the first sentence in this proposition. As noted, the first
and third forms of the moment problem are equivalent, thus proving the second
sentence.

To go further and analyze uniqueness, we need to briefly study unbounded selfad-
joint operators. A densely defined operator, A, on a Hilbert space,H, has a domain
D(A) ⊂ H, a dense subspace, and is a linear map of D(A) into H. Associated to
A is its graph, �(A) ⊂ H×H, defined by

�(A) = {(ϕ,Aϕ) | ϕ ∈ D(A)} (3.8.14)

�(A) is always a subspace of H × H. A is called closed if and only if �(A) is
closed. B is an extension of A if and only if �(A) ⊂ �(B), that is, D(A) ⊂ D(B)
and B � D(A) = A.

Given an operator, A, we define D(A∗) to be those ϕ ∈ H for which there is an
η ∈ H with

〈η, γ 〉 = 〈ϕ,Aγ 〉 (3.8.15)

for all γ ∈ D(A). η is uniquely determined if it exists since D(A) is dense. We
then set η = A∗ϕ, so

〈A∗ϕ, γ 〉 = 〈ϕ,Aγ 〉 (3.8.16)

for all γ ∈ D(A), η ∈ D(A∗). A∗ is called the adjoint of A. A∗ is thus defined to
be the maximal operator so that (3.8.16) holds. If D(A∗) is dense, then it is easy to
see that A∗ is a closed operator. Note that there is a relation between extension and
adjoint:

A ⊂ B ⇒ B∗ ⊂ A∗

An operator is called

Hermitian ⇔ A ⊂ A∗
Selfadjoint ⇔ A = A∗
Essentially selfadjoint ⇔ A ⊂ A∗ = (A∗)∗

Notice that if A is Hermitian, then A∗ is densely defined and we can define (A∗)∗.
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Proposition 3.8.5. Let A be a Hermitian operator and let z = x + iy ∈ C \ R.
Then

(i) For all ϕ ∈ D(A),
‖(A− z)ϕ‖2 = ‖(A− x)ϕ‖2 + y2‖ϕ‖2 (3.8.17)

(ii) A is closed ⇔ Ran(A− z) is closed.
(iii) A∗∗ is the smallest closed extension of A, so we write

Ā = A∗∗ (3.8.18)

(iv) A∗ = A∗∗∗. Moreover, if A is Hermitian, so is Ā.
(v)

Ran(A− z) = Ran(Ā− z) (3.8.19)

(vi)

D(A∗) = D(Ā)+ ker(A∗ − z)+ ker(A∗ − z̄) (3.8.20)

(vii) A is essentially selfadjoint if and only if

ker(A∗ − z) = ker(A∗ − z̄) = {0} (3.8.21)

Remark. (3.8.20) holds in the sense of algebraic direct sum, that is, anyψ ∈ D(A∗)
is uniquely the sum of three vectors, one in each space.

Proof. (i) (3.8.17) follows from noting that the cross-term

〈(A− x)ϕ, iyϕ〉 + 〈iyϕ, (A− x)ϕ〉 = 0 (3.8.22)

by Hermiticity.
(ii) By (3.8.17),

(ϕ,Aϕ) → (A− z)ϕ (3.8.23)

is a metric space equivalence of �(A) and Ran(A− z), so one space is complete if
and only if the other is.

(iii) Let J : H→ H by J 〈ϕ,ψ〉 = 〈ψ,−ϕ〉. Then

�(A∗) = J [�(A)⊥] = [J�(A)]⊥ (3.8.24)

Since J 2 = −1, we see �(A∗∗) = [−�(A)]⊥⊥ = �(A). Thus, A∗∗ is closed and is
the smallest closed extension.

(iv) A∗ is closed by (3.8.24), so (3.8.18) implies A∗ = A∗∗∗. Thus, A ⊂ A∗
implies A∗∗ ⊂ A∗ = (A∗∗)∗.

(v) As noted in the proof of (ii), (3.8.23) is a metric space equivalence, so it
takes closures to closures.

(vi) If ψ ∈ D(Ā), ϕ+ ∈ ker(A∗ − z), ϕ− ∈ ker(A∗ − z̄), and

ϕ+ + ϕ− + ψ = 0 (3.8.25)

Then applying (A∗ − z) and then (A∗ − z̄), we see

ϕ− = i(2 Im z)−1Āψ (3.8.26)

ϕ+ = −i(2 Im z)−1Āψ (3.8.27)
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so ϕ+ = −ϕ−, which implies ϕ+ = ϕ− = 0, and then ψ = 0. This proves unique-
ness. If η ∈ D(A∗), since

Ran(Ā− z)+ Ran(Ā− z)⊥ = H
and Ran(Ā− z)⊥ = ker(A∗ − z̄), we can find ψ ∈ D(Ā), ϕ− ∈ ker(A∗ − z̄) so that

(A∗ − z)η = (Ā− z)ψ + (A∗ − z)ϕ−
Thus, ϕ+ = η − ψ − ϕ− ∈ ker(A∗ − z).

