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OPUC ON ONE FOOT

BARRY SIMON

Abstract. We present an expository introduction to orthogonal polynomials
on the unit circle (OPUC).

1. Introduction

Orthogonal polynomials are the Rodney Dangerfield [112] of analysis. Because
of the impact of Stieltjes’ great 1895 paper on F. Riesz, Nevanlinna, and Hilbert’s
school, the moment problem and the closely related subject of orthogonal polyno-
mials on the real line (OPRL) were central in the revolution in analysis from 1900
to 1920 and provided critical precursors to the Hahn-Banach theorem, the Riesz-
Markov theorem, the spectral theorem, and the theory of selfadjoint extensions.
But in recent years, too often the subject is dismissed as “classical” and not worthy
of further study.

With developments in random matrix theory and combinatorics (e.g., [4, 5, 6, 7,
12, 46, 65, 82]), it is clear that orthogonal polynomials still have a lot to contribute.
From one point of view, what makes them relevant is that they are the simplest
of inverse spectral problems — indeed, Gel’fand-Levitan [28] explicitly note that
their approach to inverse theory for Schrödinger operators is motivated by OPRL.
Recently, OPUC ideas have provided a matrix realization of Lax pairs for the
(defocusing) Ablowitz-Ladik equation [67].

What is true for OPRL is even more true for orthogonal polynomials on the unit
circle (OPUC). While the closely related area of positive harmonic functions on the
open unit disk, D = {z ∈ C | |z| < 1}, drew the attention of Carathéodory, Fejér,
Herglotz, F. Riesz, Schur, and Toeplitz in the second decade of the 1900’s, the
subject was invented by Szegő only about 1920, especially in his deep 1920–1921
paper [99]. So OPUC never had its era of centrality but has had a steady but small
following over the years. Traditionally, the book references for the subject were
Szegő’s book [101], which has only one full and several partial chapters on OPUC,
Geronimus’ book [36] and review [34], and a chapter in Freud [27], all of which are
very dated. With a major development published only in 2003 (the CMV matrix
of Section 5 below), it is hard not to be dated. Motivated by this dearth of review
literature and by the opportunity to use Schrödinger operator techniques in a new
setting, I published two volumes [91, 92] on the subject. Many friends asked if
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there wasn’t some way to learn about the subject in less than 1,100 pages, and this
expository note is the result.

Throughout, we use D for the open unit disk in C, and ∂D for the unit circle.
Our inner products, 〈f, g〉, are linear in g and antilinear in f . Significant missing
material involves some explicit examples — these are discussed in Section 1.6 of
[91]: my favorite is the Rogers-Szegő polynomials (Example 1.6.5). This article
undergoes a kind of phase transition in the middle of Section 5 in that before this
section, most results have proofs or at least sketches given, and afterwards there
aren’t many proofs. This is because the earlier material is more central and also
because the later proofs are lengthier.

To put OPUC in context, recall some basics of OPRL. Since the fascinating
issues of indeterminate moment problems (see [1, 88]) are irrelevant to OPUC, we
will assume all measures have compact support. A measure is called trivial if it is
supported on a finite set of points and nontrivial if the support is infinite.
(1) If µ is a nontrivial probability measure on C (i.e., positive with µ(C) = 1)

with compact support and Xn(z) are the monic orthogonal polynomials (i.e.,
Xn(z) = zn+ lower order, Xn ⊥ z�, � = 0, . . . , n − 1), then

zXn(z) = Xn+1(z) +
n∑

j=0

a
(n)
j Xj(z)(1.1)

a
(n)
j =

〈Xj , zXn〉
‖Xj‖2

.(1.2)

What makes OPRL special is that multiplication by x is selfadjoint, so if we
use Pn in place of Xn for OPRL and ρ for µ,

〈Pj , xPn〉 = 〈xPj , Pn〉 = 0 j = 0, . . . , n − 2

and thus (1.2) becomes

(1.3) xPn(x) = Pn+1(x) + bn+1Pn(x) + a2
nPn−1(x)

for Jacobi parameters, an, bn; n = 1, 2, . . . (a more common convention is to
start the numbering at n = 0). If pn = Pn/‖Pn‖ are the orthonormal OPRL,
the matrix elements of multiplication by x in pn basis have the form:

(1.4) J =

⎛
⎜⎜⎝

b1 a1 0 0 . . .
a1 b2 a2 0 . . .
0 a2 b3 a3 . . .

. . . . . . . . . . . . . . .

⎞
⎟⎟⎠ .

(2) There is a one-one correspondence between bounded J ’s (i.e., supn(|an| +
|bn|) < ∞) and measures, ρ, on R with compact but infinite support. This is
sometimes called Favard’s theorem.

(3) If A is a bounded selfadjoint operator on a separable Hilbert space, H, and
ϕ is a cyclic unit vector (i.e., {Anϕ}∞n=0 span H), one can use the spectral
theorem to find a measure dρ on [−‖A‖, ‖A‖] with

∫
xn dρ = 〈ϕ, Anϕ〉 and

then the OPRL for this measure to find a semi-infinite Jacobi matrix unitarily
equivalent to A with ϕ mapped to (1 0 0 . . . )t. This realization is unique;
that is, the an’s and bn’s are intrinsic to the pair (A, ϕ). It was Stone who
emphasized this point of view that the study of Jacobi matrices was the same
as the study of selfadjoint operators with a distinguished cyclic vector.
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(4) A key role is played by the Stieltjes transform of ρ, that is, the function, m,
on C\supp(dρ) given by

(1.5) m(z) =
∫

dρ(x)
x − z

.

(5) The Jacobi parameters can also be captured from m(z) via a continued fraction
expansion (of Stieltjes) at ∞:

(1.6) m(z) =
1

−z + b1 −
a2
1

−z + b2 − a2
2 . . .

.

We will not discuss applications of OPUC in detail but note its important appli-
cations to linear prediction and filtering theory. The basics are due to Wiener [111],
Kolmogorov [54], Krein [55, 56], and Levinson [60]. The ideas have been especially
developed by Kailath [48, 49, 50].

The title of this article is based on an incident reported in the Talmud [103]
that someone asked the famous first-century rabbi Hillel to describe Judaism to
him while he stood on one foot. Hillel’s answer was: “Do not do unto others that
which is hateful to you. The rest is commentary. Go forth and study.” This article
is OPUC on one foot. [91, 92] are commentary.

It is a pleasure to thank M. Aizenman for pushing me to write such an article.
I would like to thank S. Denisov, F. Gesztesy, L. Golinskii, R. Killip, D. Lubinsky,
F. Marcellán, P. Nevai, and G. Stolz for useful input. This paper was started while
I was a visitor at the Courant Institute and completed during my stay as a Lady
Davis Visiting Professor at Hebrew University, Jerusalem. I would like to thank
P. Deift and C. Newman for the hospitality of Courant and H. Farkas and Y. Last
for the hospitality of the Mathematics Institute at Hebrew University.

2. The Szegő recursion

OPUC is the study of probability measures on ∂D, that is, positive measures, µ,
with

(2.1) µ(∂D) = 1.

The Carathéodory function (after [15]) of µ is defined on D by

(2.2) F (z) =
∫

eiθ + z

eiθ − z
dµ(θ).

This analog of (1.5) is an analytic function on D which obeys

(2.3) F (0) = 1 z ∈ D ⇒ Re F (z) > 0.

The Schur function (after [87]) is then defined by

(2.4) F (z) =
1 + zf(z)
1 − zf(z)

and is an analytic function mapping D to D; that is,

(2.5) sup
z∈D

|f(z)| ≤ 1

(f(z) ≡ eiθ0 is included and produced by µ, a point mass at −θ0).
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(2.2) sets up a one-one correspondence between probability measures µ and an-
alytic functions obeying (2.3) — this is essentially a form of the Herglotz represen-
tation (see [86, pp. 247]) and can be realized via (we use w-lim for the limit in the
vague or weak ∗-topology on measures)

(2.6) dµ = w-lim
r↑1

Re F (reiθ)
dθ

2π

or by

(2.7) F (z) = 1 + 2
∞∑

n=1

cnzn

where cn are the moments of µ given by

(2.8) cn =
∫

e−inθ dµ(θ).

(2.4) sets up a bijection between f ’s obeying (2.5) and F ’s obeying (2.3).
Recall that we call a measure trivial if it is supported on a finite set and nontrivial

otherwise. We will mainly be interested in nontrivial measures. µ is trivial if and
only if its Schur function is a finite Blaschke product

(2.9) f(z) = eiθ0

n−1∏
j=1

z − zj

1 − z̄jz

with z1, . . . , zn−1 ∈ D. Here n is the number of points in the support of dµ. Later
(see the remark after Theorem 7.1) we will interpret (2.9) in terms of OPUC.

If µ is a nontrivial probability measure on ∂D, we define the monic orthogonal
polynomials Φn(z; dµ) (or Φn(z) if dµ is understood) by
(2.10)

Φn(z) = zn + lower order terms
∫

e−ijθΦn(eiθ) dµ(θ) = 0 j = 0, 1, 2, . . . , n−1;

so in L2(∂D, dµ), 〈Φn, Φm〉 = 0 if n 
= m. The orthonormal polynomials ϕn are
defined by

(2.11) ϕn(z) =
Φn(z)
‖Φn‖

where ‖ · ‖ is the L2-norm. {ϕn}∞n=0 is an orthonormal set in L2. It may not be a
basis (e.g., dµ(θ) = dθ/2π where ϕn(z) = zn and zj , j = 1, . . . , are orthogonal to
all ϕn). We will discuss this further below (see Theorem 2.2).

