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One of the most useful estimates in the control of the thermodynamic limit 

for P(CP)2 is the cp-bound of G1imm-Jaffe (1972) [henceforth GJ]: 

± CP(h) < Illhill (Rt + 1) (1) 

for suitable h and a suitable norm, III III. Here Ht is defined by: 

Ht = Ho + jt /2: P(CP(X»:dx 
-t/2 

E(A) inf spec (A) 

(2) 

(3a) 

A = A - E (A) (3b) 

Shortly after the appearance of GJ, Guerra, Rosen, and Simon (1972) 

[henceforth GRS] provided an abbreviated proof of bounds of the form (1). The GRS 

bounds were weaker than the GJ bounds in the types of functions, h , allowed and in 

the norm, III III, used. In particular, GJ allow III III to be the L1 norm and 

GRS do not. For the original applications, this distinction did not matter but 

recently Frbb1ich (1973) exploited the L1-bound to prove the existence of equal 

time VEV's in the infinite volume limit. One of our goals is the extension of the 

GRS proof to cover these L1-bounds. 

It is possible to merely modify one step in the GRS proof. However, we wish 

to rephrase the GRS proof in a way that we think makes the mechanism of proof more 

transparent. To explain our point, we recall the GRS proof: one rewrites the bound 

(1) as a set of bounds on matrix elements of the semigroup exp[-t(Ht±CP(h)] and 

then uses Nelson's symmetry. In this new form, one bounds the matrix element as 

the norm of an operator times the product of the norms of two vectors. Nelson's 

symmetry is then applied to each of the vector norms. Our improved proof can be 

phrase~ as applying Nelson's symmetry also to the operator norm. But then we have 

exploited Nelson's symmetry twice which suggests that the two uses of the symmetry 

"cancel" and that somehow the symmetry is not needed. 

In a narrow sense, this is the case: what we wish to demonstrate is that 

what is really critical is the Markov property for constant space planes which 
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provides a sort of decoupling of spatial regions. GRS (or at least a subset of 

them!) did not really understand the Markov property and so used Nelson's symmetry 

to reduce to the semigroup property in time-like directions. While we will 

emphasize the ~ bound, our remark applies equally well to the other material in 

GRS. Of course in a deeper sense, "Nelson's symmetry" is involved as the critical 

element in a Euclidean invariant path integral. 

What we will prove (in the third section) is the following result which is a 

large part of Spencer's (1973) N 1 -bounds [which generalize (1)]: 
T, oc 

Theorem 1 Let F be any function of the (time zero) fields smeared in [a,a+l]. 

Then for any £. with [a,a+l] C [-£/2,£/2J: 

(4) 

for suitable constants and F. 

Corollary 2 Let I If I 1_1= (Jlf(k)12(k2+m2)-ldk)~ 
c and any f with supp f c [a,a+lJ C [-£/2 ,tl2J 

In particular 

Then for a suitable constant 

(5) 

(6) 

We prove (5) for Theorem 1 in the next section. (6) follows from (5) as 

in GJ. We also have: 

Corollary 3 Let II fll_~ (Jlf(k)12(k2+m2)-~dk)~ Then for a suitable 

constant c 

Hf)2 
2 

~ cll fll_~ (H£+ 1) (5' ) 

In particular 

Hf)2 
2 

(R£ + 1) ~ c' II fll Ll (6' ) 

§2. Nelson's Bound 

Our notation for the free Euclidean field follows Simon (1974); see also 

Guerra et al. (1973). If A c R2 , we say F', a function of the Euclidean fields, 

is A-measurable if F is measurable with respect to the a-field generated by 

{~(f) If," N; supp f E A}. If Ac~, we use A x R (resp. R x A)to denote 

{(x ,s) I x c: A} (resp. {(x ,s) Is," A}). Later when we deal with the time zero fields 

and Ac ~, A-measurable will denote measurable with respect to the a-field 

generated by Finally J 
a 

Crespo J ) 
a 

will denote the 
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isometry of .:5t into 72 induced by the map j :F -+ N (resp. ja) given by 
..., a 

jaf(x,s) = f(x)o(s-a) (resp. (j/)(x,s) = 6(x-a)f(s». 

A basic role is played by: 

Theorem 4 (Nelson's Bound) Let m be the mass of the free Euclidean field. Let 

p = 2/1 - exp[-m(b-a)] • Then as a map from ~ to :r 
II J* V Jb II ~ II Vii a p 

if V is IR x [a,b]-measurable (resp. [a,b] x R-measurable). 

Proof This is just an expression of hypercontractivity and Holder's 

inequality. The basic idea is Nelson's (1973a) although we have used a result 

from the later Nelson (1973b). For details see Guerra et al. (1973) or Simon 

(1974). fiJ 

Proof of Corollary 2 By Nelson's bound and the FKN formula: 

1 
~ Ilexp(-j ds cp(f,s»11 o p 

e 

rJ dll O exp(-pcf>(ffB) X(O,I»]I/
p 

~ exp (c II f ~ X (0 , 1 ) II ~) ~ exp (c' II f II ~ 1 ) 

(7) 

From this and (4) we immediately conclude (5). Thus for all f with I If I 1_1 1 

and supp f c [a,a+l] , 

for some fixed d ~ 1. By homogenity, 

~ CP(f) ~ dllfll_l (lit + 1) 

(6) follows from this. ~ 

Remark By simply modifying the above one shows that for any E > 0 , there is a 

d(E) with 

Proof of Corollary 3 This is similar to that of Corollary 2. We use that fact 

that 
e-E(HO-~(f)2) ~ I lexp(+ jl ds(J ~(f»2ds)1 I 

o cr p 

~ II exp (+ cp( f) 2 ) lip 

~ const 

so long as II f II F ~ d for d sufficiently small. ~ 
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§3. The Proof of Theorem 1 

