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1. Introduction and background

This paper announces results in the spectral theory of orthogonal polynomials on the real line (OPRL). We start out with
a measure dµ of compact support on R; Pn(x; dµ) (sometimes we drop dµ) and pn(x; dµ) are the monic orthogonal and
orthonormal polynomials, and {an, bn}∞n=1 the Jacobi parameters determined by the recursion relations (where p−1 = 0):

xpn(x) = an+1pn+1(x)+ bn+1pn(x)+ anpn−1(x) (1.1)

summarized in a Jacobi matrix

J =


b1 a1 0 0 · · ·

a1 b2 a2 0 · · ·

0 a2 b3 a3 · · ·
...

...
...

...
. . .

 . (1.2)

We will use the Lebesgue decomposition of dµ,

dµ(x) = w(x) dx+ dµs(x) (1.3)

with dµs singular w.r.t. dx.
In this introduction, we will also consider orthogonal polynomials on the unit circle (OPUC) where dµ is now a measure

on ∂D = {eiθ | θ ∈ [0, 2π)};Φn(z; dµ) and ϕn(z; dµ) are the monic orthogonal and orthonormal polynomials, and

αn = −Φn+1(0) (1.4)
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are the Verblunsky coefficients. (1.3) is replaced by

dµ(θ) = w(θ)
dθ
2π
+ dµs(θ). (1.5)

We have |αn| < 1 and ρn is defined by

ρn = (1− |αn|2)1/2. (1.6)

For background on OPRL, see [1–4], and for OPUC, see [1,5–7].
Our starting point is Szegő’s theorem in Verblunsky’s form (see Ch. 2 of [6] for history and proof):

Theorem 1.1. Consider OPUC. The following are equivalent:

(a)
∫
log(w(θ))

dθ
2π

> −∞ (1.7)

(b)
∞∑
n=0

|αn|
2 <∞ (1.8)

(c)
∞∏
n=0

ρn > 0. (1.9)

Of course, (b)⇔ (c) is trivial and (c) is not normally included. We include it because for OPRL, (a)⇔ (c) and (a)⇔ (b)
have different analogs. The analog of (a)⇔ (c) for OPRL on [−2, 2], which we will call Szegő’s theorem for [−2, 2], is:

Theorem 1.2. Let J be a Jacobi matrix with σess(J) = [−2, 2] and eigenvalues {Ej}Nj=1 in σ(J) \ [−2, 2].
Suppose that

N∑
j=1

(|Ej| − 2)1/2 <∞. (1.10)

Then the following are equivalent:

(i)
∫ 2

−2
(4− x2)−1/2 log(w(x)) dx > −∞ (1.11)

(ii) lim sup a1 . . . an > 0. (1.12)

If these hold, then

lim
n→∞

a1 . . . an (1.13)

exists in (0,∞).

Remarks. 1. For a proof and history, see Sect. 13.8 and Theorem 13.8.9 of [7]
2. The number of eigenvalues, N , can be zero, finite, or infinite.
3. There are also results that imply (1.10). For example, if (1.11) holds, and the lim sup in (1.12) is finite, then (1.10) holds.
4. (1.12) involves lim sup, not lim inf; its converse is that a1 . . . an → 0.

The analog of (a)⇔ (b) is the following result of Killip–Simon [8]:

Theorem 1.3. Let J be a Jacobi matrix with σess(J) = [−2, 2] and eigenvalues {Ej}Nj=1 in σ(J) \ [−2, 2]. Then

∞∑
n=1

b2n + (an − 1)
2 <∞ (1.14)

if and only if the following both hold:

(i)
N∑
j=1

(|Ej| − 2)3/2 <∞ (1.15)

(ii)
∫ 2

−2
(4− x2)1/2 log(w(x)) dx > −∞. (1.16)
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The last two theorems involve perturbations of the Jacobi matrix with bn ≡ 0, an ≡ 1, essentially up to scaling and
translation, constant bn, an. The next simplest situation is perturbations of periodic Jacobi matrices, that is, J0 has Jacobi
parameters {a(0)n , b