If dµ is trivial, say supp(dµ) = {zj}k
j=1, we can still define Φn, ϕn for n =

0, 1, . . . , k−1. We can even define Φk (but not ϕk) as the unique monic polynomial
of degree k with ‖Φk‖ = 0, that is,

(2.12) Φk(z) =
k∏

j=1

(z − zj) (µ trivial).

Clearly, (2.10) and the fact that the polynomials of degree at most n have di-
mension n + 1 implies.

(2.13) deg(P ) ≤ n, P ⊥ zj , j = 0, . . . , n − 1 ⇒ P = cΦn.
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On L2(∂D, dµ), define the anti-unitary map, ∗,n, by

(2.14) f∗,n(eiθ) = einθ f(eiθ).

One mainly considers ∗,n on the set of polynomials of degree n which is left invariant

(2.15) P (z) =
n∑

j=0

cjz
j ⇒ P ∗,n(z) =

n∑
j=0

c̄jz
n−j = zn P (1/z̄).

Henceforth, following a standard, but unfortunate, convention, we drop the “ , n”
and just use P ∗, hoping the n is implicit. Note that 1∗ = zn, depending on n!

Since ∗ is anti-unitary, (2.13) implies

(2.16) deg(P ) ≤ n, P ⊥ zj , j = 1, . . . , n ⇒ P = cΦ∗
n.

Since 〈f, zg〉 = 〈z−1f, g〉, it is easy to see that Φn+1 − zΦn ⊥ zj for j = 1, 2, . . . , n.
Since Φ is monic, this difference is of degree n, so (2.16) implies

(2.17) Φn+1(z) = zΦn(z) − ᾱnΦ∗
n(z)

for some complex numbers αn, called the Verblunsky coefficients (in the older lit-
erature, also called reflection, Schur, Szegő, or Geronimus coefficients). (2.17) is
called Szegő recursion after its first occurrence in Szegő’s book [101]. In the engi-
neering literature, it is called the Levinson algorithm after its rediscovery in linear
prediction theory [60]. The choice of minus and ᾱn rather than αn will be made
clear by Geronimus’ theorem (see Theorem 3.1). Since Φn is monic, (2.15) implies
Φ∗

n(0) = 1, so (2.17) at z = 0 implies

(2.18) αn = −Φn+1(0).

Theorem 2.1. We have

‖Φn+1‖2 = (1 − |αn|2)‖Φn‖2(2.19)

‖Φn‖ =
n−1∏
j=0

(1 − |αj |2)1/2.(2.20)

For any nontrivial µ, we have αj(dµ) ∈ D for all j. If µ is trivial with n points in
its support, then α0(dµ), . . . , αn−2(dµ) ∈ D and αn−1(dµ) ∈ ∂D.

Proof. (2.17), unitarity of multiplication by z, and Φ∗
n ⊥ Φn+1 imply

‖Φn‖2 = ‖zΦn‖2 = ‖Φn+1 + ᾱnΦ∗
n‖2 = ‖Φn+1‖2 + |αn|2‖Φn‖2,

which implies (2.19). Induction and Φ0 = 1 implies (2.20). By (2.19), |αj | < 1 in the
nontrivial case and for j = 0, . . . , n−2 in the trivial case. Since ‖Φn‖ = 0 
= ‖Φn−1‖
in the trivial case, (2.19) implies |αn−1| = 1. �

Since it arises often, we define

(2.21) ρj = (1 − |αj |2)1/2 |αj |2 + ρ2
j = 1.

One can use (2.20) to relate completeness of {ϕn}∞n=0 to the Verblunsky coeffi-
cients:

Theorem 2.2. For any nontrivial measure, the following are equivalent:
(a) limn→∞ ‖Φn‖ = 0,
(b)

∑∞
j=0|αj |2 = ∞,

(c) {ϕn}∞n=0 are a basis for L2(∂D, dµ).
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Remark. We will see later that there is an additional equivalence via Szegő’s the-
orem (see (8.9)). The equivalence of a Szegő condition to completeness is due to
Kolmogorov [54] and Krein [55, 56].

Sketch. By (2.20), (a) ⇔ (b). If

(2.22) P[k,�] = projection in L2(∂D, dµ) onto span{zm}�
m=k,

we have that

‖Φn‖ = ‖(1 − P[0,n−1])zn‖(2.23)

= ‖(1 − P[1,n])1‖(2.24)

= ‖(1 − P[0,n−1])z−1‖(2.25)

where (2.23) follows from the definition of Φn, (2.24) by applying ∗,n to zn and
P[0,n−1], and (2.25) by using the fact that multiplication by z−1 is unitary. It
follows that

(2.26) ‖(1 − P[0,∞))z−1‖ = lim
n→∞

‖Φn‖,

so (a) ⇔ z−1 ∈ span{ϕn}∞n=0. If z−1 /∈ span{ϕn}∞n=0, clearly they are not complete.
If z−1 ∈ span{ϕj}∞j=0, an argument (see the proof of Theorem 1.5.7 in [91]) taking
powers of z−1 shows z−� ∈ span{ϕn}∞n=0 for all �, so {ϕn}∞n=0 are complete. �

Let D∞,c denote the set of complex sequences {αj}N
j=0 where either N = ∞ and

|αj | < 1 for all j, or else N < ∞ and α0, . . . , αN−1 ∈ D while αN ∈ ∂D. In the
topology of componentwise convergence, D∞,c is compact (and is a compactification
of D

∞). The map, S, from µ �→ {αj(dµ)}N
j=0 is a well-defined map from M+,1(∂D),

the probability measures on ∂D, to D
∞,c. By (2.17), the α’s determine the Φn’s.

Since
∫

Φn(z) dµ = δn0, the Φn’s determine the moments inductively, and so dµ,
since {z�}∞�=−∞ span a dense set of C(∂D). Thus S is one-one. Moreover,

Theorem 2.3 (Verblunsky’s Theorem [106]). S is onto.

[91] has four proofs of this theorem (Theorems 1.7.11, 3.1.3, 4.1.5, and 4.2.8);
see Section 3 below. Given that S is a bijection, it is easy to see that it is a
homeomorphism if M+,1(∂D) is given the vague (i.e., C(∂D)-weak ∗) topology.

Applying ∗ (actually, ∗,n+1) to (2.17) yields

(2.27) Φ∗
n+1(z) = Φ∗

n(z) − αnzΦn(z).

Using (2.19) and (2.11), we get the recursion relations for ϕn written in matrix
form

(2.28)
(

ϕn+1(z)
ϕ∗

n+1(z)

)
= A(z, αn)

(
ϕn(z)
ϕ∗

n(z)

)

where

(2.29) A(z, α) = ρ−1

(
z −ᾱ

−zα 1

)
.

Notice that detA = z, so by inverting A, we get inverse recursion relations. We
note the one for Φn−1

(2.30) Φn−1(z) =
ρ−2

n−1[Φn + ᾱn−1Φ∗
n]

z
.
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Note that by (2.18), [Φn + ᾱn−1Φ∗
n] vanishes at zero, so the right side of (2.30) is

a polynomial of degree n − 1. This implies

Theorem 2.4 (Geronimus [33]). Let µ and ν be two probability measures on ∂D

so that for some N0, ΦN0(z; dµ) = ΦN0(z; dν). Then Φj(z; dµ) = Φj(z; dν) for j =
0, 1, . . . , N0−1, αj(dµ) = αj(dν) for j = 0, 1, . . . , N0−1, and ϕj(z; dµ) = ϕj(z; dν)
for j = 0, 1, . . . , N0.

Remark. As noted in a footnote in Geronimus [33] and rediscovered by Wendroff
[109], the result for OPRL requires equality for PN0 and PN0−1 and, in particular,
it often happens that PN0(x, dγ) = PN0(x, dρ), but no other Pj ’s are equal.

Proof. By (2.18), ΦN0 at 0 determines αN0−1, and so ρN0−1, and thus ΦN0−1 by
(2.30). By induction, all αj , j ≤ N0 − 1, and Φj , j ≤ N0, are equal and so, by
(2.20), ‖Φj‖, and so ϕj . �

As a final aspect of Szegő recursion, we turn to the Christoffel-Darboux (CD)
formula (proven by Szegő [101] for OPUC; Christoffel [16] and Darboux [19] had a
similar formula for OPRL), which is an analog of an iterated Wronskian formula
for ODE’s. With A given by (2.29), one finds, by matrix multiplication, that

(2.31) A(ζ, αn)∗
(
−1 0
0 1

)
A(z, αn) =

(
−zζ̄ 0
0 1

)
,

so

ϕ∗
n+1(ζ)ϕ∗

n+1(z) − ϕn+1(ζ)ϕn+1(z)

= ϕ∗
n(ζ)ϕ∗

n(z) − zζ̄ ϕn(ζ)ϕn(z)

= (1 − zζ̄) ϕn(ζ)ϕn(z) + [ ϕ∗
n(ζ)ϕ∗

n(z) − ϕn(ζ)ϕn(z)],

which, iterated to n = 0 (where the term in brackets [. . . ] = 0 since ϕ0 = 1), yields

Theorem 2.5 (Szegő [101]; CD Formula for OPUC).

(2.32) (1 − zζ̄)
n∑

j=0

ϕn(ζ)ϕn(z) = ϕ∗
n+1(ζ)ϕ∗

n+1(z) − ϕn+1(ζ)ϕn+1(z).

