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§l. Introduction and General Strategy 

The techniques which have been developed initially or solely for Ising 

ferromagnets fall generally into two broad categories. One group, which includes 

correlation inequalities of GKS and FKG type, holds for general kinds of ferromag

nets with more or less arbitrary (even) single spin distributions and with many body 

(ferromagnetic) forces allowed. The other group, which includes the correlation 

inequalities of GHS and thL zero theorem of Lee-Yang, has been proven directly only 

for spin 1/2 ferromagnets (each spin takes the values ±l with equal probability in 

the non-interacting systems) with pair interactions. In fact, counter examples 

exist with four-body interactions and spin 1/2 or with pair interactions and spin$ 

taking the values ±2,0 (but with 0,±2 having different weightings). 

The lattice approximation of Guerra, Rosen, and Simon (1973) discussed 

already in these lectures by Nelson and by Rosen, approximates P(~)2 by general 

Ising models and thus obtains GKS and FKG inequalities. Here, we wish to discuss a 

further approximation of Simon and Griffiths (1973) [henceforth SG] which approxi

mates (~4) 2 theory by "classical Ising models", i. e. systems wi th spin-1/2 spins 

and pair interactions. 

P(~)2 theories with deg P 

SG thereby obtain GHS and Lee-Yang theorems for certain 

4. In the interests of emphasizing the main ideas we 

propose only to discuss the Lee-Yang theorem and one of its main applications. We 

will also not give certain technical details. The reader interested in further 

details and applications and in the GHS inequalities should consult the original 

papers of SG and of Simon (1973b) or the lectures of Simon (1974). 

In the remainder of this introduction we want to state the Lee-Yang (1952) 

circle theorem and explain the general strategy of Griffiths (1970) for extending 

this theorem from spin-1/2 spins to more complicated situations. 

Theorem 1 Let aij ~ 0 for 1 ~ i < j ~ n. Let P be the polynomial in 

of degree 1 in each zi with 2n terms given by: 

!z(01+1) !z(on+1) 
L exp ( La .. ° . ° .) z •.• z 

+1 + . . ~J ~ J 1 n 
01=- , ••• ,0n=_1 ~<J 

Then if each ZiG D = {zllzl < 1} U {l} , then P" O. 
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~ 
1. The connection with Ising ferromagnets is the following 

-8(h1+·· .+hn ) (28h1 28hn) 
e P\e , ..• ,e 

and represents the partition function of an Ising ferromagnet if spin 0i is in a 

magnetic field hi' Of course, it is not a priori clear why zeros of the 

partition function are important. This idea of Yang-Lee (1952) is further discussed 

in §3 below. 

2. Since 
-1 -1 

P(zl""'z) = (zl"' z )P(zl , .•. ,zn) by spin-flip symmetry 

(0. -+ -oi)' P 
1. 

n n -1 
is also non-zero if each ZiG D and in particular P(z,z, ... ,z) 

= 0 can only happen if Izl = 1 , i.e. P(z, ••. z) has its roots on the unit 

circle, hence the name "circle theorem". 

3. There are various proofs of this theorem: the original Lee-Yang (1952) proof 

found also in Ruelle (1969); an unpublished proof of S. Sherman found in Simon 

(1974); a ~roof of Asano (1970) described also in Simon (1974); and a proof of 

Newman (1973). 

~y combining Remarks 1 and 2, Theorem 1 is easily seen to be equivalent to: 

Theorem 1 ' Let a .. >,.0 be fixed for 1 ~ i < j ~ n 
1.J 

Z(h 1 ,· .. ,hn ) L exp (L a .. 0.0 . 
=±1, ..• ,0 =±1 1.J 1. J 0 

1 n 

Then Z i- 0 if each h. E D = {h I Reh > O} U {h O}. 
1. 

* * * 

and let 

+ Lh.o.) 
1. 1. 

(1) 

Griffiths (1970) proposed a very simple and beautiful way of extending 

Theorem l' to more complex situations. As a typical case, consider a spin 1 

ferromagnet, i.e. each spin s can take the values 0,±2 with equal probability. 

We thus seek a zero theorem for the function 

Z(h1 , ••• ,h) = L exp(La .. s.s. + Lh.s.) 
n s.=±2,O 1.J 1. J 1. 1. 