(0)
n }
∞

n=1 obeying

a(0)n+p = a
(0)
n b(0)n+p = b

(0)
n (1.17)

for some fixed p and all n = 1, 2, . . .. In that case, we have a set

e =

`+1⋃
j=1

ej

where {ej}`+1j=1 are `+ 1 disjoint closed intervals

ej = [αj, βj]

α1 < β1 < α2 < β2 < · · · < α`+1 < β`+1

with ` gaps (β1, α2), . . . , (β`, α`+1), and

σess(J0) = e. (1.18)

We always have ` + 1 ≤ p and generically ` + 1 = p. In this generic case, we say ‘‘all gaps are open.’’ We use `, the
number of gaps, because J0 is not the only periodic Jacobi matrix obeying (1.18)—there is an `-dimensional manifold, Te,
of periodic J0’s obeying (1.18). Indeed, the collection of all {a

(0)
j , b

(0)
j }

p
j=1 ⊂ [(0,∞) × R]p obeying (1.18) for fixed e is an

`-dimensional torus, so Te is called the isospectral torus; see [4, Chap. 5]. That the key to extending Theorems 1.2 and 1.3 to
the periodic case is an approach to an isospectral torus is an idea of Simon [7].
Damanik, Killip, and Simon [9] have proven the following analogs of Theorems 1.2 and 1.3:

Theorem 1.4. Let e be the essential spectrum of a periodic J0 and let J be a Jacobi matrix with

σess(J) = e.

Let {Ej}Nj=1 be the eigenvalues of J in σ(J) \ e. Suppose that

N∑
j=1

dist(Ej, e)1/2 <∞. (1.19)

Then the following are equivalent:

(i)
∫

e

dist(x,R \ e)−1/2 log(w(x)) dx > −∞ (1.20)

(ii) lim sup
a1 . . . an
C(e)n

> 0. (1.21)

Remarks. 1. In (1.21), C(e) is the logarithmic capacity of e; see [10–12] for a discussion of potential theory.
2. Damanik–Killip–Simon [9] do not use (1.21) but instead

lim sup
a1 . . . an
a(0)1 . . . a(0)n

> 0.

Since a(0)1 . . . a(0)p = C(e)p, this is equivalent.

Theorem 1.5. Let J0 be a periodic Jacobi matrix with all gaps open and essential spectrum e. Let J be a Jacobi matrix with

σess(J) = e.

Let {Ej}Nj=1 be the eigenvalues of J in σ(J) \ e. Define

dm({an, bn}∞n=1, {a
′

n, b
′

n}
∞

n=1) =

∞∑
j=0

e−j[|am+j − a′m+j| + |bm+j − b
′

m+j|] (1.22)

and

dm({an, bn}, Te) = min
(a′,b′)⊂Te

dm({an, bn}, {a′n, b
′

n}). (1.23)
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Then
∞∑
m=1

dm({an, bn}, Te)
2 <∞

if and only if

(i)
N∑
j=1

dist(Ej, e)3/2 <∞ (1.24)

(ii)
∫

e

dist(x,R \ e)1/2 log(w(x)) dx > −∞. (1.25)

While these last two theorems are fairly complete from the point of view of perturbations of periodic Jacobi matrices,
they are incomplete from the point of view of sets e. By harmonicmeasure on e, wemean the potential theoretic equilibrium
measure. It is known (Aptekarev [13]; see also [14,15,4]) that
(i) e is the essential spectrum of a periodic Jacobi matrix if and only if the harmonic measure of each ej is rational.
Theorem 1.4 is limited to this case.

(ii) All gaps are open if and only if each ej has harmonic measure 1/p. Theorem 1.5 is limited to this case.

Our major focus in this work is what happens for a general finite gap set e in which the harmonic measures are not
necessarily rational. This is an announcement. We plan at least two fuller papers, one [16] on the structure of the isospectral
torus and one [17] on Szegő’s theorem.

2. Main results

There are two main results in [17]. The following is partly new:

Theorem 2.1. Suppose e is an arbitrary finite gap set

e =

`+1⋃
j=1

[αj, βj]

α1 < β1 < α2 < · · · < β`+1.