If z = ζ and lie in D, we have various positivity facts that imply (the first since
ϕ0(z) = 1):

|ϕ∗
n(z0)| ≥ (1 − |z0|2)1/2 for z0 ∈ D(2.33)

lim |ϕ∗
n+1(z0)| = ∞ ⇔

∞∑
j=0

|ϕj(z0)|2 = ∞ for z0 ∈ D.(2.34)

3. Verblunsky’s and Geronimus’ theorems

In this section, we will prove Verblunsky’s theorem (Theorem 2.3) and also a
celebrated theorem of Geronimus. Our approach follows Section 3.1 of [91], which
claims a new proof of Geronimus’ theorem assuming Verblunsky’s theorem. But
in preparing this article, we realized the argument can be slightly modified to also
prove Verblunsky’s theorem.
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To state Geronimus’ theorem, we need to describe the Schur algorithm [87].
Given a Schur function f , define

(3.1) γ0(f) = f(0) f(z) =
γ0 + zf1(z)
1 + γ̄0zf1(z)

.

If γ0 ∈ ∂D (i.e., f(z) ≡ γ0), we do not define f1. Otherwise, f1 defined by (3.1) is
also a Schur function since w → (γ0 + w)/(1 + γ̄0w) is a biholomorphic bijection of
D to D if |γ0| < 1, and g a Schur function with g(0) = 0 implies g(z)/z is a Schur
function (the Schwarz lemma).

(3.1) is called the Schur algorithm. It can be iterated; that is, we define γn(f),
the Schur parameters, and fn+1, the Schur iterates, inductively by

(3.2) γn(f) = fn(0) fn(z) =
γn + zfn+1(z)
1 + γ̄nzfn+1(z)

.

If, for some n, fn(z) = eiθ0 , we set γn = eiθ0 and stop. In this way, we map any
Schur function f to a sequence in D∞,c, the set defined after Theorem 2.2. We can
now state Geronimus’ theorem:

Theorem 3.1 (Geronimus’ Theorem). Let µ be a probability measure on ∂D, f its
Schur function, and γn(dµ) ≡ γn(f) the Schur parameters of f . Then

(3.3) γn(dµ) = αn(dµ).

This gives a continued fraction expansion of F whose coefficients are αn, and so
is an analog of (1.6). This formula explains why we took a minus and conjugate in
(2.17). The procedure of dropping a Verblunsky coefficient from the start can be
understood by using the recursion relations and the relation of F to the OPUC (see
Theorem 4.4 below). This approach to proving Theorem 3.1, due to Peherstorfer
[72], is discussed in Section 3.3 of [91].

(3.1)/(3.2) can be rewritten and then iterated following Schur [87]:

f(z) = γ0 + (1 − γ̄0f)zf1(3.4)

= γ0 +
n−1∑
j=1

[ j−1∏
k=0

(1 − γ̄kfk)
]
zjγj +

n−1∏
k=0

(1 − γ̄kfk)znfn,(3.5)

which implies that if f(z) =
∑∞

n=0 an(f)zn, then

(3.6) an(f) = γn

n−1∏
j=0

(1 − |γj |2) + polynomial in (γ0, γ̄0, . . . , γn−1, γ̄n−1).

Plugging this into (2.4) and using (2.7) implies

(3.7) cn(dµ) = γn−1

n−2∏
j=0

(1 − |γj |2) + polynomial in (γ0, γ̄0, . . . , γn−2, γ̄n−2)

(the polynomials are different, but the leading terms are the same up to a shift of
index).

(3.6) also shows that if γj(f) = γj(g) for j = 0, . . . , n−1, then the Schur function
1
2 (f − g) = O(zn), so, by the Schwarz lemma,

(3.8) γj(f) = γj(g), j = 0, . . . , n − 1 ⇒ |f(z) − g(z)| ≤ 2|z|n.

Lemma 3.2. The map from Schur functions to D∞,c is one-one and onto.
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Proof. (3.8) shows that if γj(f) = γj(g) for all j, then f = g on D. Given a sequence
in D

∞, define the Schur approximates, f [n], by setting f
[n]
n+1 to 0 in (3.2) and using

{γj}n
j=0 to define f

[n]
n , f

[n]
n−1, . . . , f

[n]. By construction,

(3.9) γj(f [n]) =

{
γj j ≤ n

0 j > n
.

Since γj(f [n]) = γj(f [m]) for j ≤ min(n, m), we have, by (3.8), that f [n] converge
uniformly on compacts and the limit clearly has the prescribed set of γ’s. Given a
sequence in D∞,c\D∞, suppose γn+1 = eiθ0 ∈ ∂D, set fn+1 ≡ eiθ0 and use (3.2) to
define f with the prescribed γ’s. �

Proof of Theorems 2.3 and 3.1. (zn − Φn) ⊥ Φn ⇒ ‖Φn‖2 = 〈zn, Φn〉, so applying
∗,n,

(3.10) 〈Φ∗
n, 1〉 = ‖Φn‖2 =

n−1∏
j=0

(1 − |αj |2).

Taking the inner product of (2.17) with the function, 1, and using 〈Φn+1, 1〉 = 0,
we see

(3.11) 〈zΦn, 1〉 = αn

n−1∏
j=0

(1 − |αj |2).

By (2.17) and induction, the coefficients of Φj are polynomials α0, ᾱ0, . . . ,
αj−1, ᾱj−1, and so, by induction, the moments cj+1 are polynomials in the same
α’s. Then (3.11) becomes (a formula of Verblunsky):

(3.12) cn+1 = αn

n−1∏
j=0

(1 − |αj |2) + polynomial in (α0, ᾱ0, . . . , αn−1, ᾱn−1).

We will now prove Theorem 3.1 by induction, and then Theorem 2.3 follows from
Lemma 3.2. For n = 0, we have, by (3.12) and (3.7), that

(3.13) c1 = α0 = γ0.

Suppose we know αj = γj for j = 0, 1, . . . , n − 1. We fix those n values in D

and ask what values of cn+1 can occur. By (3.7), it is a solid disk in C of radius∏n−1
j=0 (1 − |αj |2) since γn can run through D. The center of the disk is some fixed

point (given fixed {γj}n−1
j=0 ).

By (3.12), it is also a subset of the disk of radius
∏n−1

j=0 (1− |αj |2) with possibly
another center. But since the sets are the same, the centers must be the same, and
all αj must occur. Once we know the centers and radii are the same, the equality
of the formulae for cn+1 implies αn = γn. �

4. Zeros, the Bernstein-Szegő approximation,

and boundary conditions

Our first goal in this section is to prove that the zeros of OPUC lie in D. There
are six proofs of this in [91]. We pick the one that is shortest, using the same
argument that led to (2.19).

Theorem 4.1. Φn has all its zeros in D and Φ∗
n has all its zeros in C\D.
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Proof. (Landau [59]) Let Φn(z0) = 0 and define P (z) = Φn(z)/(z − z0). Since
deg P = n − 1, P ⊥ Φn. Thus

(4.1) ‖P‖2 = ‖zP‖2 = ‖z0P + Φn‖2 = |z0|2‖P‖2 + ‖Φn‖2,

so ‖Φn‖2 = (1 − |z0|2)‖P‖2, implying |z0| < 1. Since Φ∗
n(z0) = 0 ⇔ Φn(1/z̄) = 0,

the result for Φn implies the result for Φ∗
n. �

Next, we will identify measures with αj(dµ) = 0 for j ≥ n0. The key is a
calculation that goes back at least to Erdélyi et al. [24].

Proposition 4.2. Let Pn be a polynomial of degree n with all zeros in D. Let

(4.2) dµ =
c dθ

2π|Pn(eiθ)|2
where c is picked to make dµ a probability measure. Then for all integral j < n
(including j < 0),

(4.3) 〈zj , P 〉L2(∂D,dµ) = 0.

Proof.

〈zj , P 〉L2(∂D,dµ) =
∫

e−ijθP (eiθ)
dθ

2πz−nP ∗(z)P (z)|z=eiθ

=
1

2πi

∮
zn−j−1 dz

P ∗(z)

is zero for n − j − 1 ≥ 0 since P ∗(z) is nonvanishing on D. �
Theorem 4.3. Let dµ be a nontrivial probability measure on ∂D. Let

(4.4) dµn =
dθ

2π|ϕn(eiθ, dµ)|2 .

Then dµn is a probability measure with

(4.5) αj(dµn) =

{
αj(dµ) j ≤ n − 1
0 j ≥ n

.

Proof. Let dν = c dµn where c is picked so that
∫

dν = 1 (eventually, we will prove
c = 1). By Proposition 4.2, 〈zj , Φn( · ; dµ)〉L2(∂D,dν) = 0 for j = 0, 1, . . . , n − 1,
so Φn(z; dν) = Φn(z; dµ). It follows from Theorem 2.3 that αj(dν) = αj(dµ) for
j = 0, . . . , n − 1 and ϕn(z; dµ) = ϕn(z; dν). Therefore, 1 =

∫
|ϕn|2 dν = c, so

dν = dµn.
By Proposition 4.3, for any k ≥ 0,

(4.6) 〈zj , zkΦn〉L2(∂D,dµn) = 0 j = 0, . . . , n + k − 1.

It follows that Φn+k(z; dµn) = zkΦn(z; dµn), and thus Φn+k(0) = 0 for k ≥ 1.
Therefore, by (2.18), αj(dµn) = 0 for j ≥ n. �

Even though Theorem 4.3 was proven by Verblunsky [107] and rediscovered
by Geronimus [33] (to whom it is often credited), dµn are called Bernstein-Szegő
approximations, since Szegő [98] first considered measures of this form (3.2) and
Bernstein [11] their OPRL analog. Since, for each fixed j, αj(dµn) → αj(dµ)
(indeed, they are equal for n > j), dµn → dµ weakly since S is a homeomorphism.