(vii) By (3.8.20), D(Ā) = D(A∗) if and only if (3.8.21) holds.

Given any sequence {un}∞n=1, define J u, a new sequence, by

(J u)n = anun+1 + bnun + an−1un−1 (3.8.28)

where a0 = 0. Define an operator, A, by

D(A) = {u | un = 0 for all large n} Au = J u (3.8.29)

Then A : D(A)→ D(A) ⊂ �2 is a densely defined operator.

Theorem 3.8.6. (i) We have that for any u ∈ D(A) and any sequence v that (both
sums are finite)

∞∑
n=1

v̄n(Au)n =
∞∑
n=1

(J v)n un (3.8.30)

(ii) We have that

D(A∗) = {u ∈ �2 | J (u) ∈ �2} (3.8.31)

and

A∗u = J (u) (3.8.32)

(iii) If u, v ∈ D(A∗), then

〈u,A∗v〉 − 〈A∗u, v〉 = − lim
n→∞W(ū, v)(n) (3.8.33)

where

Wn(f, g) = an(fn+1gn − fngn+1) (3.8.34)

(iv) If u, v ∈ D(A∗) and

〈u,A∗v〉 − 〈A∗u, v〉 �= 0 (3.8.35)

then both

u, v ∈ D(A∗) \D(Ā)
Remark. (iii) includes the assertion that the limit exists.
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Proof. (i) is a simple summation by parts.
(ii) If u ∈ �2 and J (u) ∈ �2, then (3.8.30) proves u ∈ D(A∗) and A∗u = J (u).

Conversely, if u ∈ D(A∗) and η ∈ A∗, then by (3.8.30), η−A∗u is a sequence with

∞∑
n=1

(η − J (u))n wn = 0

for all w ∈ D(A). Picking wn = δkn shows η = J (u), proving (3.8.32) and so
J (u) ∈ �2.

(iii) By a direct calculation,

N∑
n=1

[ūnJ (v)n − J (u)n vn] = W(ū, v)N (3.8.36)

from which (3.8.33) is immediate.
(iv) If u ∈ D(Ā), then

〈A∗u, v〉 = 〈Āu, v〉 = 〈u,A∗v〉 (3.8.37)

so (3.8.35) fails; similarly, if v ∈ D(Ā).

For each z ∈ C, we define two sequences, π(z), ξ(z), by

π(z)n = pn−1(z)

ξ(z)n = qn−1(z) (3.8.38)

Of course,W(π, ξ) is constant and, by (3.2.22),

W(π, ξ)n = −1 (3.8.39)

Lemma 3.8.7. If dμ solves the moment problem and

mμ(z) =
∫
dμ(x)

x − z (3.8.40)

then ξ(z)+m(z)π(z) ∈ �2 for any z ∈ C \ R.

Proof. By (3.2.24),

ξn(z)+m(z)πn(z) = 〈pn−1, (· − z)−1〉 (3.8.41)

So, by Bessel’s inequality,∑
n

|ξn(z)+m(z)πn(z)|2 ≤
∫

dμ(x)

|x − z|2 (3.8.42)

= Immμ(z)

Im z
(3.8.43)
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Note that if {pn−1}∞n=1 is an orthonormal basis, we have that equality holds in
(3.8.42)/(3.8.43). Here is one of the main results on the moment problem:

Theorem 3.8.8. The following are equivalent:
(i) For one z0 ∈ C \ R, π(z0) ∈ �2.

(ii) For one z0 ∈ C \ R, ξ(z0) ∈ �2.
(iii) A is not essentially selfadjoint.
(iv) For all z0 ∈ C \ R, π(z0) ∈ �2 and ξ(z0) ∈ �2.
(v) The moment problem is indeterminate.

Remark. We will eventually show (see Theorem 3.8.15) that (iv) can be replaced
by all of C.

Proof. We will show that (i) ⇔ (ii) ⇔ (iii) so (iii) ⇔ (iv) will be automatic. We
will then prove (v) ⇒ (i). We will postpone the proof that (iii) ⇒ (v).

(i) ⇔ (ii). By Theorem 3.8.4, the moment problem has solutions. So for some
mμ(z) �= 0, ξ(z0)+mμ(z0)π(z0) ∈ �2. This implies π(z0) ∈ �2 ⇔ ξ(z0) ∈ �2.