Let J be a Jacobi matrix with

σess(J) = e (2.1)

and let {Ej}Nj=1 be the eigenvalues of J in σ(J) \ e. Suppose that

N∑
j=1

dist(Ej, e)1/2 <∞. (2.2)

Then the following are equivalent:

(i)
∫

e

dist(x,R \ e)−1/2 log(w(x)) dx > −∞ (2.3)

(ii) lim sup
a1 . . . an
C(e)n

> 0. (2.4)

That (i) + (2.2)⇒ (ii) is not new. When N = 0 (i.e., no bound states), (i)⇒ (ii) goes back to Widom [18], following
earlier partial results of Akhiezer and Tomčuk [19–21]. Peherstorfer–Yuditskii [22] proved (i)⇒ (ii) under a condition on
the bound states, which after a query from Damanik–Killip–Simon, Peherstorfer–Yuditskii improved to (2.2) and posted on
the arXiv [23]. Thus, the new element of Theorem 2.1 is the converse direction (ii)+ (2.2)⇒ (i).
Associated to each such e is a natural isospectral torus: certain almost periodic Jacobimatrices that lie in an `-dimensional

torus. Although the torus, Te, has been studied before (e.g., [18] or [24]), many features are not explicit in the literature, so
we wrote [16].
Wewill need the proper analog of the ‘‘Jost function’’ for this situation. It involves the potential theorist’s Green’s function

for e, Ge, the unique function harmonic onC\ e, with zero boundary values on e andwith Ge(z) = log |z|+O(1) near infinity.
We let dρe be the equilibrium measure for ewith density ρe(x)with respect to the Lebesgue measure and define u(0; J) by

u(0; J) =
N∏
j=1

exp(−Ge(Ej)) exp
(
−
1
2

∫
e

log
(
w(x)
ρe(x)

)
dρe(x)

)
. (2.5)
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We note that since ρe(x) ∼ dist(x,R \ e)−1/2, the Szegő condition (2.3) implies the convergence of the integral in (2.5), and
since on R \ e, Ge(x) vanishes as dist(x, e)1/2 as x→ e, (2.2) implies convergence of the product in (2.5).
The other main result is the following:

Theorem 2.2. Suppose J is a Jacobimatrix obeying the conditions (2.1)–(2.4) in e. Then there is a point J∞ = {a
(∞)
n , b(∞)n }

∞

n=1 ∈ Te

so

|an − a(∞)n | + |bn − b
(∞)
n | → 0 (2.6)

as n→∞. Moreover, a1 . . . an/C(e)n is asymptotically almost periodic. Indeed,

a1 . . . an
a(∞)1 . . . a(∞)n

→
u(0; J∞)
u(0; J)

. (2.7)

More generally, if dµ(∞) is the spectral measure for J∞, we have that for x ∈ C \ e,

pn(x, dµ)
pn(x, dµ(∞))

(2.8)

has a limit.

Remarks. 1. It is an interesting calculation to check that (2.7) holds for e = [−2, 2] based on the formulas in [8] (see
(1.29)–(1.31) of that paper).
2. The limit in (2.8) can also be described in terms of a suitable ‘‘Jost function’’ u.

When there are no bound states (i.e., N = 0), this is a result of Widom [18]. Peherstorfer–Yuditskii [22] found a different
proof relying on a machinery of Sodin–Yuditskii [24] which allowed some bound states, and their note [23] extended to
(2.2). So this theorem is not new—what is new is our proof of it and the compact form of (2.7) is new.
One application that Killip–Simon [8] make of Theorem 1.2 is to prove a conjecture of Nevai [25] that

∞∑
n=1

|an − 1| + |bn| <∞ (2.9)

implies (1.11). For (2.9) implies (1.12) and a result of Hundertmark–Simon [26] says (2.9) implies (1.10). Damanik–Killip
–Simon [9] used Theorem 1.4 and a matrix version of [26] to prove an analog of Nevai’s conjecture for perturbations of
periodic Jacobi matrices. This leads us to:

Conjecture 2.3. Suppose {a(∞)n , b(∞)n }
∞

n=1 lies in Te and J is a Jacobi matrix obeying

∞∑
n=1

|an − a(∞)n | + |bn − b
(∞)
n | <∞. (2.10)

Then the Szegő condition, (2.3), holds.