Some thought about the form of dµn suggests its Carathéodory function should
be a rational function whose denominator is ϕ∗

n. We will prove this by identifying
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the numerator. The second kind polynomials, ψn, are the OPUC for the measure
dµ−1 with αj(dµ−1) = −αj(dµ). Notice that in terms of the matrix A of (2.29),

(4.7)
(

ψn+1

−ψ∗
n+1

)
= A(z, αn(dµ))

(
ψn

−ψ∗
n

)
(note αn(dµ), not αn(dµ−1)). Thus

(4.8)
(

ψn ϕn

−ψ∗
n ϕ∗

n

)
= A(z, αn−1) . . . A(z, α0)

(
1 1

−1 1

)
.

Taking determinants, using det(A) = z,

(4.9) ϕ∗
nψn + ϕnψ∗

n = 2zn.

Theorem 4.4 (Verblunsky [107]). Let dµn be given by (4.4). Then

(4.10) F (z, dµn) =
ψ∗

n(z; dµ)
ϕ∗

n(z; dµ)
.

Proof. For z = eiθ, (4.9) can be rewritten as Re( ϕn(eiθ)ψn(eiθ)) = 1. Thus, if
G(z) is the right side of (4.10),

(4.11) Re(G(eiθ)) =
1

|ϕn(eiθ)|2 .

Since G is analytic in a neighborhood of D, Re G > 0 on D. Since G(0) = 1, the
complex Poisson representation (see Rudin [86, pg. 235]) and (4.10) imply that
G(z) is the Carathéodory function of dµn. �

It is useful to think of dµ and dµ−1 as embedded in a family dµλ for λ ∈ ∂D.
The Aleksandrov family associated to dµ is defined by

(4.12) αj(dµλ) = λαj(dµ).

Given Geronimus’ theorem (Theorem 3.1), it is easy to see that

(4.13) f(z, dµλ) = λf(z, dµ)

(for γ0(λf) = λγ0(f) and (λf)1 = λ(f1)). So, by (2.4) and its inverse, zf(z) =
(F (z) − 1)/(F (z) + 1),

(4.14) F (z, dµλ) =
(1 − λ) + (1 + λ)F (z, dµ)
(1 + λ) + (1 − λ)F (z, dµ)

,

which is the original definition of Aleksandrov [2]; it is Golinskii-Nevai [42] who
realized its relevance to OPUC and boundary conditions. If ϕ

(λ)
n (z) = ϕn(z; dµλ),

then

(4.15)
(

ϕ
(λ)
n+1

λ̄(ϕ(λ)
n+1)∗

)
= A(z, αn)

(
ϕ

(λ)
n

λ̄(ϕ(λ)
n )∗

)
;

so ϕn and ϕ
(λ)
n obey the same difference equation, but the n = 0 boundary values

change from
(
1
1

)
to

(
1
λ̄

)
. The Aleksandrov family is the analog of variation of

boundary conditions in second-order ODE’s.
A direct calculation (via contour integrals) shows that if Re(a) > 0, then

(4.16)
∫ 2π

0

(1 − eiθ) + (1 + eiθ)a
(1 + eiθ) + (1 − eiθ)a

dθ

2π
= 1.

Since 1 is the Carathéodory function of dθ/2π, (4.16) and (4.14) imply
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Theorem 4.5 (Aleksandrov [2], Golinskii [41]). For the Aleksandrov family, we
have

(4.17)
∫

θ

[dµeiθ (ϕ)]
dθ

2π
=

dϕ

2π
.

This is the OPUC analog of the Javrjan [45]-Wegner [108] averaging for
Schrödinger operators, which is the basis of the localization proof of Simon-Wolff
[97]. It can be used [92] to prove localization for suitable random OPUC.

5. The CMV matrix

Perturbation theory involves looking at similarities of measures when their
Verblunsky coefficients are close in some suitable sense. In the analogous OPRL
situation, the Jacobi matrices, (1.4), are an invaluable tool. If one defines the es-
sential support of a measure to be the support with isolated points removed, and if
ρ and γ are measures on [c, d] ⊂ R with Jacobi parameters an, bn and ãn, b̃n, then ρ

and γ have the same essential support if |an − ãn|+ |bn − b̃n| → 0. This can be seen
by noting that the difference of the Jacobi matrices is compact and then appealing
to Weyl’s theorem on the invariance of essential spectrum.

In this section, we discuss a suitable matrix representation for multiplication by
z in L2(∂D, dµ). There is an obvious choice, namely, 〈ϕn, zϕm〉, but this is not the
“right” one. It has two problems. If

∑
|αj |2 < ∞, {ϕn}∞n=0 is not a basis, and

so this matrix is not unitary. Even worse, although this matrix has finite columns
(〈ϕn, zϕm〉 = 0 if n > m + 1), in general, it does not have finite rows.

The right basis, as discovered by Cantero, Moral, and Velázquez [14], is
the one χ0, χ1, χ2, . . . , obtained by orthonormalizing 1, z, z−1, z2, z−2, . . . . We
will also want to consider the basis x0, x1, x2, . . . obtained by orthonormalizing
1, z−1, z, z−2, . . . . Remarkably, the χ’s can be expressed in terms of ϕ’s and ϕ∗’s,
and the matrix elements in terms of α’s and ρ’s.

Proposition 5.1.

(a) χ2n(z) = z−nϕ∗
2n(z) χ2n−1(z) = z−n+1ϕ2n−1(z)(5.1)

(b) x2n(z) = z−nϕ2n(z) x2n−1(z) = z−nϕ∗
2n−1(z).(5.2)

Proof. In terms of the projections P[k,�] of (2.22), we have

(5.3) ϕm =
(1 − P[0,m−1])zm

‖ . . . ‖ ϕ∗
m =

(1 − P[1,m])1
‖ . . . ‖

where ‖ . . . ‖ is the norm of the numerator. Since multiplication by z� is unitary,

z−nϕ2n =
(1 − P[−n,n−1])zn

‖ . . . ‖ = x2n,

proving the first half of (5.2). The others are similar. �

We define four matrices (C = CMV matrix) by

(5.4) Ck� = 〈χk, zχ�〉 C̃k� = 〈xk, zx�〉 Lk� = 〈χk, zx�〉 Mk� = 〈xk, χ�〉.
Clearly,

(5.5) C = LM C̃ = ML C̃ = Ct,
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where the last comes from the fact that the explicit formulae below show L and M
are (complex) symmetric. Define, for α ∈ D, the 2 × 2 symmetric matrix

(5.6) Θ(α) =
(

ᾱ ρ
ρ −α

)
.

Theorem 5.2. Let 1 be the 1 × 1 unit matrix. Then

(5.7) M = 1⊕ Θ(α1) ⊕ Θ(α3) ⊕ · · · L = Θ(α0) ⊕ Θ(α2) ⊕ Θ(α4) ⊕ · · · .

Proof. This is an expression of the Szegő recursion formula. For example, the 2n
row (labelling rows 0, 1, 2, . . . ) of L says that zx2n = ᾱ2nχ2n +ρ2nχ2n+1, which, by
Proposition 5.1, is equivalent to zϕ2n = ᾱ2nϕ∗

2n + ρ2nϕ2n+1, which is the top row
of (2.28). �

While L and M have direct sum structures, in general (i.e., if all |αj | < 1), C
does not. Indeed, by (5.5) and (5.7),

(5.8) C =

⎛
⎜⎜⎜⎜⎜⎜⎝

ᾱ0 ᾱ1ρ0 ρ1ρ0 0 0 . . .
ρ0 −ᾱ1α0 −ρ1α0 0 0 . . .
0 ᾱ2ρ1 −ᾱ2α1 ᾱ3ρ2 ρ3ρ2 . . .
0 ρ2ρ1 −ρ2α1 −ᾱ3α2 −ρ3α2 . . .
0 0 0 ᾱ4ρ3 −ᾱ4α3 . . .

. . . . . . . . . . . . . . . . . .

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Thus C has a 4× 2 block structure and is generally five-diagonal. It is the simplest
unitary matrix with a cyclic vector; for example [13], any tridiagonal semi-infinite
unitary is a direct sum of 1 × 1 and 2 × 2 matrices.

Theorem 5.3. If C(N) is the top left N × N block of C, then

(5.9) det(z01 − C(N)) = ΦN (z0).

Sketch of proof. If ζ is the operator of multiplication by z in L2(∂D, dµ), then
C(N) = P[−�,N−�−1]ζP[−�,N−�−1] restricted to ranP[−�,N−�−1] where P[j,k] is given
by (2.22) and � is either (N − 1)/2 or N/2. Since multiplication by z� is unitary,
C(N) is unitarily equivalent to P[0,N−1]ζP[0,N−1] on ranP[0,N−1].

z0 is an eigenvalue of P[0,N−1]ζP[0,N−1] if and only if there is Q of degree N − 1
so (z − z0)Q = ΦN (z), that is, if and only if ΦN (z0) = 0. This proves (5.9) if Φn

has distinct zeros. By a limiting argument (see Theorem 1.7.18 of [91]), (5.9) holds
in general. �

Remark. This theorem sheds light on a result of Fejér [25] that for OP’s of general
measures on C, their zeros lie in the convex hull of supp(dµ), for (5.9) implies the
zeros are in the numerical range of C(N), so in the numerical range of C, which is
the convex hull of supp(dµ) by the spectral theorem. In particular, Fejér’s theorem
implies in the OPUC case that if ζ ∈ ∂D with d = dist(ζ, supp(dµ)) > 0 and
Φn(z0) = 0, then |z0 − ζ| ≥ 1

2d2.