(i) ⇔ (iii). There is a unique sequence solving

J u = z0u (3.8.44)

and

un=1 = 1

and no solution with un=1 = 0. This is given by u = π . Thus, by Theorem 3.8.6(ii),

ker(A∗ − z0) �= {0} ⇔ π(z0) ∈ �2 (3.8.45)

Since π(z̄0) = π(z0), we see

ker(A∗ − z0) �= {0} ⇔ ker(A∗ − z̄0) �= {0}
By Proposition 3.8.5(vii),

A essentially selfadjoint ⇔ π(z0) /∈ �2 (3.8.46)

proving (i) ⇔ (iii).

(iii) ⇔ (iv). Obviously, (iv)⇒ (i)⇒ (iii). But since (iii)⇒ (i) for any z0, it implies
it for all z0.

Not (i) ⇒ not (v). Since π(z0) /∈ �2, there is at most one m(z0) with ξ(z0) +
m(z0)π(z0) ∈ �2. So for any two μ’s solving the moment problem and all z0 ∈
C \ R, mμ1(z0) = mμ2(z0), so μ1 = μ2, that is, we have not (v).

The following depends only on (v) ⇒ (i):

Corollary 3.8.9. If

∞∑
n=1

a−1
n = ∞ (3.8.47)
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then the moment problem is determinate. In particular, if a moment problem is
indeterminate, then

lim
n→∞ an = ∞ (3.8.48)

Proof. If π(z0) ∈ �2, then so is ξ(z0), and thus,

a−1
n = (qn(z0)pn−1(z0)− qn−1(z0)pn−1(z)) (3.8.49)

(by (3.2.22)) lies in �1. Therefore, (3.8.47) implies not (i) implies not (v).

Lemma 3.8.10. For any {aj }nj=1 ∈ Rn, we have

n∑
j=1

(a1 . . . aj )
−1/j ≤ 2e

n∑
j=1

a−1
j (3.8.50)

Proof. We have 1+ x ≤ ex so (1+ 1
n
)n ≤ e and thus, inductively,

nn ≤ enn! (3.8.51)

It follows that

(a1 . . . aj )
−1/j = [a−1

1 (2a
−1
2 ) . . . (ja

−1
j )]1/j (j !)−1/j

≤ ej−2
j∑
k=1

ka−1
k (3.8.52)

by the arithmetic-geometric mean inequality.
Thus,

n∑
j=1

(a1 . . . aj )
−1/j ≤ e

n∑
k=1

a−1
k

n∑
j=k

k

j 2

≤ 2e
n∑
k=1

a−1
k (3.8.53)

since
n∑
j=k

k

j 2
≤ 2k

∞∑
j=k

1

j (j + 1)
= 2 (3.8.54)

Corollary 3.8.11 (Carleman’s criterion). If

∞∑
n=1

c
−1/2n
2n = ∞ (3.8.55)

then the moment problem is determinate.
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Proof. Since pn(x) = (a1 . . . an)
−1xn+ lower order,

〈(a1 . . . an)
−1xn, pn〉 = 1 (3.8.56)

and thus, by the Schwarz inequality,

c
−1/2n
2n ≤ (a1 . . . an)

−1/n (3.8.57)

By (3.8.50), we see (3.8.55) implies (3.8.47).

Example 3.8.1, revisited. If α ≥ 1,∫
xn exp(−|x|α) ≤ 2+

∫
xn exp(−|x|1)

= 2+ 2n! ≤ 4nn (3.8.58)

and

c
−1/2n
2n ≥ 1

8n
(3.8.59)

Thus, (3.8.55) holds, and so the moment problem is determinate.

To get the last step in the proof of Theorem 3.8.8, we need to analyze selfadjoint
extensions of A when Ā �= A∗, that is, operators B with Ā ⊂ B = B∗. Since
Ā ⊂ B implies B∗ ⊂ A∗, we have

Ā � B = B∗ � A∗ (3.8.60)

where B �= Ā and B �= A∗ comes from Ā �= A∗ �= A∗∗. In our case where
D(A∗)/D(Ā) has dimension 2, we must thus have dim(D(B)/D(A)) = 1, which
simplifies the analysis.

Theorem 3.8.12. Suppose D(A∗)/D(Ā) has dimension 2. Then
(i) D(B) = D(A) + [ϕ] with ϕ ∈ D(A∗) \ D(A) is the domain of a selfadjoint

extension (i.e., A∗ � D(B) is selfadjoint) if and only if

〈ϕ,A∗ϕ〉 ∈ R (3.8.61)

(ii) Suppose ϕ,ψ = D(A∗) with 〈ϕ,A∗ψ〉, 〈ψ,A∗ϕ〉, 〈ϕ,A∗ϕ〉, 〈ψ,A∗ψ〉 all
real. Let t ∈ R ∪ {∞} and let

ϕt = ϕ + tψ
1+ |t | (3.8.62)

(where ϕ∞ is interpreted as ψ). Then

D(Bt) = D(Ā)+ [ϕt ] Bt = A∗ � D(Bt) (3.8.63)

describes all the selfadjoint extensions of A.