The issue is whether (2.10) implies (2.2). That it holds for the eigenvalues above and below the spectrum is a result of
Frank–Simon–Weidl [27], but it remains unknown for eigenvalues in the gaps. However, Hundertmark–Simon [28] showed
that if for some ε > 0,

∞∑
n=1

[log(n+ 1)]1+ε[|an − a(∞)n | + |bn − b
(∞)
n |] <∞ (2.11)

then (2.2) holds. Thus, we have a corollary of Theorem 2.1:

Corollary 2.4. If (2.11) holds for some {a(∞)n , b(∞)n } ∈ Te, then (2.3) holds.

The big open question on which we are working is extending the Killip–Simon theorem (Theorem 1.3) to a general finite
gap setting.

3. Covering maps and Beardon’s theorem

To understand the approach to the proofs we will discuss in this section and the next, we need to explain the machinery
behind the proofs of Theorems 1.2–1.5. It goes back to the Szegő mapping ([29]; see [7, Sect. 13.1]) of OPRL problems on
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Fig. 1. The fundamental domain, F.

[−2, 2] to OPUC via x = 2 cos θ = z + z−1 if z = eiθ . It was realized by Peherstorfer–Yuditskii [30] and Killip–Simon [8]
that while x = 2 cos θ will not work on the level of measures if there are mass points outside [−2, 2], the map

x(z) = z + z−1 (3.1)

allows one to drag

m(x) =
∫
dµ(t)
t − x

(3.2)

back to D and use function theory on the disk.
Following Sodin–Yuditskii [24], we can do something similar for finite gap situations. x(z) given by (3.1) is the unique

analytic map of D to (C \ [−2, 2]) ∪ {∞} which is a bijection with x(0) = ∞, limz→0 zx(z) > 0. If (C \ [−2, 2]) ∪ {∞} is
replaced by (C \ e) ∪ {∞}, there is no map with these properties because (C \ e) ∪ {∞} is not simply connected. Rather,
its fundamental group, π1, is isomorphic to F`, the free non-abelian group on ` generators. But if we demand that x be onto
and only locally one-one, there is such a map.
For (C \ e)∪ {∞} has a universal covering space which is locally homeomorphic to (C \ e)∪ {∞} on which π1 acts. This

local map can be used to give a unique holomorphic structure, that is, the universal cover is a Riemann surface and π1 acts
as a set of biholomorphic bijections. The theory of uniformization (see [31]) implies the cover is the unit disk. Thus:

Theorem 3.1. There is a unique holomorphic map of D to (C \ e) ∪ {∞} which is onto, locally one-one, with x(0) = ∞ and
limz→0 zx(z) > 0. Moreover, there is a group Γ of Möbius maps of D onto D so Γ ∼= F` and

x(z) = x(w)⇔ ∃ γ ∈ Γ so that γ (z) = w.

Thus, x is automorphic for γ , that is, x ◦ γ = x. If one looks at x−1[(C \ [α1, β`+1]) ∪ {∞}], there is a unique connected
inverse image containing 0, call it F. This is D with ` orthodisks (i.e., disks whose boundary is orthogonal to ∂D) removed
from the upper half-disk and their symmetric partners under complex conjugation (see Fig. 1: the shaded area is the inverse
image of the lower half-plane).
Label the circles in the upper half-plane C+1 , . . . , C

+

` going clockwise, and C
−

1 , . . . , C
−

` the conjugate circles. Let γ
±

j be the
composition of complex conjugation followed by inversion in C±j , so γ

±

j [ F ] lies inside the disk bounded by C
±

j . Γ consists
of words in {γ±j }, that is, finite products of these elementswith the rule that no γ

+

j is next to a γ
−

j (same j) for (γ
+

j )
−1
= γ−j .

Thus, Γ = {id} ∪ Γ (1)
∪ · · ·where Γ (k) has 2`(2`− 1)k−1 elements, each a word of length k.

We define

Rm = ∂D \
⋃

γ∈{id}∪···∪Γ (m−1)
γ [ F ]. (3.3)

Fig. 2 shows three levels of orthocircles.R3 is the part of ∂D inside the 36 small circles.
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Fig. 2. Images of F under words of length≤ 3.