1. 

Griffiths suggests first looking at a two spin, spin 1/2 ferromagnet with 

a12 = 1/2 £n z. Thus: 

prob (s - 01 + O
2 

= +2) = I:2/Normalization = prob (s = -2) 

prob (s 0) = (~) (l/ff)/Normalization =. l2/Normalization 

That is, s looks like a spin-l spin. In particular 

(2) 

(3) 
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by replacing the sum over oil = ±l, 0i2 = ±l 

doing the sum over the other degrees explicitly. 

h.€ 0 . 

by a sum over oil + 0i2 = ±2,O 

On account of (3), Z ~ 0 if 

1 

§2. The Improved DeMoivre-Laplace Limit Theorem 

It is now clear how to go about trying to prove a Lee-Yang theorem for 

P($)2. First approximate P($)2 by the lattice approximation, i.e. by Ising 

ferromagnets with pair interactions and single spin distributions e-Q(q)dq where 

deg Q = deg P and Q is even if P is even (which we will suppose). Thus we 

need only obtain e-Q(q)dq as the output probability distribution for the total 

spin of an Ising ferromagnet with spin-l/2 spins and pair distributions. More 

accurately, we need only obtain it as the limit of suitably rescaled output distri

butions. This is because the Lee-Yang theorem in the form of Theorem l' is 

preserved under limits on account of the following consequence of the argument 

principle: If fn(z) is a sequence of functions analytic and non-zero in a 

connected region DC t and if f -+ f uniformly on compacts of D , then f n 
is either identically zero or non-vanishing in D To apply this limit theorem, 

one needs uniform bounds on the approximating distributions as well as pointwise 

convergence. Below we will only prove pointwise convergence; the extra bounds 

(which require higher order terms in Stirling's formula) can be found in SG. 

Consider first the case deg Q = 2. It is easy to handle this case, for 

take N uncoupled spin-l/2 spins. Then the probability that 

is j ust 2-N(N+~) 12) where (:) is a binomial coefficient. 

limit theorem asserts that the binomial distribution for large 

Gaussian, explicitly: 

s = ES i is l.I 

The DeMoivre-Laplace 

N 10 oks like a 

(4) 

for a suitable constant DN What (4) means is that if s is fixed then 

N 

DN
- 1 (N+l.I

N2 
(s) ) ~ ~ exp(-s2/2) 

as N -+ ~ where l.IN(s) is defined by 

[ N+;;~J 

and [x] greatest integer less than x. To prove (4), one needs Stirling's 

formula: 
log nl-- n log n 

from which 
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with eN a suitable constant and 

hex) 1/2I(1+x)log(1+x) + (l-x)log(l-x)] 

For x small, hex) = 1/2 x2 + 1/12 x4 + O(x6). Thus for s = ~/~ fixed, 

N+~ 
( 

N ) 
log -2- ~ ~ - 1/2 s2 + O(l/N) 

from which (4) follows. 

Next consider deg Q = 4 ; in fact suppose Q(q) = q4. It is clear how to 

modify the Gaussian behavior above to get out q4 just cancel the Gaussian and 

re-s cale; 1. e • 

(+) (5) 

For if we fix s = ~/N3/4: 

log 

1: 
= ~ - 1/12 s4 + O(l/N 2) 

B (N~~) ~2/2N ut -- e 
2 

is the unnormalized probability distribution for an N spin-l/2 

Ising magnet with energy H = - 1/2N(Es.)2 which is ferromagnetic. A similar 
l. 

argument works for any Q(q) = aq4 + bq2 with a > 0 • 

We are thus able to conclude the following basic theorem from SG: 

Theorem 2 (Lee-Yang theorem for (~4)2) Let <-> denote a spatially cutoff 

expectation value with free, Dirichlet or half-Dirichlet boundary conditions (see 

Guerra etal. (1973» and P(x) = ax4+bx2 ; a > O. Let h ~ 0 be in LOOn Ll(~2) • 

Then 
F(z) = <exp(z~(h»> 

is an entire analytic function whose zeros lie on the axis Rez = 0 • 

For deg Q ~ 6 , we have the following negative situation (SG): There are 

definitely sixth degree Q's which are not the limit of spin-l/2 pair-interacting(*) 

ferromagnets and for which the Lee-Yang theorem fails. Thus, in the lattice 

approximation, the Lee-Yang theorem fails for certain Q's. This suggests, but 

certainly does not prove, that the Lee-Yang theorem is false for some P(~)2 

theories with deg P = 6 . 