Proof. (i) By (3.8.60), D(B)/D(A) is of dimension 1, so for every selfadjoint
extension, B, D(B) always has the claimed form. Since ϕ ∈ D(B),

〈ϕ,A∗ϕ〉 = 〈ϕ,Bϕ〉 (3.8.64)

is real.
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Conversely, if (3.8.61) holds and η ∈ D(A), then

〈ϕ + η,A∗(ϕ + η)〉 = 〈ϕ,A∗ϕ〉 + 〈η,Aη〉 + 〈ϕ,Aη〉 + 〈Aη, ϕ〉 (3.8.65)

is real, so A∗ � D(A) + [ϕ] has real expectation values. By polarization, it is
Hermitian. Since Ā � B ⊂ B∗ � A∗, we see thatD(B∗)must beD(B) since every
subspace between D(B) and D(A∗) is either D(B) or D(A∗). Thus, B = B∗.

(ii) We have, for all η ∈ D(Ā),
Im〈ϕ + αψ + η,A∗(ϕ + αψ + η)〉 = (Imα)[〈ϕ,A∗ψ〉 − 〈ψ,A∗ϕ〉]

Since there is α, β ∈ C and an η ∈ D(Ā)withA∗(βϕ+αψ+η) = i(βϕ+αψ+η),
we conclude that 〈ϕ,A∗ψ〉−〈ψ,A∗ϕ〉 �= 0. It follows that (3.8.61) holds for ϕ+αψ
if and only if α ∈ R. Given (i), this proves (ii).

Later (see Theorem 3.8.15), we will prove that if A is not selfadjoint for the
concrete Jacobi matrix, then not only is π(z0), ξ(z0) ∈ �2 for z0 ∈ C \ R but also
for z0 ∈ R. We use that for now for z0 = 0. We have

J (π(0)) = 0 J (ξ(0)) = δ· 1 (3.8.66)

so if A is the operator of J restricted to finite sequences, by Theorem 3.8.6(ii),
we have

〈ξ(0), A∗(π(0))〉 = 〈π(0), A∗(π(0))〉 = 〈ξ(0), A∗(ξ(0))〉 = 0 (3.8.67)

〈π(0), A∗(ξ(0))〉 = 1 (3.8.68)

By Theorem 3.8.6(iv), we have π(0), ξ(0)∈D(A∗)\D(A) and, by Theorem 3.8.12,
there is a one-parameter family, {Bt }t∈R∪{∞}, of selfadjoint extensions with

D(Bt) = D(Ā)+ [ξ(0)+ tπ(0)] (3.8.69)

Proposition 3.8.13. Suppose Ā is not essentially selfadjoint.
(i) For each z0 ∈ C \R, we have π(z0), ξ(z0) ∈ D(A∗) \D(A). For each t , there

is an at (z0) ∈ C so that

ξ(z0)+ at (z0)π(z0) ∈ D(Bt) (3.8.70)

and for every such z0, all at (z0) are distinct as t varies.
(ii)

〈δ1, (Bt − z0)
−1δ1〉 = at (z0) (3.8.71)

In particular, if Ā is not selfadjoint, there are multiple solutions to the moment
problem.

Remark. The spectral measures forBt , which solve the moment problem, are called
the von Neumann solutions of the moment problem.

Proof. As noted in the proof of Theorem 3.8.8,

ker(A∗ − z0) = [π(z0)] (3.8.72)

Moreover, as in (3.8.66),

(A∗ − z0)ξ(z0) = δ· 1 (3.8.73)
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Thus, every solution of (A∗ − z0)η = δ0 has the form

η = ξ(z0)+ cπ(z0) (3.8.74)

So for some at (z0) ∈ C,

(Bt − z0)
−1δ1 = ξ(z0)+ at (z0)π(z0) (3.8.75)

Let ηt be the right side of (3.8.75). By (3.8.33),

〈π(z̄0), A
∗ηt 〉 − 〈A∗π(z̄0), ηt 〉 = 1 (3.8.76)

we conclude that ηt ∈ D(A∗) \D(A), so

D(Bt) = D(Ā)+ [ηt ] (3.8.77)

which implies that the ηt are distinct for distinct t .
Finally, by (3.8.75),

〈δ1, (Bt − z0)
−1δ1〉 = at (z0) (3.8.78)

proving (3.8.71).