Notice that if |αj | = 1, Θ(αj) =
(

ᾱj 0
0 −αj

)
is a direct sum, and so C = LM has

a (j + 1) × (j + 1) unitary block in the upper corner. This implies that if β ∈ ∂D,
then Φ(β)

N ≡ zΦN−1 − βΦ∗
N−1 has all its zeros on ∂D since they are eigenvalues of

a unitary matrix. The Φ(β)
N are called paraorthogonal polynomials and are studied

in [33, 47, 40].
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Dombrowski [22] proved that a Jacobi matrix with lim inf an = 0 has no a.c.
spectrum by picking a subsequence with

∑∞
j=0 an(j) < ∞ and trace class perturbing

to a decoupled direct sum of finite rank matrices. Unaware of this work, Simon-
Spencer [96] proved a similar result if lim sup|bn| = ∞. As noted by Golinskii-
Simon [43], the same idea and CMV matrices prove the following, originally proven
by other means [84].

Theorem 5.4 (Rakhmanov’s Lemma [84]). If µ is a probability measure on ∂D so
lim sup|αn(dµ)| = 1, then µ is singular with respect to dθ/2π.

Golinskii-Simon also use perturbations of CMV matrices to prove

Theorem 5.5 ([43]). If µ, ν are two probability measures on ∂D so |αn(dµ) −
αn(dν)| → 0, then ess sup(dµ) = ess sup(dν). If

∑
n|αn(dµ) − αn(dν)| < ∞, then

the absolutely continuous parts of µ and ν are mutually absolutely continuous.

Aleksandrov families fit into CMV matrices with a twist. C({λαn}) and C({αn})
do not differ by a rank one perturbation — rather they do up to a unitary equiva-
lence. Specifically:

Theorem 5.6. Let λ ∈ ∂D and {αn} ∈ D∞. Let D be the diagonal matrix with
elements 1, λ−1, 1, λ−1, . . . . Then DC({λαn})D−1 = L({αn})Mλ({αn}) where Mλ

differs from M by having λ in the (1, 1) position instead of 1.

This is a restatement of Theorem 4.2.9 of [91]. A generalization to rank one
perturbation in the n-th diagonal can be found in Simon [93].

CMV matrices have been generalized in two directions. First, OPUC can be
thought of as an analog of half-line ODE. The whole-line analog is an extended
CMV matrix, E , defined on �2(−∞,∞) by a two-sided sequence {αn}∞n=−∞ as a
product of · · · ⊕ Θ(α−2) ⊕ Θ(α0) ⊕ Θ(α2) ⊕ · · · and · · · ⊕ Θ(α−1) ⊕ Θ(α1) ⊕ · · ·
where Θ(αj) acts on the span of δj and δj+1. This is discussed in Sections 4.5, 10.5,
and 10.16 of [91, 92]. It is useful in the study of ergodic (Section 6) and periodic
(Section 10) OPUC. Gesztesy-Zinchenko [37, 38] have further results on E .

Second, if U is an n×n unitary matrix and ϕ is cyclic in that {U jϕ}n−1
j=0 is a basis,

then the spectral measure for ϕ has n points. One can then define polynomials
Φ0, . . . , Φn and Verblunsky coefficients α0, . . . , αn−2 ∈ D and αn−1 ∈ ∂D. U is
unitarily equivalent to a finite CMV matrix, the upper block of an infinite matrix
where αn−1 is taken in ∂D.

Just as the theory of selfadjoint matrices with cyclic vector is identical to the
theory of Jacobi matrices, the theory of unitary matrices with cyclic vector (i.e.,
{U jϕ}∞j=−∞ spanning) is identical to the theory of CMV matrices. The Verblunsky
coefficients are a complete set of unitary invariants.

In this regard, there is a natural question answered by Killip-Nenciu [53]. Let
U(n) be the group of n×n unitary matrices and consider Haar measure on U(n). For
a.e. U, (1 0 . . . 0)t is cyclic, so there is induced a measure on Verblunsky coefficients
α0, . . . , αn−2 ∈ D and αn−1 ∈ ∂D. The measure is the same if (1 0 . . . 0)t is replaced
by any other vector or by a random choice (say, uniform distribution on the unit
sphere in C

n).

Theorem 5.7 ([53]). Under the measure induced by Haar measure on U(n), the
αj’s are independent (i.e., the induced measure is a product measure), αn−1 is



OPUC ON ONE FOOT 445

uniformly distributed on ∂D, and αj, j = 1, . . . , n − 2, is distributed via

(5.10)
(n − j − 1)

π
(1 − |α|2)(n−j−2) d2α.

6. Transfer matrices, Weyl solutions, and Lyapunov exponents

In this section we present a potpourri of results connected with solutions of Szegő
recursion (2.28) where the two components are freed of u∗

2 = u1. Indeed, we look
at solutions for a fixed z. Thus, solutions have the form

(6.1) u(z; n) = Tn(z)u(z; 0) Tn(z) = A(z, αn−1) . . . A(z, α0)

with A given by (2.29). Tn is called the transfer matrix. By (4.8), we have

(6.2)

Tn(z) = 1
2

(
ϕn(z) + ψn(z) ϕn(z) − ψn(z)
ϕ∗

n(z) − ψ∗
n(z) ϕ∗

n(z) + ψ∗
n(z)

)

=
( n−1∏

j=0

ρ
−1/2
j

) (
zB∗

n−1(z) −A∗
n−1(z)

−zAn−1(z) Bn−1(z)

)

where An−1 and Bn−1 are polynomials of degree n − 1 and the ∗ term is ∗,n−1.
The degree count uses ϕn(0) = −ψn(0), ϕ∗

n(0) = ψ∗
n(0). An and Bn are the

Wall polynomials which are related to the Schur approximants, f [n], of (3.9) by
f [n](z) = An(z)/Bn(z).

For z ∈ ∂D, Tn lies in the group U(1, 1) of matrices obeying M∗ (
1 0
0 −1

)
M =(

1 0
0 −1

)
. Features of this group play a role in advanced aspects of the theory; see

[92], especially Section 10.4.
The solutions uϕ = (ϕn, ϕ∗

n) and uψ = (ψn,−ψ∗
n) of (6.1) can be combined into

an �2 solution for |z| < 1:

Theorem 6.1 (Geronimo [29]; Golinskii-Nevai [42]). Fix z ∈ D. Then uψ(z; n) +
ruϕ(z; n) → 0 as n → ∞ for fixed r ∈ C if and only if r = F (z). Moreover,
uψ + F (z)uϕ is in �2.

Remark. In analogy to ODE theory, uψ + F (z)uϕ is called the Weyl solution.

Sketch of proof ([42]) . Looking at the second component, we see that if uψ +
ruϕ → 0, then −ψ∗

n + rϕ∗
n → 0. By (2.33), r − ψ∗

n/ϕ∗
n → 0, so by (4.10), r = F (z).

The �2 proof below implies that the first components go to zero for r = F (z).
By using the CD formula (2.32) for ϕ and ψ plus a mixed CD formula obtained

from (2.31) by using
(
1
1

)
and

(
1
−1

)
, one finds that

(6.3) (1−|z|2)
n−1∑
j=0

|ψj(z)+rϕj(z)|2 = 4 Re(r)+ |ψ∗
n(z)−rϕ∗

n|2−|ψn(z)+rϕn(z)|2.

Taking r = ψ∗
n(z)/ϕ∗

n(z), one finds

(6.4) k ≤ n − 1 ⇒
k∑

j=0

∣∣∣∣ψj +
ψ∗

n

ϕ∗
n

ϕj

∣∣∣∣
2

≤ 4 Re
(

ψ∗
n

ϕ∗
n

)
.

Taking n → ∞ and then k → ∞ shows

(6.5)
∞∑

j=0

|ψj + Fϕj |2 ≤ 4 Re(F ).
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The inequality in (6.5) plus the equality in (6.3) imply that |ψ∗
j −Fϕ∗

j | ≤ |ψj +Fϕj |,
so (6.5) implies uψ + Fuϕ ∈ �2. �

Another way of proving the �2 result, from [29], is illuminating. It starts from a
formula which was Geronimus’ original definition of the second kind polynomials,

(6.6) ψn(z) =
∫

eiθ + z

eiθ − z
[ϕn(eiθ) − ϕn(z)] dµ(θ).

This and its image under the map ∗ imply

(6.7)
F (z)ϕn(z) + ψn(z) =

∫
eiθ + z

eiθ − z
ϕn(eiθ) dµ(θ)

F (z)ϕ∗
n(z) − ψ∗

n(z) = zn

∫
eiθ + z

eiθ − z
ϕn(eiθ) dµ(θ).

Using
∫
|ϕn| dµ ≤ 1 and (eiθ + z)(eiθ − z)−1 = 1 +

∑∞
n=1 2(e−iθz)n, we see

the Taylor coefficients of each expression in (6.7) are bounded by 2. Since∫
e−ikθϕn(eiθ) dµ(θ) = 0 for k = 0, . . . , n− 1, we see |Fϕn +ψn| ≤ 2|z|n(1− |z|)−1,

while |Fϕ∗
n − ψ∗

n| ≤ 2|z|n+1(1 − |z|)−1. This proves not only an �2 property but
exponential decay uniformly on compact subsets of D.