Theorem 1 depends on the following result of some independent interest: 

Theorem 5 Let V1 ,V2 ,V3 be functions of the time zero fields which are respec

tively (-oo,a],{a,a+l] and [a+l,oo) measurable. Let VI (resp. V3) be the 

reflection of VI (resp. V3) in the point x = a (resp. x = a+l). Let 

Ao = 2/1 - exp(-m). Then 

-E(Ho+V1+V
2

+V3) ~ -1/2 E(Ho+V1+V1) -1/2 E(Ho+V3+V3) - l/Ao E(Ho+A OV
2

) (8) 

Proof We need only show that 

(9) 

By the FKN formula and the Markov property: 

t 
with F = exp(- 1 (J V.)ds). On account of Nelson's bound, this last quantity 

i 0 s l. 

is bounded by: 

and by the Markov property again 

f (j*F )2dll 
a I 0 

f F F dll 
1 1 0 

so (8) follows. ~ 

Remark Among other things, (8) implies the linear lower bound of Glimm-Jaffe (1970) 
1.: 

that -E~ ~ d~ for ~ large. For (8) implies that (with V2 J~~ P dx and 

1~¥'2 VI+V2+V3 = ~_~ P dx) - E(2~+1) ~ - 1/2 E(2~) - 1/2 E(2~) + c - E(2~) + const. 

Proof of Theorem 1 Let VI = J~~ iP(¢(x» :dx V3 = J~~l :P(¢(x»:dx and let 

Ja+1 
V

2 
= F + a :P(¢(x» :dx. Then, by (8): 

Now, by bounds of GRS: 

so that: 
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Moreover, by the convexity of the -E(A) in A: 

so that (10) becomes: 

-E(HR.+F) ~ - E(HR.) - 1/2110 E(Ho+2110F) + C 

which implies (4). ~ 

§4. Fronlich's Bounds 

Frbblich (1973) remarked a very convenient form of the ~-bound which provides 

the neatest form of the bounds needed to complete the proof of Nelsons convergence 

theorem for the half-Dirichlet Schwinger functions (see Nelson's and Rosen's 

lectures). Since Rosen uses these bounds in his lecture, we sketch their proof: 

Theorem 6 (Frohlich(1973» Let dV A denote the spatially cutoff Markov measure 

for a fixed P(~)2 model. Then for any bounded region D , there exists 

R.-independent constants c
1 

and c2 so that for any f in L2(D), real-valued: 

f Hf) 
lim e dV[-R./2,R./2]x[-t/2,t/2] ~ 
t~ 

so long as D c. [-R./2 ,R./2] x R • 

Proof If OR. is the vacuum for HR. ' the right side of (11) is 

Without loss of generality, take D = [-1/2,1/2] x [-1/2,1/2]. Then (12) is 

bounded by 

which is (ll). ~ 

Theorem 7 (Frbblich (1973» Let 
HD dV A deonote the spatially cutoff half-

(12) 

Dirichlet theory for a fixed model with P(X) = Q(X) - llX with Q even. 

Then for each bounded region D, there are constants c1 and c2 so that for 

all A:) D with A bounded and f E. L2 (D) , complex valued: 

(13) 
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By the first GKS inequality. 

Let Ac I-t/Z,t/Z] x I-t/Z,t/Z]. 

Then by Nelson's Monotonicity theoreill and Lhe bound S~ ~ s~ree 

f ~(Ifl) HD . f ~(Ifl) HD 
e dV A ~!~ e dV[-t/Z,t/Z]x[-t/Z,t/Z] 

. f Hlfl) 
,<~: e dV[-t/Z,t/Z]x[-t/Z,t/Z] . (ll) now implies (13) • ~ 

§5. The Lower Bound on the Wave Function Renormalization 

We have reported on one simplification of the paper GRS. There is a new 

bound which helps illuminate another of their results, namely that In(nt,nO) ~ 

- ct • 

Theorem 8 For any vector n in L2(QF,d~o) with I Inl 12 = 1 

Ilnlll ~ exp[- (n,Nn)] (14) 

Remarks 

1. This bound in a disguised form was first shown me by C. Newman who proved 

it by the method 

Z. Since 

(14) implies the In(nt ,no) >/ -c£ bound. 

Proof By the infinitesimal form of hypercontractivity of Gross (1973): 

Since Inl2d~o is a probability measure, 

exp(- f InI2lnlnld~o) ~ f exp(-lnlnl)lnI2d~o 
f Inl d~o 

(14) follows from (15) and (16). ~ 

(15) 

(16) 



131 

References 

FROHLICH, J. (1973): Schwinger Functions and Their Generating Functiona1s, 
Univ. of Geneva Preprint, in preparation. 

GLIMM, J., JAFFE, A. (1970): Acta. Math. 125 203-261. 

GLIMM, J., JAFFE, A. (1972): J. Math. Phys. 13 1568-1584. 

GROSS, L. (1973): Logarithmic Sobo1ev Inequalities, Cornell Preprint. 

GUERRA, F., ROSEN, L., SIMON, B. (1972): Commun. Math. Phys. 12 10-22. 

GUERRA, F., ROSEN, L., SIMON, B. (1973): The P(¢)2 Euclidean Quantum Field Theory 
as Classical Statistical Mechanics, Ann. Math., to appear. 

NELSON, E. (1973a): in Proc. Summer Institute of P.D.E., Berkeley, 1971. 

NELSON, E. (1973b): J. Func. Anal. 12,211-227. 

SIMON, B. (1974): The P(¢)2 Euclidean (Quantum) Field Theory, to appear 
Princeton Series in Physics. 

SPENCER, T. (1973: J. Math. Phys., to appear. 