In [32], Beardon proved the following theorem:

Theorem 3.2. Let Γ be a finitely generated Fuchsian group so that the set of limit points of {γ (0)}γ∈Γ is not all of ∂D. Then
there exists t < 1 so that∑

γ∈Γ

|γ ′(0)|t <∞. (3.4)

The Γ associated to x is clearly finitely generated and points in F∩ ∂D are not limit points, so Beardon’s theorem applies.
([4] has a simple proof of Beardon’s theorem for this special case of interest here.) In [17], we show, using some simple
hyperbolic geometry, that (3.4) implies

Corollary 3.3. Let | · | be the Lebesgue measure on ∂D. Then there exists A > 0 and C so that

|Rm| ≤ Ce−Am. (3.5)

(3.4) is known to be equivalent to∑
γ∈Γ

(1− |γ (z)|)t <∞ (3.6)

for all z ∈ D. This result for t = 1 (which goes back to Burnside [33]) implies the existence of the Blaschke product

B(z, z0) =
∏
γ∈Γ

b(z, γ (z0)) (3.7)

where

b(z, w) = −
w̄

|w|

z − w
1− w̄z

(3.8)

ifw 6= 0 and b(z, 0) = z. In particular, we set

B(z) ≡ B(z, z0 = 0).

B is related to the Green’s function Ge: we have

|B(z)| = exp(−Ge(x(z))) (3.9)

as can be seen by noting the right side behaves like C |z| near z = 0 and (3.9) holds for z ∈ ∂D.
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4. MH representation and Szegő’s theorem

Simon–Zlatoš [34] and Simon [35] provided some simplifications of Killip–Simon [8] and, in particular, [35] stated a
representation theorem for meromorphic Herglotz (aka MH) functions. Variants of this representation theorem are behind
parts of [9] and other applications of sum rules (e.g., Denisov [36]).
Our work also depends on such a representation theorem for automorphic meromorphic functions which obey Im f > 0

on F ∩ C+. We prove the following:

Theorem 4.1. Let M(z) = −m(x(z)), where m is the m-function (3.2) for some J, with σess(J) = e. For R < 1, let BR(z) be the
product B(z, zj) divided by B(z, pj) for zeros and poles of M in F with Im zj ≥ 0, Im pj ≥ 0 and |zj| < R, |pj| < R. Then, for
z ∈ D,

B∞(z) = lim
R↑1
BR(z) (4.1)

exists for z not a pole of M. Moreover, for a.e. θ ∈ [0, 2π), M(eiθ ) = limr↑1M(reiθ ) exists,

log |M(eiθ )| ∈
⋂
p<∞

Lp
(
∂D,

dθ
2π

)
(4.2)

and for z ∈ D,

a1M(z) = B(z)B∞(z) exp
(
1
2π

∫
eiθ + z
eiθ − z

log |a1M(eiθ )| dθ
)
. (4.3)

In proving this, the big difference from the case considered in [35] is that there, argM(z) ∈ (0, π) in the upper half-disk.
This and a similar estimate for B∞(z) prove that arg(M(z)/B(z)B∞(z)) is bounded. Here argM(z) is in (0, π) only on F∩C+.
In general, if z ∈ γ [F]where γ is a word of length n in Γ (written as a product of generators), then | argM(z)| ≤ π(2n+1).
arg(M(z)/B∞(z)B(z)) is not bounded. But by (3.5), the set where arg(M(reiθ )/B∞(reiθ )B(reiθ )) ≥ 4π(n+ 1) has size (in θ )
bounded by Ce−An uniformly in r . This still allows one to see log(M(z)/B(z)B∞(z)) ∈ ∩p<∞ Hp(D) and yields (4.3).
While there are some tricky points with eigenvalues in gaps, once one has Theorem 4.1, the proof of Theorem 2.1 follows

the strategy used in [4] to prove the Szegő theorem for [−2, 2]. The potential theoretic equilibriummeasures enter because
one has:

Proposition 4.2. If f is a nice function on e, then∫
∂D
f (x(eiθ ))

dθ
2π
=

∫
e

f (x) dρe(x). (4.4)

Remarks. 1. Since ρe(x) ∼ dist(x,R \ e)−1/2, this leads to Szegő conditions like (2.3).
2. It is well known how the equilibrium measure is transformed under conformal mappings (see, e.g., [37, Prop. 1.6.2]).