The next issue we want to discuss is Lyapunov exponents. To understand them,
it pays to also discuss the density of zeros, an object of independent interest. Given
dµ, a nontrivial probability measure in ∂D, define the measure dνn on D to be the
point measure which gives weight k/n to a zero of Φn of multiplicity k. On account
of (5.9) for � = 0, 1, 2, . . . ,

(6.8)
∫

z� dνn(z) =
1
n

Tr([C(n)]�),

which can help show that dνn sometimes has a weak limit. If it does, we say the
limit is the density of zeros. The limit may not exist; there even exist examples
(see Example 1.7.17 of [91]) where the set of limit points of dνn is all measures on
D! Here is how (6.8) can be used:

Theorem 6.2 (Mhaskar-Saff [66]). If

(6.9) lim
n→∞

|αn|1/n = r and
1
n

n−1∑
j=0

|αj | → 0

(automatic if r < 1), then dνn converges weakly to the uniform measure on the
circle of radius r.

Sketch of proof. (See Sections 8.1 and 8.2 of [91] for details.) An argument that
exploits Theorem 9.1 below and the fact that |αn−1| = |Φn(0)| is the product of
zeros shows that when the first equation in (6.9) holds, then all limits of dνn are
concentrated on the circle of radius r. The second equation and (6.8) show that
any such limit, dν, has

∫
z� dν = δ�0 for � ≥ 0. �

The other case where we know νn has a limit is ergodic families of Verblunsky
coefficients. Let (Ω, dβ) be a probability measure space, T : Ω → Ω, an invertible
ergodic transformation, and V : Ω → D. For each ω ∈ Ω, define a measure dµω by

(6.10) αj(dµω) = V (T jω).
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An argument using the ergodic theorem, (6.8), and control of lim|αn(dµω)|1/n show
that so long as

∫
[− log V (ω)] dβ(ω) < ∞, then dµω has for a.e. ω a limit supported

on ∂D and ω-independent. The most important examples of ergodic families are
random, periodic, almost periodic, and subshifts (see Chapters 10–12 of [92]).

Before leaving the subject of zeros, we note:

Theorem 6.3 (Widom [110]). If supp(dµ) is not all of ∂D, then for any r < 1,
supn(# of zeros of Φn in |z| < r) < ∞. In particular, any limit of dνn is supported
on ∂D.

Theorem 6.4 (see Theorem 8.1.11 of [91]). If z0 in ∂D is an isolated point of
supp(dµ), there is precisely a single zero of Φn near z0 for n large, and it approaches
z0 exponentially fast.

Finally, we discuss the Lyapunov exponent and Thouless formula.

Theorem 6.5 (see Theorem 10.5.8 of [92]). If the density of zeros measure, dν,
exists and is supported on ∂D, and if

(6.11) ρ∞ = lim
n→∞

( n−1∏
j=0

ρj

)1/n

exists, then for z /∈ ∂D, the following limit exists and is given by

(6.12) γ(z) ≡ lim
n→∞

1
n

log ‖Tn(z)‖ = − log ρ∞ −
∫

log|eiθ − z|−1 dν(θ).

γ is called the Lyapunov exponent. (6.12) is called the Thouless formula. For
|z| > 1, |ϕn| > |ϕ∗

n| and |ψn| > |ψ∗
n|, we need only control the growth of |ϕn|

and |ψn|. By (6.8), ϕn and ψn have the same density of zeros. Writing ϕn =∏n−1
j=0 ρ−1

j

∏
zeros(z − z�) easily yields (6.12).

See [92] for discussion of when (6.12) holds on ∂D and for further study of ergodic
OPUC.

7. Khrushchev’s formula, CMV resolvents,

and Rakhmanov’s theorem

In two remarkable papers [51, 52], Khrushchev found deep connections between
Schur iterates and the structure of OPUC. A key input for the theory is:

Theorem 7.1 (Khrushchev’s Formula). The Schur function for the measure
|ϕn(eiθ, dµ)|2 dµ(θ) is given by bn(z)fn(z), where fn is the n-th Schur iterate (by
Geronimus’ theorem, this is the Schur function of the measure with Verblunsky
coefficients {αn+j}∞j=0) and bn is the Blaschke product,

(7.1) bn(z; dµ) =
ϕn(z; dµ)
ϕ∗

n(z; dµ)
.

Remark. Khrushchev’s formula illuminates (2.9). In this trivial measure case,
{zj}n−1

j=1 are the zeros of Φn−1 and eiθ0 is the Schur parameter, γn−1.

In terms of the CMV matrix, this gives a formula for 〈δn, (C + z)(C − z)−1δn〉,
and so, when n = m, for

(7.2) Gnm(z) = 〈δn, (C − z)−1δm〉,
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the analog of the Green’s function in ODE’s [17]. Half-line Green’s functions for
ODE’s have the form f−(min(x, y))f+(max(x, y)) where f− (resp. f+) obeys bound-
ary conditions at x = 0 (resp. x = ∞). There is an analogous formula, due to Simon
(even if n 
= m), for Gnm in terms of the OPUC and Weyl solutions. It can be found
in Section 4.4 of [91] and generalizes Theorem 7.1. Other proofs of Theorem 7.1
appear in Theorem 4.5.10 of [91] and Theorem 9.2.4 of [92]. The most important
consequence of Khrushchev’s formula is

Theorem 7.2 (Khrushchev [51]). The essential support of the a.c. part of dµ is
all of ∂D if and only if

(7.3) lim
n→∞

∫ 2π

0

|fn(eiθ, dµ)|2 dθ

2π
= 0.

Since

(7.4)
∫ 2π

0

fn(eiθ, dµ)
dθ

2π
= fn(0) = αn,

an immediate corollary is

Theorem 7.3 (Rakhmanov’s Theorem). If the essential support of the a.c. part of
dµ is all of ∂D, then

(7.5) lim
n→∞

αn = 0.

This result is originally due to Rakhmanov [83, 84, 85] with important further
developments by Máté-Nevai-Totik [62, 63, 68, 69]. Bello-López [10] extended this
result to arcs, and Denisov [21] to OPRL. Here are some other important results of
Khrushchev’s theory:

Theorem 7.4.

w-lim|ϕn(eiθ)|2 dµ =
dθ

2π
⇔ (∀j 
= 0) lim

n→∞
αn+jαn = 0.

Remark. (6.8) can be reinterpreted as saying weak Cesàro limits of |ϕn|2 dµ are the
density of zeros when the latter is supported on ∂D; see Section 8.2 of [91].

Theorem 7.5. Let f [n] be the Schur approximates (given by (3.9)). Then

(7.6)
∫
|f [n](eiθ) − f(eiθ)|2 dθ

2π
→ 0

if and only if either
(i) dµac = 0, that is, µ is purely singular; or
(ii) αn(dµ) → 0.
Moreover, if w-lim|ϕn(eiθ)|2 dµ = dθ/2π, then (7.6) holds.

As a consequence of these theorems, we get a result for sparse α’s.

Corollary 7.6. If limn→∞ αn+jαn = 0 for all j 
= 0, but lim supn|αn| 
= 0, then µ
is purely singular continuous.

Theorem 7.7. Suppose that uniformly on compacts of ∂D,

(7.7) lim
n→∞

Φ∗
n+1(z)
Φ∗

n(z)
= G(z).

Then either G(z) ≡ 1 or else for some a ∈ (0, 1] and λ ∈ ∂D,

(7.8) G(z) = 1
2

[
(1 + λz) +

√
(1 − λz)2 + 4a2λz

]
.



OPUC ON ONE FOOT 449

Note we have that G ≡ 1 if and only if limn→∞ αn+jαn = 0 for all j 
= 0 and
that Barrios-López have proven that (7.8) holds if and only if limn→∞|αn| = a and
limn→∞ αn+1α

−1
n = λ.

Khrushchev has also described all possible dν’s that can occur as w-lim|ϕn|2 dµ
(i.e., for which the limit exists) and when they can occur (essentially, asymptotically
periodic with period 1 or 2). The analogs of these w-limit and ratio asymptotic
results for OPRL were found by Simon [90].

8. Szegő’s and Baxter’s theorems

Szegő’s theorems may well be the most celebrated in OPUC. While they have
expressions purely in terms of OPUC objects, for historical reasons, one should
state them in terms of Toeplitz determinants, Dn(dµ). This is defined as the
determinant of the (n + 1) × (n + 1) matrix {ck−�}0≤k,�≤n with c given by (2.8).
Dn is the Gram determinant of {zk}n

k=0 since 〈zk, z�〉L2(dµ) = ck−�. The invariance
of such determinants under triangular change of basis implies (using also (2.20))

(8.1) Dn(dµ) =
n∏

j=0

‖Φj‖2 =
n−1∏
j=0

(1 − |αj |2)n−j ,

which immediately implies

F (dµ) ≡ lim
n→∞

Dn(dµ)1/n =
∞∏

j=0

(1 − |αj |2) = lim
n→∞

‖Φn‖2(8.2)

G(dµ) ≡ lim
n→∞

Dn(dµ)
F (dµ)n+1

=
∞∏

j=0

(1 − |αj |2)−j−1.(8.3)

F is always defined, although it may be 0. G is defined so long as F > 0, that
is, so long as

∑∞
j=0|αj |2 < ∞. G may be infinite and is finite if and only if∑∞

j=0 j|αj |2 < ∞.
Szegő’s theorems express F and G in terms of the a.c. weight, w, of dµ

(8.4) dµ = w(θ)
dθ

2π
+ dµs

where w ∈ L1(∂D, dθ
2π ) and dµs is singular with respect to dθ/2π.

Theorem 8.1 (Szegő’s Theorem).