(*) Of course if four-body interacting is allowed, there is no problem in 

approximating sixth degree Q's as a 1/12(Es.)4/N3 term in the energy plus. 
l. 

re-scaling leads to exp(-1/30 s6). 
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§3. Clustering of the Schwinger Functions of P = ax4 + bx2 - ~ (P10) 

Theorem 2 is a striking looking but, at first sight, apparently not very 

powerful theorem. That it is intimately connected with analyticity of the pressure 

is a discovery of Yang-Lee (1952) translated to (~4)2 by SG. That it implies 

strong bounds and falloff is a discovery of Lebowitz-Penrose (1968), developed in 

(~4)2 by Simon (1973b). We wish to indicate these ideas in this section. We 

discuss the case of Dirichlet boundary conditions although similar results hold for 

half-Dirichlet B.C. 

Fix a,b and for V real and A C~2 , bounded, let 

Then, by a result of Guerra et al. (1973), for any real V aA{~) + a~{v) as 

A + ~ (Fisher). The main point of the Lee-Yang theorem (Theorem 2) is that aA{~) 

has an analytic continuation to the right half-plane, Re V> O. Moreover, it is 

clear that 

Re aA{v) ~ aA (Re V) • 

Let fA{v) = exp{aA{v» • 

compacts of {viRe V > O} 

We thus see that IfA{v)1 is uniformly bounded on 

and converging for V E R and thus, by the Vitali 

convergence theorem, convergent on {viRe V > O}. Since the fA{v) are non

vanishing there and f~ is not identically zero, it is never zero, so aA{v) +a~{~) 

for all V with Re V > O. We summarize by: 

Theorem 3 a~{v) has an analytic continuation to the entire right half-plane and 

aA{v) + a~{v) uniformly on compacts of the right half-plane. 

In particular, sup d2a /dV2 < ~ , for any fixed V > O. In terms of the 
A A 

Dirichlet state expectation value < >A for the ax4 + bx2 - VX theory: 

d2a A 1 
-- = -I -I [<HXA) HxA» A - <HxA» A <HXA» A] 
dV 2 A 

(6) 

Now the two-point truncated Schwinger function 

is positive and monotone decreasing as Ix-yl + ~. If the limit is some C > 0 , 

then 

(7) 

(6) and (7) are not directly contradictory although they clearly almost are and a 
T further argument [Simon (1973b)] show they are: we conclude that S2 + 0 as 
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Ix-yl ~ ~. But then, by a result of Simon (1973a) (described in Rosen's lectures), 

all the truncated Schwinger functions go to O. We summarize: 

Theorem 4 In the infinite volume P(~)2 Dirichlet state with P(x)= ax4 + bx2 - ~x 

(~ # 0) , the Schwinger functions obey clustering, i.e. 

J <j>(f1 @ I~\) ... <j>(fk QOt)<j>(fk+l(8) 00)' •• <j>(fn ® 0o)d\) ~ [j d\) Hf
l

0 00)' •. <j>(fk€) 00)] 

[j d\) <j>(fk+
l
@ °0),,, <j>(fn ® °0)] as t ~ 00 • 

§4 The Wightman Axioms 

The status of the basic Euclidean objects for Dirichlet and half-Dirichlet 

states when P(x) = ax4 + bx2 - ~x (~# 0) are given by the following table: 

TABLE 
Dirichlet Half-Dirichlet 

(A ~ ~) Schwinger Functions Yes(2) Yes (1) 

(A ~ 00) Pressure Yes (2) Yes (3) 

(t < 00) Transfer Matrix ? Yes (3) 

(A = 00) ST ~ 0 Yes (4) Yes (4) 
2 

(A = GO) OS Axioms Yes Yes 

where (1) = Nelson (these lectures), (2) = Guerra et al. (1973) (3) = Guerra et al. 

