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1. Introduction

The recipient of the 2015 János Bolyai International Mathematical Prize
was Barry Simon (IBM Professor California Institute of Technology). The
prize is given every 5 years by the Hungarian Academy of Sciences on the
recommendation of a 10 member international committee (this is the only
international prize of the Academy). It was established in 1902 for the 100th
birth anniversary of the great Hungarian mathematician János Bolyai, one
of the founders of non-Euclidean geometry, and the first two awardees were
Henry Poincaré (1905) and David Hilbert (1910). Then came World War I
and the prize was not given until 2000, when the Academy renewed it. It is
commonly accepted that, since there is no Nobel prize in mathematics, part
of the original intention was to have a prestigious substitute that honors
high quality mathematical work. In the renewed form the prize is given
for monographs of high impact written in the preceding 10-15 years. In
2000 Saharon Shelah was the recipient for his book “Cardinal Arithmetic”,
in 2005 Mikhail Gromov got it for the monograph “Metric structures for
Riemannian and non-Riemannian spaces”, and the 2010 awardee was Yurii
Manin for this work “Frobenius manifolds, quantum cohomology, and moduli
spaces”.

Barry Simon received the Bolyai Prize for his monumental two-volume
treatise “Orthogonal Polynomials on the Unit Circle” published by the
American Mathematical Society in the Colloquium Publications series in
2005. Simon does not need much introduction: he is one of the most cited
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mathematicians; the author of 21 monographs that has had profound in-
fluence on various fields of physics, mathematical physics and mathemat-
ics; among others he is the recipient of the Poincaré Prize (2012), the
Leroy P. Steele Prize (2016), honorary doctor of Technion (Israel), the
University of Wales–Swansea (Great Britain) and the Ludwig-Maximilians-
Univerisität (Germany). His 4-volume treatise “Methods of Modern Mathe-
matical Physics” written with Michael C. Reed is the bible of mathematical
physics, and his latest, just published 5-volume “Comprehensive Course in
Analysis” [7] will likely have the same lasting impact. His 400 research pa-
pers are on various areas such as quantum field theory, statistical mechan-
ics, quantum mechanics, magnetic fields, just to name a few. He has been
a definitive authority on operator theory, Jacobi matrices and spectral the-
ory for a long time. So how did it happen that he wrote a book on orthogonal
polynomials and why that book has turned out to be so influential?

2. Orthogonal polynomials and Jacobi matrices

The theory of orthogonal polynomials goes back to at least two centuries
to the work of Jacobi. Let µ be a positive Borel measure on the complex
plane with infinite support for which

∫
|z|m dµ(z) < ∞

for all m � 0. There are unique polynomials

pn(z) = pn(µ, z) = κnz
n + · · · , κn > 0, n = 0, 1, . . .

which form an orthonormal system in L2(µ), i.e.,

∫
pmpn dµ =

{
0 if m ̸= n

1 if m = n.

These pn’s are called the orthonormal polynomials corresponding to µ. κn is
the leading coefficient, and pn(z)/κn = zn + · · · is called the monic orthogo-
nal polynomial. If µ is on the real line then we get real polynomials, while if
µ is supported on the unit circle, then we get the polynomials with which Si-
mon’s book is mainly concerned. In the real case the pn’s obey a three-term
recurrence formula

(1) xpn(x) = anpn+1(x) + bnpn(x) + an−1pn−1(x),

where

an =
κn
κn+1

> 0, bn =

∫
xp2n(x) dµ(x),
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and, conversely, any system of polynomials satisfying (1) with real an > 0, bn
is an orthonormal system with respect to a (not necessarily unique) measure
on the real line (Favard’ theorem).

With bounded an > 0, bn ∈ R the so-called Jacobi matrix

J =




b0 a0 0 0 · · ·
a0 b1 a1 0 · · ·
0 a1 b2 a2 · · ·
0 0 a2 b2 · · ·
...

...
...

...
. . .




,

defines a self-adjoint bounded linear operator J on l2, a Jacobi operator. Ev-
ery bounded self adjoint operator with a cyclic vector is a Jacobi operator in
an appropriate base (just orthogonalize the orbit of a cyclic vector). Further-
more, any operator when restricted to the closure of the orbit of a non-zero
vector is cyclic on that subspace.

To find the eigenvalues of J one considers the equation Jπ = λπ, π =(
π0(λ), π1(λ), . . .