Next, we turn to the claim that in the indeterminate case, π(z0), ξ(z0) ∈ �2 also
for z0 ∈ R. We depend on a useful general perturbation theorem.

Theorem 3.8.14. Suppose {Aj }∞j=1 and {Ãj }∞j=1 are two sequences of bounded
operators with bounded inverses, and define

Tn = An . . . A1 (3.8.79)

T̃n = Ãn . . . Ã1 (3.8.80)

Bk = T −1
k (Ãk − Ak)Tk−1 (3.8.81)

where T0 = T̃0 = 1. Then
(i) We have for each n,

‖T −1
n T̃n‖ ≤ exp

⎛⎝ n∑
j=1

‖Bj‖
⎞⎠ (3.8.82)

(ii) If
∞∑
n=1

‖Bn‖ <∞ (3.8.83)

then

lim
n→∞ T

−1
n T̃n (3.8.84)

exists and is given by

lim
n→∞ T

−1
n T̃n = 1+

∞∑
j=1

BjT
−1
j−1T̃j−1 (3.8.85)
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(iii) If
∞∑
n=1

‖Tn‖2 <∞ (3.8.86)

and (3.8.83) holds, then
∞∑
n=1

‖T̃n‖2 <∞ (3.8.87)

Remark. By (3.8.81) and (3.8.85), we get

lim
n→∞ T

−1
n T̃n = 1+

∞∑
j=1

T −1
j (Ãj − Aj)T̃j−1 (3.8.88)

Proof. Noticing that

T −1
k AkTk−1 = 1 (3.8.89)

we have

T −1
k ÃkTk−1 = 1+ Bk (3.8.90)

Therefore,

T −1
n T̃n = (T −1

n ÃnTn−1)(T
−1
n−1Ãn−1Tn−2) . . . (T

−1
1 Ã1T0)

= (1+ Bn) . . . (1+ B1) (3.8.91)

(i) Thus,

‖T −1
n T̃n‖ ≤

n∏
j=1

(1+ ‖Bj‖) ≤ exp

⎛⎝ n∑
j=1

‖Bj‖
⎞⎠ (3.8.92)

(ii) By (3.8.91), we have

T −1
n T̃n = 1+

n∑
j=1

Bj(1+ Bj−1) . . . (1+ B1) (3.8.93)

= 1+
n∑
j=1

BjT
−1
j−1T̃j−1 (3.8.94)

By (3.8.82),

‖BjT −1
j−1T̃j−1‖ ≤ ‖Bj‖ exp

( ∞∑
k=1

‖Bk‖
)

(3.8.95)

so the sum is absolutely convergent, implying that the limit exists and is given by
(3.8.85).

(iii) By (3.8.82),

‖T̃n‖ ≤ ‖Tn‖ exp

⎛⎝ ∞∑
j=1

‖Bj‖
⎞⎠ (3.8.96)

so (3.8.86) implies (3.8.87).
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To apply this to moment problems, Tn,An, . . . will be 2 × 2 transfer matrices,
but we will want to modify from the definition in Section 3.2. There we added
an an to the lower component of vectors to get a transfer matrix of determinant
one. With an’s bounded from above, this is normally harmless, but here our an’s
are unbounded so we will modify. Given Jacobi parameters {an, bn}∞n=1, we define
(with a0 ≡ 1) for this section only,

An(z) =
(
z−bn
an

−an−1

an

1 0

)
(3.8.97)

so (
pn(z)

pn−1(z)

)
= An(z)

(
pn−2(z)

pn−2(z)

)
(3.8.98)

and

Tn(z) =
(
pn(z) −qn(z)
pn−1(z) −qn−1(z)

)
(3.8.99)

to be compared with (3.2.19). Now det(Tn) �= 1 but rather

det(Tn) = a−1
n (3.8.100)

and thus,

Tn(z)
−1 = an

(
−qn−1(z) qn(z)

−pn−1(z) pn(z)

)
(3.8.101)

Our perturbation will be to change z to w, so

An(w)− An(z) =
(
w−z
an

0

0 0

)
(3.8.102)

and

Bn ≡ Tn(z)−1(An(w)− An(z))Tn−1(z) (3.8.103)

The an in (3.8.101) and the a−1
n in (3.8.102) cancel! Thus, with

Nn(z) = (|pn(z)|2 + |pn−1(z)|2 + |qn(z)|2 + |qn−1(z)|2)1/2 (3.8.104)

we obtain

‖Bn‖ ≤ |w − z|Nn(z)Nn−1(z) (3.8.105)

and by the Schwarz inequality,
∞∑
n=1

Nn(z)
2 <∞⇒

∞∑
n=1

‖Bn‖ <∞ (3.8.106)