(8.5) F (dµ) =
∞∏

j=0

(1 − |αj |2) = exp
(∫

log(w(θ))
dθ

2π

)
.

Remark. Szegő proved this when dµs = 0 in 1915; the proof below is basically
his proof in [99]. The result does not depend on dµs — this was shown first by
Verblunsky [107]. [91, 92] have five proofs of Theorem 8.1.

Sketch of proof when dµs = 0. Since Φ∗
n is nonvanishing on D and Φ∗

n(0) = 1,∫
log|Φ∗

n(eiθ)| dθ
2π = 1. Thus, by Jensen’s inequality,

‖Φn‖2 ≡
∫
|Φ∗

n(eiθ)|2w(θ)
dθ

2π
≥ exp

(∫
log(w(θ))

dθ

2π

)
,



450 B. SIMON

so F (dµ) ≥ RHS of (8.5). On the other hand, since Φ∗
n is the projection of 1 to the

complement of [z, . . . , zn] in [1, . . . , zn], we have

(8.6) ‖Φ∗
n‖2 = min{‖P‖2

L2(dµ) | deg P ≤ n, P (0) = 1}.

Using (8.2) and a limit argument,

(8.7) F (dµ) = min{‖f‖2
L2(dµ) | f ∈ H∞, f(0) = 1}.

Pick the trial functions fε(z) = gε(z)/gε(0) where

gε(z) = exp
(
−

∫
eiθ + z

eiθ − z
log(w(θ) + ε)

dθ

4π

)

and take ε ↓ 0 to get F (dµ) ≤ RHS of (8.5). �

Because their singular continuous part is arbitrary, once an �2 condition is
dropped, dµ can be arbitrarily “bad”.

Theorem 8.2. Let dρ be a measure on ∂D with support all of ∂D. Then there
exists dµ, a probability measure on ∂D mutually equivalent to dρ, so that for all
p > 2,

(8.8)
∞∑

n=0

|αn(dµ)|p < ∞.

This is Theorem 2.10.1 of [91], proven using ideas of Totik [104] and the bounds
in (8.5).

By (8.5), we get one of the gems of spectral theory: equivalences between some
recursion coefficient property and some spectral measure property.

Corollary 8.3.

(8.9)
∞∑

j=0

|αj |2 < ∞ ⇔
∫

log(w(θ))
dθ

2π
> −∞.

The equivalent conditions (8.9) are called the Szegő condition. When they hold,
Szegő defined the Szegő function by

(8.10) D(z) = exp
(∫

eiθ + z

eiθ − z
log(w(θ))

dθ

4π

)
.

Standard boundary value theory for the Poisson kernel implies D(eiθ) =
limr↑1 D(reiθ) exists for dθ/2π-a.e. θ ∈ [0, 2π) and

(8.11) |D(eiθ)|2 = w(θ).

Theorem 8.4 (Szegő [99]). Suppose either and thus both of the conditions of (8.9)
hold. Let Dac(eiθ) = D(eiθ) for a.e. θ and = 0 on a supporting set for dµs. Then

(i)
∫
|ϕ∗

n(eiθ) − Dac(eiθ)−1|2 dµ → 0(8.12)

(ii)
∫
|ϕn(eiθ)|2 dµs → 0(8.13)

(iii) ϕ∗
n(z) → D(z)−1 uniform on compacts in D.(8.14)
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Sketch. A short preliminary argument proves that D ∈ H2(D). Thus Cauchy’s
formula holds for ϕ∗

nD, so

(8.15)
∫

(ϕ∗
nD)(eiθ)

dθ

2π
= ϕ∗

n(0)D(0) → 1

since, by (8.5), ϕ∗
n(0)D(0) =

∏n−1
j=0 (1 − |αj |2)−1/2

∏∞
j=0(1 − |αj |2)1/2. By (8.11),∫

|ϕ∗
n − D(eiθ)−1|2w(θ)

dθ

2π
+

∫
|ϕ∗

n(eiθ)|2 dµs

= ‖ϕ∗
n‖2

L2(dµ) + 1 − 2 Re(ϕ∗
n(0)D(0)) → 0

by (8.15). This implies (i) and (ii). This then implies that Dϕ∗
n → 1 in L2(∂D, dθ

2π ),
so by H2 theory, (iii) holds. �

(8.14) and the related

(8.16) z−nϕn(z) → D(1/z̄) on C\D
are called Szegő asymptotics.

Theorem 8.5 (Sharp Form of the Strong Szegő Theorem [102, 44, 39]). If dµs = 0,
if the Szegő condition holds, and if L̂k are the Fourier coefficients of log w, then

(8.17) G(dµ) =
∞∏

j=0

(1 − |αj |2)−j−1 = exp
( ∞∑

n=0

n|L̂n|2
)

.

Remark. Szegő [102] proved this when dµ has certain regularity properties. The
general result is due to Ibragimov [44]; see also [39].

Seeing when G(dµ) < ∞ leads to a second gem:

Corollary 8.6.

(8.18)
∞∑

j=0

j|αj |2 < ∞ ⇔ dµs = 0 and
∞∑

n=0

n|L̂n|2 < ∞.

This corollary relies also on a theorem of Golinskii-Ibragimov [39] that the LHS
of (8.18) ⇒ dµs = 0. This result plus five distinct proofs of Theorem 8.5 are found
in Chapter 6 of [91]. A sixth proof is in Section 9.10 of [92].

A final gem we want to mention is

Theorem 8.7 (Baxter’s Theorem [8, 9]). Fix � ≥ 0. The following are equivalent:

(a)
∞∑

n=0

n�|αn| < ∞

(b) dµs = 0, min
θ

w(θ) > 0, and
∞∑

n=0

n�|cn| < ∞.

In particular if dµs = 0 and minθ w(θ) > 0, then w is C∞ if and only if
supn n�|αn| < ∞ for all � ≥ 0.

Remark. When
∑∞

n=0|cn| < ∞, w has a representative which is continuous, and it
is that choice we make for the otherwise a.e. defined function.

This is proven in Chapter 5 of [91].
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9. Exponential decay

Suppose for some R > 1, we have

(9.1) |αn| ≤ CR−n.

By (2.17) and induction,

(9.2) sup
n, |z|=1

|Φn(z)| ≤
∞∏

j=0

(1 + |αj |) < ∞,

so, by the maximum principle and (2.15),

sup
|z|≥1

|z|−n|Φn(z)| = sup
|z|≤1

|Φ∗
n(z)| < ∞.

Thus, by (2.27), if |z| < R,

(9.3)
∞∑

n=0

|Φ∗
n+1(z) − Φ∗

n(z)| ≤
∞∑

n=0

|αn| |z|n+1 < ∞.

It follows that Φ∗
n(z) and so ϕ∗

n(z) converge uniformly on compacts of {z | |z| < R},
and so, by (8.14), D(z)−1 has a continuation to this disk. We thus have one-half of

Theorem 9.1 (Nevai-Totik [70]). Fix R > 1. The following are equivalent:
(a) dµs = 0, the Szegő condition holds, and D(z)−1 has an analytic continuation

to {z | |z| < R}.
(b) lim supn→∞ |αn|1/n = R−1.

The other direction uses the useful formula,

(9.4) dµs = 0 ⇒ αn = −D(0)−1

∫
Φn+1(eiθ)D(eiθ)−1 dµ(θ).

Section 7.1 of [91] has a complete proof. One can say more ([91, Section 7.2],
[20, 95]). When this holds, αn+ Taylor coefficients of D(z)−1 D(1/z̄) decay as
0(R−3n+ε). There is also a lot known about asymptotics of the zeros when there is
exponential decay (see [91, Sections 8.1 and 8.2], [94, 61, 95] and references therein).

10. Periodic OPUC

The theory of one-dimensional periodic Schrödinger operators (a.k.a. Hill’s equa-
tion) and of periodic Jacobi matrices has been extensively developed [23, 26, 57,
58, 64, 105]. In the 1940’s, Geronimus [32] found the earliest results on OPUC with
periodic Verblunsky coefficients; that is, for some integral p ≥ 1 and j = 0, 1, 2, . . . ,

(10.1) αj+p = αj .

In particular, the case αj ≡ a ∈ D\{0} yields OPUC called Geronimus polynomials
(see Example 1.6.12 of [91]). Many of the general features for OPUC obeying
(10.1) were found by Peherstorfer and his collaborators [71, 72, 73, 74, 75, 76, 77,
78, 79, 80, 81]. Geronimo-Johnson [30, 31] have studied almost periodic Verblunsky
coefficients. A reworking with some new results is Chapter 11 of [92], which uses
methods mimicking the periodic Hill-Jacobi theory.

We suppose henceforth that p is even. A basic object is the discriminant,

(10.2) ∆(z) = Tr(z−p/2Tp(z)),
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where Tp(z) is the transfer matrix given by (6.2). The z−p/2 is included
since, by det(A) = z, det(z−p/2Tp(z)) = 1, and so z−p/2Tp(z) has eigenvalues
∆
2 ± i

√
1 − (∆

2 )2. In particular, these eigenvalues have magnitude 1; that is,
supm ‖Tmp(z)‖ < ∞ exactly when ∆(z) ∈ [−2, 2]. This is part of

Theorem 10.1. There exist {xj}2p
j=1, {yj}2p

j=1 with

x1 < y1 ≤ x2 < y2 ≤ · · · ≤ xp < yp ≤ x1 + 2π =: xp+1

so that the solutions of ∆(z) = 2 (resp. −2) are exactly eix1 , eiy2 , eix3 , . . . , eixp (resp.
eiy1 , eix2 , eiy3 , . . . , eiyp) and ∆(z) ∈ [−2, 2] exactly on the bands

(10.3) B =
p⋃

j=1

{eiθ | xj ≤ θj ≤ yj}.