(4.4) is a multi-valued variant of this result.
3. As will be discussed in [16], (3.9) is a special case of (4.4). In fact, one can show that they are actually equivalent.

Sketch. 1. One proves that

|B(z)| =
∏
γ∈Γ

|γ (z)|. (4.5)

2. On ∂D, (∂ arg γ (eiθ )/∂θ) > 0, so (4.5) implies∑
γ

|γ ′(eiθ )| =
d
dθ
arg B(eiθ ). (4.6)

3. This implies∫
∂D
f (x(eiθ ))

dθ
2π
=

∫
F∩∂D

f (x(eiθ ))
d arg B
dθ

dθ
2π
. (4.7)

4. Since x is two-one from F ∩ ∂D to e, this leads to

LHS of (4.7) =
∫

e

f (u)
d arg B(x−1(u))

du
du
π
. (4.8)
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5. By a Cauchy–Riemann equation,

d arg B(x−1(u))
du

=
∂ log |B(x−1(u))|

∂n
a normal derivative which is the normal derivative of the Green’s function by (3.9).

6.
1
π

∂Ge

∂n
(x) dx = dρe(x)

completing the proof. �

5. The Jost function and Jost solutions

Let J be a Jacobi matrix that obeys the hypotheses of Theorem 2.1, that is, (2.1)–(2.4) all hold. In that case, we say J is
Szegő for e. For reasons that will become clear shortly, it is useful to define the Jost function on D by

u(z, J) =
N∏
j=1

B(z, pj) exp
(
1
4π

∫
eiθ + z
eiθ − z

log
(
ρe(x(eiθ ))
w(x(eiθ ))

)
dθ
)

(5.1)

and the Jost solution, un(z, J), for n ≥ 0 by (where a0 ≡ 1)

un(z, J) = a−1n B(z)
nu(z, J (n)) (5.2)

where J (n) is the n times stripped Jacobi matrix, that is, with Jacobi parameters {a(n)j , b
(n)
j }where

a(n)j = aj+n b(n)j = bj+n. (5.3)

Notice because of (2.2) and (2.3) the product and integral in (5.1) converge. Also notice (5.1) agrees with (2.5) given (3.9).
For (5.2) to make sense, we need:

Proposition 5.1. If J is Szegő for e, so is J (n).

Proof. It is enough to prove it for n = 1 and then use induction. (2.1) holds for J (1) byWeyl’s theorem and (2.2) by eigenvalue
interlacing. (2.4) is trivial for J (1) given it for J , and then (2.3) for J (1) follows from Theorem 2.1. �

Here is the main result about Jost solutions:

Theorem 5.2. Let J be Szegő for e. Then (with Mn(z) = M(z; J (n)))

(i) an+1Mn(z) = B(z)
u(z, J (n+1))
u(z, J (n))

(5.4)

(ii) anMn(z) =
un+1(z, J)
un(z, J)

. (5.5)

(iii) For z ∈ D, un(z, J) obeys the difference equation (a0 ≡ 1)

an−1un−1 + bnun + anun+1 = x(z)un (5.6)

for n ≥ 1.
(iv) Up to a constant, un(z, J) is the unique `2 solution of (5.6).

Sketch. 1. (i) is just a restatement of (4.3) using the fact that

a21|M(e
iθ )|2 =

ImM(eiθ )
ImM1(eiθ )

. (5.7)

2. (ii) follows from (i) and the definition (5.2).
3. (5.6) follows from (5.5) and the coefficient stripping formula forM , namely,

Mn(z)−1 = x(z)− bn+1 − a2n+1Mn+1(z). (5.8)

4. One proves uniform bounds on a−1n and u(z, J
(n)). Since |B(z)| < 1 on D, un goes to zero exponentially and so lies in `2.