)
, which is equivalent to the three-term recurrence

an−1πn−1 + bnπn + anπn+1 = λπn, n = 1, 2, . . .(2)

b0π0 + a0π1 = λπ0, π0 = 1.

Thus, πn(λ) is of degree n in λ, and λ is an eigenvalue when
{
πn(λ)

}
∈ l2.

By the spectral theorem J , as a self-adjoint operator having a cyclic vec-
tor ((1, 0, 0, . . .)), is unitarily equivalent to multiplication by x on some L2

µ

space, where µ is a positive measure with compact support on the real line.
This µ is called the spectral measure of J . It is clear that the support S(µ)
of µ is the set of those x for which xI − J is not invertible, so S(µ) is the
spectrum of J . Now if pn(µ) = pn(µ, x) are the orthonormal polynomials
with respect to µ, then

{
pn(µ)

}
is an orthonormal basis in L2

µ. Hence, if
U maps the unit vector en = (0, . . . , 0, 1, 0, . . .) to pn(µ), then U can be ex-
tended to a unitary operator from l2 onto L2

µ, and if Sf(x) = xf(x) is the

multiplication operator by x in L2
µ, then J = U−1SU . The recurrence coef-

ficients for pn(µ, x) are precisely the an’s and bn’s from the Jacobi matrix,
i.e., pn(µ, x) = cπn(x) with some fixed constant c. Therefore, µ is one of
the measures for the three-term recurrence (2) in Favard’s theorem. Con-
versely, if we start from a measure µ with compact support on the real line,
form the orthogonal polynomials and their three-term recurrence and form
the Jacobi matrix J with the recurrence parameters, and U is the unitary
operator mapping en to pn, then J = U−1SU , i.e., J is unitarily equivalent
to multiplication by x on L2

µ.
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These show that Jacobi operators are equivalent to multiplication by x
in L2

µ spaces if the particular basis
{
pn(µ)

}
are used. The relation of or-

thogonal polynomials with Jacobi matrices is very close, for example if we
consider the truncated n× n matrix

Jn =




b0 a0 0 0 · · · 0
a0 b1 a1 0 · · · 0
0 a1 b2 a2 · · · 0
...

...
...

...
. . . an−2

0 0 0 · · · an−2 bn−1




then it has n real and distinct eigenvalues, which turn out to be the zeros
of pn, i.e., the monic polynomial pn(z)/κn is the characteristic polynomial
of Jn:

(3) pn(z)/κn = det(zIn − Jn).

Since Simon has been working on Jacobi operators and their spectral
properties, even from this short discussion it is evident that he was close to
real orthogonal polynomials.

3. Orthogonal polynomials on the unit circle

If the orthogonality measure is not real, things change. Indeed, on the
real line to have the three-term recurrence formula one expands xpn(x) as
cn,n+1pn+1(x) + cn,npn(x) + · · ·+ cn,0p0(x), and notice that, by orthogonal-
ity,

cn,j =

∫
xpn(x)pj(x) dµ(x) =

∫
xpn(x)pj(x) dµ(x)

=

∫
pn(x)xpj(x) dµ(x) = 0

for all j < n− 1, hence there are only 3 terms in the expansion. If µ is not
supported on the real line, then we have

cn,j =

∫
zpn(z)pj(z) dµ(z) =

∫
pn(z)

(
zpj(z)

)
dµ(z),

and we cannot use orthogonality, since zpj(z) is not a polynomial, and in-
deed, in general, the coefficients cn,j will not be zero. Still, on the unit
circle T there is a substitute, called Szegő recurrence. If µ is a nontrivial
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probability measure on T (that is, not supported on a finite set) the monic
orthogonal polynomials Φn(z, µ) are uniquely determined by

Φn(z) =

n∏
j=1

(z − zn,j),

∫

T
ζ−jΦn(ζ) dµ(ζ) = 0, j = 0, 1, . . . , n− 1,

and the orthonormal polynomials φn are φn = Φn/∥Φn∥L2
µ(T). However, as

opposed to the real case, the orthonormal set {φn}n�0 may not be a basis

in L2
µ(T) for the set of polynomials may not be dense in L2

µ(T) (see below).