B is the essential support of dµac, and the only possible singular spectrum is com-
posed of mass points which can occur in open gaps (i.e., nonempty sets of the form
{eiθ | yj < θ < xj+1}) with one (or zero) mass point in each gap.

Theorem 10.2. Let dρ be the equilibrium measure for B (i.e., the minimizer for
E(ρ) =

∫
log|z − w|−1 dρ(z) dρ(w) with supp(dρ) ⊂ B and ρ(B) = 1). Let CB be

the logarithmic capacity of B (i.e., exp(− minimizing value of E(p))) and Q(z) the
logarithmic potential for B (i.e., Q(z) =

∫
log|z − ω|−1 dρ(ω)). Then

(i) dρ is the density of zeros for dµ, −[Q(z) + log CB] is the Lyapunov exponent,
and CB =

∏p−1
j=0(1 − |αj |2)1/2p.

(ii) dρ can be written in terms of the discriminant as

(10.4) dρ(θ) =:
1
p

|∂∆(eiθ)/∂θ|
(4 − ∆2(eiθ))1/2

dθ

2π
.

(iii) For each j = 1, 2, . . . , p,

(10.5) ρ({eiθ | xj ≤ θ ≤ yj}) =
1
p
.

The proof of this result (see Section 11.1 of [92]) depends on noting that, by the
Thouless formula, γ(z) is harmonic on C\B and γ(z) = 0 on B. (iii) is related
to half of the following result of Peherstorfer motivated by an OPRL result of
Aptekarev [3] (based in part on Geronimus [35]).

Theorem 10.3 (Peherstorfer [71]). Let B be a union of � disjoint, closed intervals,
B1, . . . , B�, in ∂D. Then B is the set of bands of a period p set of α’s if and only
if the following conditions are true:
(1) If dρ is the equilibrium measure of B, then pρ(Bj) ∈ Z for j = 1, . . . , �.
(2) Let z1, z2, . . . , z2p be defined clockwise around the circle so that z1 is the lower

edge of B1 and the 2p points are the 2� band edges and those interior points
in a band with pρ(Bj) ≥ 2 that divide Bj into pρ(Bj) sets with ρ-measure 1/p,
each counted twice. Then z1z4z5z8z9 . . . z2p = 1.

If some ρ(Bj) is irrational, then there is no periodic family of α’s with those
bands, but there is an almost periodic set, as proven by Geronimo-Johnson [31]
(see Section 11.8 of [92]).
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Given a measure dµ on ∂D so that (10.1) holds, the Dirichlet data is defined
partly as the p points where

(
1
1

)
is an eigenvector for Tp(z), that is, zeros of ϕ∗

p(z)−
ϕp(z). There is one such point in each gap, including closed gaps (i.e., eiyj when
yj = xj+1). If the value is at a gap edge, the eigenvalue λ of z−p/2Tp(z) for

(
1
1

)
is ±1.

Otherwise, it is in R\{0,−1, 1}. In that case, we add σj = ±1 to the j-th Dirichlet
point with σj = +1 (resp. −1) of the eigenvalue |λj | < 1 (resp. |λ−j | > 1). The
point masses of dµ are precisely those Dirichlet points inside gaps with σj = +1.
The set of allowed Dirichlet data is composed of single points for closed gaps and
a circle ([yj , zj+1] × {−1, 1} glued at the ends) for open gaps. Thus, the totality is
a torus of dimension � = # of open gaps.

Theorem 10.4. If ∆ has � open gaps, then the subset of {αj}p−1
j=0 ∈ Dp which,

when periodized, have discriminant ∆, is a torus of dimension �. The map from
these α’s to the possible Dirichlet date is a bijection.

Critical to at least one understanding of this result is that the Carathéodory
function F has a minimal degree meromorphic continuation to the genus � − 1
hyperelliptic Riemann surface associated to

√
∆2 − 4.

There is a natural symplectic form on Dp so that the real and imaginary parts of
the coefficients of ∆ comprise the set of integrals of a completely integrable system.
This is described in Section 11.11 of [92] and in [67]. The associated flows include
the defocusing Ablowitz-Ladik flow.

11. The Szegő mapping and the Geronimus relations

Finally, we discuss a deep connection between OPRL and OPUC found by Szegő
[100]. The map z �→ z + z−1 maps D biholomorphically to C ∪ {∞} with a cut
[−2, 2] removed. The map on the boundary eiθ → 2 cos θ is a two-to-one map of
∂D to [−2, 2] that induces a map from M+,1([−2, 2]) to those measures on ∂D

which are invariant under complex conjugation. It is easy to see µ ∈ M+,1(∂D)
has such invariance if and only if its Verblunsky coefficients are real. Explicitly, ρ,
a probability measure on [−2, 2], is associated to µ = Sz(ρ), an even probability
measure on ∂D, via

(11.1)
∫

f(x) dρ(x) =
∫

f(2 cos θ) dµ(θ).

Szegő found the OPRL Pn for ρ in terms of the OPUC Φn for µ:

(11.2) Pn

(
z +

1
z

)
= [1 − α2n−1(dµ)]−1z−n[Φ2n(z) + Φ∗

2n(z)].

and used this to convert Szegő asymptotics for OPUC (see (8.16)) to asymptotics
for suitable OPRL. This asymptotics is often called Jost asymptotics in the discrete
Schrödinger literature.

Geronimus [33] found the relation between the Jacobi parameters {an, bn}∞n=1

for ρ and the Verblunsky coefficients {αn}∞n=0 for µ (with α−1 ≡ 1):

a2
n+1 = (1 − α2n−1)(1 − α2

2n)(1 + α2n+1)(11.3)

bn+1 = (1 − α2n−1)α2n − (1 + α2n−1)α2n−2.(11.4)

The map from α to (a, b) is local; that is, changing a single α changes only a
finite number of a’s and b’s. That is not true for the inverse. Scaled Chebyshev
polynomials of the first kind have a1 =

√
2, an = 1 (n ≥ 2), bn = 0, and the
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corresponding αn ≡ 0. Scaled Chebyshev polynomials of the second kind have
an ≡ 1, bn = 0 (i.e., they differ at a single an), but have α2n = 0 and α2n−1 =
−1/(n + 1).

Still the inverse can be computed ([33]). Given {an, bn}∞n=1, define ϕ±
n by ϕ0 = 0,

ϕ1 = 1, and for n ≥ 1,

(11.5) ϕ±
n+1 + a2

n−1ϕ
±
n−1 + bnϕ±

n = ±2ϕ±
n .

By a Sturm oscillation theorem, {an, bn}∞n=1 are the Jacobi parameters of a measure
supported on [−2, 2] if and only if ϕ+

n > 0 and (−1)nϕ−
n > 0. The Verblunsky

coefficients are given by

un =
ϕ+

n+2

ϕ+
n+1

vn = −
ϕ−

n+2

ϕ−
n+1

(11.6)

α2n =
vn − un

vn + un
α2n−1 = 1 − 1

2 (un + vn).(11.7)

Recently, these mappings have been used by Denisov [21] and Damanik-Killip
[18, 89] as a powerful tool in the study of discrete Schrödinger operators and of
OPRL. For proofs and references, see Chapter 13 of [92].
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[10] M. Bello Hernández and G. López Lagomasino, Ratio and relative asymptotics of poly-

nomials orthogonal on an arc of the unit circle, J. Approx. Theory 92 (1998), 216–244.
MR1604927 (99c:42041)

[11] S. Bernstein, Sur une classe de polynomes orthogonaux, Commun. Kharkow 4 (1930), 79–93.
[12] A. Borodin and E. Strahov, Averages of characteristic polynomials in random matrix theory,

preprint.
[13] O. Bourget, J. S. Howland, and A. Joye, Spectral analysis of unitary band matrices, Comm.

Math. Phys. 234 (2003), 191–227. MR1962460 (2004c:47063)

http://www.ams.org/mathscinet-getitem?mr=0931885
http://www.ams.org/mathscinet-getitem?mr=0931885
http://www.ams.org/mathscinet-getitem?mr=0764479
http://www.ams.org/mathscinet-getitem?mr=0764479
http://www.ams.org/mathscinet-getitem?mr=1682248
http://www.ams.org/mathscinet-getitem?mr=1682248
http://www.ams.org/mathscinet-getitem?mr=1791137
http://www.ams.org/mathscinet-getitem?mr=1791137
http://www.ams.org/mathscinet-getitem?mr=1926668
http://www.ams.org/mathscinet-getitem?mr=1926668
http://www.ams.org/mathscinet-getitem?mr=1844203
http://www.ams.org/mathscinet-getitem?mr=1844203
http://www.ams.org/mathscinet-getitem?mr=0126126
http://www.ams.org/mathscinet-getitem?mr=0126126
http://www.ams.org/mathscinet-getitem?mr=0145285
http://www.ams.org/mathscinet-getitem?mr=0145285
http://www.ams.org/mathscinet-getitem?mr=1604927
http://www.ams.org/mathscinet-getitem?mr=1604927
http://www.ams.org/mathscinet-getitem?mr=1962460
http://www.ams.org/mathscinet-getitem?mr=1962460


456 B. SIMON

[14] M. J. Cantero, L. Moral, and L. Velázquez, Five-diagonal matrices and zeros of orthogo-
nal polynomials on the unit circle, Linear Algebra Appl. 362 (2003), 29–56. MR1955452
(2003k:42046)
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