Thus, we can apply Theorem 3.8.14 and find

Theorem 3.8.15. If π(z), ξ(z) are both in �2 for a single z, then π(w), ξ(w) are in
�2 for any w ∈ C and

lim
n→∞ Tn(z)

−1Tn(w) (3.8.107)

exists.
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One defines four functions, A(z), B(z), C(z), and D(z), by

lim
n→∞ T

−1
n (z)Tn(w = 0) =

(−B(z) −A(z)
D(z) C(z)

)
(3.8.108)

and the Nevanlinna matrix by

N(z) =
(
A(z) C(z)

B(z) D(z)

)
(3.8.109)

By (3.8.88), (3.8.99), (3.8.101), and (3.8.102), we get

Proposition 3.8.16. The Nevanlinna matrix is given by

A(z) = z
∞∑
n=0

qn(0)qn(z) (3.8.110)

B(z) = −1+ z
∞∑
n=0

qn(0)pn(z) (3.8.111)

C(z) = 1+ z
∞∑
n=0

pn(0)qn(z) (3.8.112)

D(z) = z
∞∑
n=0

pn(0)pn(z) (3.8.113)

These functions are entire functions obeying

|A(z)| ≤ Cε exp(ε|z|) (3.8.114)

and similarly for B, C, D. Near z = 0,

B(z) = −1+O(z) (3.8.115)

D(z) = D0z +O(z2) (3.8.116)

where

D0 > 0 (3.8.117)

Proof. The formulae follow from the earlier equations. (3.8.115) is immediate, as
is (3.8.116) where

D0 =
∞∑
n=0

pn(0)
2 > 0 (3.8.118)

To get (3.8.114), we note that

Bk(z) = zbk (3.8.119)

with bk a constant matrix with
∑∞
k=1‖bk‖ <∞. Thus,

‖(1+ BN) . . . (1+ Bk)‖ ≤
n∏
j=1

(1+ |z| ‖bj‖) exp

⎛⎝|z| N∑
j=n+1

‖bj‖
⎞⎠ (3.8.120)

from which (3.8.114) follows.
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We can express the resolvent of the selfadjoint extensions, Bt , in terms of the
Nevanlinna matrix:

Theorem 3.8.17. Consider an indeterminate moment problem. For t ∈ R ∪ {∞}
and z ∈ C \ R, the resolvent of the selfadjoint extensions, Bt , is given by

(δ1, (Bt − z)−1δ1) ≡ F(z, t) (3.8.121)

where for z, w ∈ C,

F(z,w) ≡ −C(z)w + A(z)
D(z)w + B(z) (3.8.122)

Proof. Given a sequence, {sn}∞n=1, we let Rn(s) ∈ C2 be defined by

Rn(s) = (sn+1, sn) (3.8.123)

and we define wn : C2 × C2 → C by

wn((α, β), (γ, δ)) = an(αδ − βγ ) (3.8.124)

so that

Wn(f, g) = wn(Rn(f ), Rn(g)) (3.8.125)

Constancy of the Wronskian for solutions of the same difference equation shows
that for any z ∈ C and u, v ∈ C2,

wn(Tn(z)u, Tn(z)v) = w0(u, v) (3.8.126)

By (3.8.33), if f, g ∈ D(Bt), then

lim
n→∞ wn(Rn(f ), Rn(g)) = 0 (3.8.127)

since 〈f,Btg〉 = 〈Btf, g〉 by Hermiticity of Bt .
Since

Rn(ξ(0)+ tπ(0)) = Tn(0)
(
t

1

)
(3.8.128)

Rn(ξ(z0)+ at (z0)π(z0)) = Tn(z0)

(
at (z0)

1

)
(3.8.129)

we see, by (3.8.127), that

lim
n→∞ wn

(
Tn(0)

(
t

1

)
, Tn(z0)

(
at (z0)

1

))
= 0 (3.8.130)

So, by (3.8.126),

lim
n→∞ w0

((
t

1

)
, Tn(0)

−1Tn(z0)

(
at (z0)

1

))
= 0 (3.8.131)

By the existence of the limit, for some constant c,(
at (z0)

1

)
= cTn(z0)

−1Tn(0)

(
t

1

)
(3.8.132)

Given (3.8.108), this implies (3.8.121)/(3.8.122).
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Lemma 3.8.18. For z ∈ C+, {F(z, t) | t ∈ R ∪ {∞}} is a circle in the upper
complex plane. F(z, · ) maps C+ to the interior of the disk bounded by the circle.