Uniqueness is standard. �

In [16,17], we study boundary values of u as z → ∂D, Green’s functions, and related objects.
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6. Character automorphic functions and asymptotics

The key fact in Theorem 2.2 is the existence of the limit point in Te. The Jost function actually determines the limit point.
To explain how, we need to discuss character automorphic functions.
If γ is a Möbius transformation of D to D and b is given by (3.8), then h(z) = b(γ (z), γ (w)) has magnitude 1 on ∂D

and a zero only at z = w, so |h(z)| = |b(z, w)|, but there is generally a nontrivial phase factor (necessarily constant by
analyticity). This implies that for anyw ∈ D,

B(γ (z), w) = Cw(γ )B(z, w) (6.1)

where |Cw(γ )| = 1. Clearly, Cw(γ γ ′) = Cw(γ )Cw(γ ′), so Cw is a character of Γ , that is, a group homomorphism of Γ to ∂D.
The set Γ ∗ of such homomorphisms is the dual group of Γ /[Γ ,Γ ] ∼= Z`, so Γ ∗ ∼= (∂D)` (cf. [38, Chap. III]). Essentially,

C is uniquely determined by C(γ+j ), j = 1, . . . , `.
A meromorphic function on D obeying

f (γ (z)) = C(γ )f (z)

for all z ∈ D and γ ∈ Γ is called character automorphic. (6.1) says Blaschke products are character automorphic. One can
also see that if g is a real-valued function on e, then

f (z) = exp
(∫

eiθ + z
eiθ − z

log(g(x(eiθ )))
dθ
2π

)
(6.2)

is character automorphic, so the Jost function (5.1) is a product of character automorphic functions, and so character
automorphic. That is, there is a CJ ∈ Γ ∗ associated with any Szegő J via

u(γ (z), J) = CJ(γ )u(z, J). (6.3)

If C0 is the character associated to the fundamental Blaschke product, B(z), (5.4) and the fact that M is automorphic
implies

CJ(n+1) = CJ(n)C
−1
0 (6.4)

and so

CJ(n) = CJC
−n
0 . (6.5)

A fundamental fact about the map C (discussed in [16]) is that

Theorem 6.1. The map J → CJ for J ’s in Te, from Te to Γ ∗, is a homeomorphism.

Corollary 6.2. Suppose J is Szegő and J∞ ∈ Te obeys (2.6). Then J∞ is the unique point in Te obeying

CJ∞ = CJ . (6.6)

Sketch. (2.8) implies that u(z, J (n))/u(z, J (n)∞ ) → 1 at points away from x−1(R) (where it might be 0), which implies
CJ(n)/CJ(n)∞ → 1 which, by (6.5), implies CJ/CJ∞ ≡ 1. Uniqueness follows from the theorem. �

We have a scheme for proving the convergence result (2.6) which we hope to implement in the final version of [17].
Because it shows a heretofore unknown connection between Szegő behavior andRakhmanov’s theorem,wewant to describe
the idea.
What can be called the Denisov–Rakhmanov–Remling theorem—namely, a corollary that Remling [39] gets of his main

theorem that extends the theorem of Denisov–Rakhmanov [40] and Damanik–Killip–Simon [9] to general finite gap sets—
says that any right limit of a J with σess(J) = Σac(J) = e (Σac is the essential support of the a.c. spectrum) lies in Te. A direct
proof of (6.6) would determine a unique orbit in Te (orbit under coefficient stripping) to which the orbit of J is asymptotic,
and so prove (2.6).
We have a proof (whose details need to be checked) that implements this idea and we hope to use it to get a totally new

proof of Theorem 2.2 that does not use variational principles.
For now, our proof of Theorem 2.2 in [17], following Widom [18], uses the Szegő variational approach [41]. In essence,

Szegő shows znPn(z + 1
z ) has a limit D(0)D(z)

−1 minimizing an L2-norm, subject to taking the value 1 at z = 0. In our case,
B(z)nPn(x(z)) is only character automorphic with an n-dependent character (namely Cn0 ), so it does not have a fixed limit.
Rather, it minimizes an L2-norm among character automorphic functions (with a fixed but n-dependent character)—which
explains why the limiting behavior is only almost periodic.
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