On L2
µ(T) we consider the n−∗ map f∗(ζ) := ζnf(ζ). Since zz = 1 on

the unit circle, we get that Φn+1(z)− zΦn(z) is of degree n and is orthogonal
to zj for j = 1, 2, . . . , n. The same is true of Φ∗

n(z), hence

Φn+1(z)− zΦn(z) = ᾱnΦ
∗
n(z)

with some complex numbers αn, called the Verblunsky coefficients (this name
was coined by Simon and now it is widely accepted, earlier other names like
“recurrence coefficients”, “Schur parameters”, “reflection coefficients” were
used).

(4) Φn+1(z) = zΦn(z)− ᾱnΦ
∗
n(z)

is known as Szegő recurrence. At z = 0 it gives αn = −Φn+1(0). If we apply
the (n+ 1)−∗ transform to (4), then we obtain

Φ∗
n+1(z) = Φ∗

n(z)− αnzΦn(z),

which is just another form of the Szegő recurrence.
Since Φ∗

n is orthogonal to Φn+1 and |Φ∗
n| = |Φn|, we obtain from (4)

∥Φn+1∥2L2
µ(T) =

(
1− |αn|2

)
∥Φn∥2L2

µ(T), ∥Φn∥2L2
µ(T) =

n−1∏
j=0

(
1− |αj |2

)
,

and so |αn| < 1. Let ∆∞ be the set of complex sequences {αj}∞j=0 with

|αj | < 1. The map V (µ) =
{
αj(µ)

}∞
j=0

is a well defined map from the set P
of nontrivial probability measures on T to ∆∞. By a theorem of Verblunsky,
V is a bijection. Furthermore, works of Szegő, Kolmogorov and Krein show
that the following are equivalent:

• limn→∞ ∥Φn∥L2
µ(T) = 0,

•
∑∞

n=0 |αn|2 = ∞,

• {φn}∞n=0 is a basis for L2
µ(T),
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•
∫
T logµ′ = −∞, where µ′ is the Radon-Nikodym derivative of µ with

respect to arc measure on T.
As we can see, for orthogonal polynomials on the unit circle a beautiful

theory is emerging. It was originated by Szegő in the late 1910’s and early
1920’s, and it was first discussed in a compact form in Szegő’s book [11].
But is there an analogue of the relation to Jacobi matrices? It turns out
that there is, but the corresponding matrix is 5-diagonal and not 3-diagonal
(which is not much of a difference for an operator theorist like Simon). To
obtain it orthogonalize the sequence 1, ζ, ζ−1, ζ2, ζ−2, . . . in L2

µ(T) using the
Gram–Schimdt procedure to get the so called CMV (Cantero, Moral, and
Velázquez) basis (complete orthonormal system) {χn}∞n=0, and consider the
matrix of the operator of multiplication by z in that basis. We get the so
called CMV matrix C(µ) = (Cn,m)∞m,n=0, where

Cn,m =

∫
ζχm(z)χn(z) dµ(z).

It turns that it is five-diagonal, and the χ’s can be expressed in terms of the
φ’s and φ∗’s:

χ2n(z) = z−nφ∗
2n(z), χ2n+1(z) = z−nφ2n+1(z), n = 0, 1, . . . ,

and the matrix elements in terms of the α’s and ρ’s: C = LM where L, M
are block-diagonal matrices

L = Diag (Θ0,Θ2,Θ4, . . .), M = Diag (1,Θ1,Θ3, . . .)

with

Θj =

(
αj ρj
ρj −αj

)
, j = 0, 1, . . .

(the first block of M is 1× 1).
The analogy with Jacobi matrices is quite strong, for example, the ana-

logue of (3) in the unit circle case is

Φn(z) = det (zIn − C(n)),

where C(n) is the principal n× n block of C.

4. OPUC

What follows is part of the personal recollections of Simon told in his
acceptance talk at the prize ceremony (see [8]).
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In the 1980’s and 1990’s Simon was working on discretized Schrödinger
operators {un} →

{
un−1 + un+1 + V (n)un

}
. He proved that if V decays

slower than n−α, α < 1/2, then generically the spectrum is singular contin-
uous. On the other hand, it had been known that if