Proof. By (3.8.121), F maps R∪ {∞} to C+ and not to∞, so the image is a circle
in C. Suppose [F(z, · )]−1(∞) lies in C−. Then F(z, · ) maps C− to the outside
of the circle, and so C+ to the inside. Since, for z ∈ C+, it can never lie in R, by
continuity, [F(z, · )]−1(∞) is either always in C− (or always in C+), so it suffices
to show this for z = iε, that is, that Im(−B(iε)/D(iε)) < 0 for ε small and
positive. This follows from (3.8.120)/(3.8.121).

Next, we relate solutions of the moment problem to asymptotics of the Stieltjes
transform.

Proposition 3.8.19. Let μ be a probability measure on R solving (3.8.1) and let

Gμ(z) =
∫
dμ(x)

x − z (3.8.133)

Let

RN(μ; iy) = Gμ(iy)+
N∑
n=0

(−i)n+1y−n−1cn (3.8.134)

Then

|RN(μ; iy)| ≤
{
cN+1y

−N−2 N odd
1
2 (cN + cN+2)y

−N−2 N even
(3.8.135)

Conversely, if G(z) is a Herglotz function, so RN , given by (3.8.134), is
O(y−N−2) for each N , then G is given by (3.8.133) for some measure μ solving
(3.8.1).

Proof. If (3.8.133) holds and μ obeys (3.8.1), write

(x − iy)−1 =
N∑
n=0

xn(−i)ny−n−1 + (−i)−N−1xN+1y−N−2

(
1− x

iy

)−1

(3.8.136)

to see that RN , given by (3.8.134), is given by

RN(μ; iy) = (−i)N+1y−N−2
∫
xN+1

(
1− x

iy

)−1

dμ(x) (3.8.137)

Since |1 − x
iy
| ≥ 1 for x, y real, the N odd case of (3.8.135) is immediate. For N

even, use the fact that for such N ,

|x|N+1 ≤ 1
2x
N + xN+2 (3.8.138)

For the converse, start with the Herglotz representation, (2.3.87). Since
(3.8.134)/(3.8.135) imply

lim
y→∞ |y|

−1|G(iy)| = 0 (3.8.139)

we see that A = 0. They also imply that

yG(iy)→ ic0 (3.8.140)
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from which one first sees (with ρ replaced by μ)∫
dμ(x) = c0 (3.8.141)

since

Im yG(iy) =
∫

y2

x2 + y2
dμ(x) (3.8.142)

and we can use the monotone convergence theorem, and then that there is a cancel-
lation of real parts that implies (3.8.133).

From (3.8.134)/(3.8.135), one sees inductively, using (3.8.136), that∫
(iy)2x2n−1

x − iy dμ(x)+ iγ c2n−1 → c2n (3.8.143)

which implies, taking real and imaginary parts, that

c2n = lim
y→∞

∫
y2x2n

x2 + y2
dμ(x) (3.8.144)

c2n−1 = lim
y→∞

∫
y2x2n−1

x2 + y2
dμ(x) (3.8.145)

Monotone convergence and the first of these implies
∫
x2n dμ = c2n and then

dominated convergence and (3.8.145) implies
∫
x2n−1 dμ = c2n−1.

Corollary 3.8.20. For z ∈ C+, let

D(z) = {F(z,w) | Imw > 0} (3.8.146)

be the disk of Lemma 3.8.18. If G has the form (3.8.134) where μ solves (3.8.1),
then

G(z) ∈ D(z) (3.8.147)

for all z ∈ C+. Conversely, if G is an analytic function on C+ obeying (3.8.150),
then G has the form (3.8.133) for some μ obeying (3.8.1).

Proof. By Proposition 3.8.19, Gμ(iy) has an asymptotic series

G(iy) ∼ −
∞∑
n=0

(−i)n+1y−n−1cn (3.8.148)

uniformly in the von Neumann solutions. Since these solutions fill out the circle at
the boundary of D(z), the estimates hold in all on D(z), so G solves the moment
problem by Proposition 3.8.19.

Conversely, by (3.8.43), if μ solves the moment problem,

Gμ(z) ∈ �(z) (3.8.149)

where

�(z0) =
{
w

∣∣∣∣ ‖ξ(z0)+ wπ(z0)‖2 ≤ Imw

Im z0

}
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This set is given by a quadratic inequality in Rew, Imw whose quartic term is
|w|2‖π(z0)‖2. Such a set always describes a disk or the empty set. Since equality
holds in (3.8.43) for von Neumann solutions, ∂�(z) = ∂D(z), so�(z) = D(z) and
(3.8.149) is (3.8.147).