(1974), (4) = Simon (1973a). If the Osterwalder-Schrader (1973) reconstruction 

theorem is valid tthere is presently a gap in the proof), all the Wightman axioms 

hold for the infinite volume D and HD theories. And in any event, on account 

of the existence of a transfer matrix, the Wightman axioms do hold for the HD 

theory [see Simon (1974)]. 

and Dymanical Instability 

The field theoretic analog of a phase transition is the notion of dynmaical 

instability (Wightman (1969», i.e. the existence of more than one infinite volume 

theory associated to a fixed interaction by some mechanism for associating infinite 

volume theories to interactions, e.g. the DLR equations described in Guerra's 

lectures. The expected picture for <j>4 + b<j>2 - ll<j> theories has been described in 

Jaffe's lecture. In this section we want to supplement the picture given by Jaffe 

explaining the connection between dynamical instability and the Fock space energy 

per unit volume, a
oo 

' of Guerra (1972). As Guerra explained in his lectures~ a~ 

is just the pressure. There is an old idea in field theory associated with the 
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name of Bogoliubov that dynamical instability is present precisely when 

<~(0»~4+b~2_~~ is discontinuous in ~. In statistical mechanical language, 

Bogoliubov is saying that the phase transition is first order and has the field as 

long range order parameter. This picture is supported by the following which 

combines results from SG and Simon (1973b): 

Theorem 5 Fix b and let Cloo(~) denote the pressure for the ~4 + b~2 - ~~ and 

let < > denote the infinite volume (Dirichlet) state for this theory. Consider 
~ 

the statements: 

(A) There is a mass gap in the < > theory. 
~=O 

(B) Cloo (~) is differentiable at ~ = o. 

(C) The "magnetization" <$(0» ~ is continuous at ~ 0 

(D) There is a unique vacuum in the < > theory. 
~=O 

Then (A) => (B) <=> (C) => (D). 

Remarks 

1. We emphasize that (A) is a statement about the < > 
~=O 

theory and not 

its decomposition into unique vacuums. 

2. Suppose the picture described in Jaffe's lectures holds. Then there is 

a critical value b When b > b 
c c 

we expect (A) to hold so (B),(C) hold. When 

b < bc ' we expect (D) to fail for the following reason: The Wightman theories 

for ~ 0 with unique vacuum (there should be two such theoriesl) have 

<~(o» # o. But by ~ + -~ symmetry in the Dirichlet B.C. theories the value of 

<~(o» = o. Thus the <.> theory should not have a unique vacuum. Since (D) 
~ ~=O 

fails so do (A),(B). Thus away from the critical point: differentiality of the 

pressure should be a sensitive test of dynamical instability. At the critical point 

one expects (B)-(D) to hold on the basis of most stat. mech. models although we em

phasize that there are stat. mech. models where (B),(C) fail at the critical point. 

3. By general arguments Cloo(~) is convex in ~ and so continuous. By 

Lee-Yang it is analytic away from ~ = 0 • 

Sketch of proof (A)=>(B). We need only a bound on 

d2
ClA I 

-- = -'-I <HxAH(XA»T A 
d~2 A ,~, 

uniform in A and ,~, ~ I. By using the GHS and GI,II inequalities one obtains 

a uniform bound on the falloff of <~(x)~(Y»T A as 'x-y' + 00 and this yields 
,~, 

a bound on See SG. 

(B) <=> (C). 
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By using the GI,II inequalities one shows that 
II 

a=(ll) - a(O) i m(ll) dll 

with m(ll) = <~ (0» and that m(O+) = lim m(ll) exists. One then proves that 
II ll-tO 

m(O+) is the right derivative of a=(ll) and m(O-) , so differentiability of 

a=(ll) at II = 0 is equivalent to continuity of m • See SG for details. 

(C)=>(D). Suppose (D) fails. Then S;,ll=O(x-y ) ~ c2 > 0 as 

x-y ~ = • But by symmetry 

so S2,ll>O ~ d2 ~ c2 as x-y ~ O. But by Theorem 4, 

<~ (0» ~ c • 
ll>O 

By symmetry <~(O» ~ c so <~(O» 
ll>O II 

II = O. For details see Simon (1973b). 
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