��V (n)
�� � n−α, α > 1,

then the spectrum is purely absolutely continuous. In the missing range
1/2 < α � 1 results of Kiselev and Deift showed that absolutely continuous
spectrum exists, and Simon raised the question if in that range there can
also be a continuous singular spectrum present (mixed spectrum). Often,
instead of a power type decay, the condition is in the form V ∈ lp, where
the dividing parameter is p = 2 (matching α = 1/2). Working with Killip
on the problem they realized that if they had an appropriate sum rule relat-
ing Jacobi parameters to a spectral quantity (see Szegő’s theorem below for
an example), they would get the following:

∑
n

|an − 1|2 + |bn|2 < ∞

if and only if the essential spectrum is [−2, 2], the spectral measure satisfies

∫ 2

−2
(4− x2)

1/4
logµ′(x) dx > −∞,

and if λn are the eigenvalues outside [−2, 2], then
∑

n

�� |λn| − 2
�� 3/2 < ∞.

This theorem would prove the existence of Jacobi matrices with l2 decay
and mixed spectrum, for in it there is no hypothesis on the singular part
of µ, so that can be selected at one’s convenience and still get l2 decay for
the potential. While working on the required sum rule (which they even-
tually found in [5]) Simon came across orthogonal polynomials on the unit
circle through lectures given by Dennisov at Caltech on mixed spectrums of
Schrödinger operators. He realized that people working on orthogonal poly-
nomials tackled questions very similar to those that were relevant to people
in the mathematical physics community in connection with spectral theory.
He was drawn to orthogonal polynomials seeing the strong analogy in be-
tween the two fields. He observed that the two communities were practically
unaware of each other, of the methods and questions in the other field, and
even the same theorems were discovered using different language. For exam-
ple, he discovered that his problem on mixed spectrum had been solved for
orthogonal polynomials on the unit circle by Verblunski in 1936. Simon also
observed that, while there were many results related to OPUC (Orthogonal
Polynomials on the Unit Circle), there was no comprehensive treatment of
them in a collected form (Szegő’s [11] and Freud’s [3] book each had a chap-
ter, and Geronimus had the small book [4], but that was all). He realized that
many ideas that were extensively investigated by him and other researchers
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in spectral theory had not been studied by the orthogonal polynomial com-
munity, so there was a whole new chapter to be developed by applying the
techniques and questions from one field to the other. For example, while
working on the aforementioned sum rule Killip and Simon proved a conjec-
ture of Nevai on real orthogonal polynomials: if the recurrence coefficients
satisfy

∑
n

(
|an − 1|+ |bn|

)
< ∞,

then the measure of orthogonality belongs to the Szegő class (see below).
Instead of writing many small papers in this new chapter, around 2001 he
decided to write a longer paper (he later admitted he had estimated its
length to be about 80 pages) that could serve as an introduction to the
other field for researchers in both communities. However, the collection of
the results to be put in that paper had a steady grow, and finally his OPUC
book emerged with two volumes and with more than a thousand pages.

Volume I discusses the general theory of orthogonal polynomials, while
volume II is devoted to spectral theory with various connections and appli-
cations. The list of chapter titles is quite illustrative:

Volume I:
• The Basics
• Szegő’s Theorem
• Tools for Geronimus Theorem
• Matrix Representations
• Baxters Theorem
• The Strong Szegő Theorem
• Verblunsky Coefficients With Rapid Decay
• The Density of Zeros
Volume II:
• Rakhmanov’s Theorem and Related Issues
• Techniques of Spectral Analysis
• Periodic Verblunsky Coefficients
• Spectral Analysis of Specific Classes of Verblunsky Coefficients
• The Connection to Jacobi Matrices
The book discusses many connections/applications of OPUC from sta-

tionary stochastic processes through analytic functions, unitary operators,
scattering theory up to random matrices. There is also an extended ap-
pendix on various topics such as Schur functions, Toeplitz matrices and de-
terminants, Aleksandrov families, transfer matrices etc., and the book closes
with conjectures and problems. The review [6] by Nevai contains many more
details, historical accounts and personal views of researchers on the mono-
graph.
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The book is not an easy reading, but it has had a profound influence on
the field of orthogonal polynomials even before its publication (various chap-
ters were available), and it will be the definitive reference work for a long
time. It is a worthy follower of Szegő’s 1939 classics [11].

Since the Bolyai Prize is a recognition of the Hungarian Academy, we
close this paper as an illustration of the many theorems in the book by
discussing two results that are related to Hungarian mathematics.