Here is the main result on the description of the solutions of the moment problem
in the indeterminate case:

Theorem 3.8.21 (Nevanlinna’s Parametrization). Let {cn}∞n=1 be the moments of
an indeterminate problem, and let A,B,C,D be the elements of the Nevanlinna
matrix, and F given by (3.8.122). There is a one-one correspondence between H,
the set of all analytic functions, ϕ, of C+ to C+ so that μϕ is given by∫

dμϕ(x)

x − z = F(z, ϕ(z)) (3.8.150)

The von Neumann solutions correspond to ϕ(z) ≡ t and all other solutions have
Ran(ϕ) ⊂ C+.

Proof. Any function of the form G(z) ≡ F(z, ϕ(z)) has G obeying (3.8.147) by
Lemma 3.8.18. Conversely, if G obeys (3.8.150), then, because F(z, · ) is a bijec-
tion of C taking C+ to D(z), there is a unique ϕ obeying G(z) = F(z, ϕ(z)) with
ϕ analytic or infinite.

By the open mapping theorem, either ϕ(z) = t ∈ R ∪ {∞} or Ran(ϕ) ∈ C+.
Given Corollary 3.8.20, this proves the theorem.

This allows further analysis of solutions, of which the following is typical:

Theorem 3.8.22. (i) The von Neumann solutions of an indeterminate moment
problem are discrete pure point measures.

(ii) If ϕ is a rational Herglotz function, dμϕ is pure point.
(iii) The positions of the pure points and weights of the von Neumann solutions are

real analytic in t . The positions are nonconstant.
(iv) There are always purely a.c. and purely s.c. solutions of an indeterminate

problem.

Proof. (i), (ii) In these cases, Gμ has an analytic continuation to an entire mero-
morphic function.

(iii) This follows from analyticity of A,B,C,D and the form of F(z, t).
(iv) If dμt is the von Neumann solution associated to Bt and dν(t) is a proba-

bility measure, then

dην(x) =
∫
dμt(x) dν(t) (3.8.151)

is a solution of the moment problem. By (iii), dην is a.c. (resp. s.c.) if dν is a.c.
(resp. s.c.).

Remarks and Historical Notes. The critical paper on the moment problem is
by Stieltjes [422]. Earlier, Chebyshev had asked about uniqueness for Gaussian
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measures. The approach via selfadjoint operators was pioneered by Stone [423]
and the transfer matrix connection was exploited especially by Simon [395], which
we follow in much of this section. For other presentations, see Akhiezer [13] and
Shohat–Tamarkin [385]. The name von Neumann solutions comes from Simon
[395], after von Neumann’s theory of selfadjoint extensions. Such solutions are
called N -extremal in Akhiezer [13].

The Nevanlinna parametrization is from [325]. A further result (see [13, 395])
is that the polynomials are dense in L2(R, dμ) if and only if dμ is a von Neu-
mann solution and their closure has finite codimension if and only if the Nevanlinna
function, ϕ, is rational. All these solutions are extreme points in the convex set of
solutions of the moment problem, proving that the extreme points are dense.

Carleman’s criterion (Corollary 3.8.11) is due to Carleman [75].
The awkward terminology (at least in English) “determinate” and “indetermi-

nate” comes from the French. While Stieltjes was Dutch, his paper [422] is in
French.

There are actually two moment problems discussed in the next section: what
we have called “the moment problem” (i.e., solution of (3.8.1) with the measure
allowed to be supported anywhere on R) is more properly the Hamburger moment
problem. The Stieltjes moment problem is the problem one gets by restricting to
measures supported on [0,∞).

There is a simple relation between the two problems. Let dρ0 be a probability
measure on [0,∞) with moments cn. Define dρ̃0 on R by

dρ̃0(x) = 1
2 [χ[0,∞)(x) dρ(x2)+ χ(−∞,0](x) dρ(x2)] (3.8.152)

and let

�n =
∫
xn dρ̃0(x) =

{
0 n odd

cn/2 n even
(3.8.153)

(3.8.152) sets up a one-one correspondence between all solutions of the Stielt-
jes moment problem with moments cn and all solutions of the Hamburger moment
problem with moments �n symmetric under x → −x. It is a basic fact that any in-
determinate Hamburger moment problem with vanishing odd moments has multi-
ple solutions that are invariant under x →−x, namely, the von Neumann solutions
with t = 0 and t = ∞. This implies immediately that

Theorem 3.8.23. Let (dρ0, cn) be a measure and set of moments on [0,∞). Let
(dρ̃0, �n) be given by (3.8.152)/ (3.8.153). Then the Stieltjes moment problem for
{cn} is determinate (resp. indeterminate) if and only if the Hamburger moment prob-
lem for {�n} is determinate (resp. indeterminate).

Theorem 3.8.23 goes back at least to Chihara [83] and appears also in Berg [42]
and Simon [395].