5. Szegő’s theorem and Simon’s higher order Szegő theorem

Szegő’s celebrated theorem is a sum-rule: if dµ = µ′ dm+ dµs,
w ∈ L1(T), is the decomposition of µ into its absolutely continuous and
singular part, then

∞∏
j=0

(
1− |αj |2

)
= exp

(
1

2π

∫

T
logµ′(ζ) dm

)
.

In particular,

(5)

∞∑
j=0

|αj |2 < ∞ ⇐⇒ logµ′ ∈ L1(T).

If either of the conditions in (5) holds, then we say that µ belongs to the
Szegő class. In this class the Szegő function is defined as

D(z) = exp

(
1

4π

∫

T

ζ + z

ζ − z
logµ′(ζ) dm(ζ)

)
, |z| < 1.

For it D(ζ) = limr↑1D(rz) exists almost everywhere on the unit circle and

it satisfies
��D(ζ)

�� 2 = w(ζ) a.e. The main asymptotic result of Szegő is the
claim that

lim
n→∞

φ∗
n(z) = D−1(z)

uniformly on compact subsets of the open unit disk ∆.
The following is often called strong Szegő theorem: if µs = 0 and µ is in

the Szegő class, then

∞∏
j=0

(
1− |αj |2

)−j−1
= exp

( ∞∑
n=0

n|wn|2
)
,

where wn are the Fourier coefficients of logw.
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Simon came up with the idea to extend Szegő’s theorem for the case
when logµ′ may be infinite. His result from Section 2.8 from his book states
that for any ζ0 ∈ T

|ζ − ζ0|2 logw ∈ L1(T) ⇐⇒
∞∑
j=0

|αj+1 − ζ0αj |
2
+ |αj |4 < ∞.

There is a generalization to two zeros (see [10]): if ζ1, ζ2 ∈ T, then for ζ1 ̸= ζ2
we have

|ζ − ζ1|2|ζ − ζ2|2 logw ∈ L1(T)

⇐⇒
∞∑
j=0

��αj+2 − (ζ1 + ζ2)αj+1 + ζ1ζ2αj

��2 + |αj |4 < ∞,

while for ζ1 = ζ2

|ζ − ζ1|4 logw ∈ L1(T) ⇐⇒
∞∑
j=0

��αj+2 − 2ζ1αj+1 + ζ21αj

�� 2 + |αj |6 < ∞

is true.

6. Zeros

It is easy to see that all zeros of the orthogonal polynomials for a measure
on the unit circle lie inside the unit disk ∆. Paul Turán asked if the zeros
can be dense in ∆. He did not specify, however, in what sense the density
should be considered. The simplest is to ask if the set of all the zeros of all
the orthogonal polynomials can be dense in ∆. In 1988 Alfaro and Vigil [1]
answered this affirmatively. Their result is a consequence of the recurrence
formula (4): if {zn} is given, then one can choose inductively αn ∈ ∆ so
that zn, n = 1, 2, . . . is a zero of Φn.

In [9] a much stronger statement was proven by Simon and the author.
To state it consider the sequence

{
νn(µ)

}
n�1

of the normalized counting

measures for zeros of Φn, that is, νn = 1
n

∑
k δzk , where the summation is for

all zeros of Φn counting multiplicity. [9] proves the existence of a universal
measure µ in the sense that if ν is any probability measure on the closed
unit disk, then there is a subsequence N of the natural numbers such that
along N the zero counting measures νn converge to ν in the weak∗ topology.
This is an easy consequence of following theorem of independent interest: if
Φ is a monic polynomial of degree m with all its zeros in ∆ and z1, . . . , zk are
arbitrary points in the unit disk, then there is a measure µ on the unit circle
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such that Φ is the m-th monic orthogonal polynomial with respect to µ, i.e.,
Φm = Φ, and z1, . . . , zk are zeros of the (m+ k)-th orthogonal polynomial
Φm+k.

There is a third way to understand Turán’s question: can it happen that
along the (complete) sequence of the integers n the set of zeros get dense in
∆, i.e., if Zµ is the set of points in ∆ for which there is a sequence {zn} such
that zn is a zero of Φn and zn → z, then is it possible that Zµ is the whole
closed unit disk? That this cannot happen was proven in [2], where the
following stronger statement was verified: if 0 ∈ Zµ, then Zµ is a countable
set converging to the origin.

The author thanks Paul Nevai and Tivadar Danka for valuable com-
ments.
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