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We present the abstracts of papers given at a conference held at the Ecole 
Polytechnique in June 1983 on the mathematics of random and almost periodic 
potentials. 

F rom June 6-10,  1983, a conference was held at Ecole Polytechnique, 
sponsored by the U S N S F  under  Gran t  No. INT82-12564, and by the 
C N R S  as a F r e n c h - A m e r i c a n  Joint  Seminar. The conference was orga- 
nized by the "au thors"  of this paper. The topic of the conference was the 
mathemat ical  aspects of r a n d o m  and almost  periodic potentials, that  is, the 
study of a class of quan tum Hamil tonians  of the form H = - A  + V on 
L ; ( ~  ~, d~x) and  their discrete analogs, e.g., in one dimension 

(h . ) (n )  = u ( .  + l) + . ( .  - l) + V(.).(n) = [(h0 + V ) . ] ( n )  (1) 

In both cases, V is not  a fixed funct ion;  rather, V is an ergodie stochastic 
process. Explicitly, in the case of Eq. (1): 9 is a measure space with 
probabil i ty measure, /~, T :  9 - - > 9  is an ergodic t ransformation and f a 
funct ion f rom 9---> R. Let Vo~(n ) = f(T"co) and h~ = h 0 + V~. One is inter- 
ested in properties of h o that hold for almost  all ~0, especially features of the 
spectrum, spectral measures, and eigenfunctions. 

Two  i m p o r t a n t  examples  are (1) the random case  where  9 = 
X,~___~[a ,b] ,  dl~ = |  with v a measure on [a,b] and T ( x ) ,  
= x , +  ~ and  f ( x )  = x o and (2) the almost  periodic case where, as a typical 
example, 9 is a k-dimensional  torus {(0~ . . . .  , Ok) [ 0 mod  l}, dtt is the 
usual measure ( X  ~=td0i), (TO)i  = 0 i + a i where the a/ are rational, inde- 
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pendent of each other and 1, and f is a continuous function on fL Some 
aspects of the theory are common to all ergodic processes, but most 
interesting features depend on detailed aspects such as whether the process 
is almost periodic or random or . . . .  

From the physical point of view, case (1) appears in the physics of 
disordered solids, whereas case (2) appears in the physics of incommensu- 
rate systems, of bidimensional electrons in a periodic potential and an 
orthogonal magnetic field, and of lattices of supraconducting wires. 

Below, we first list the program with complete addresses for readers 
wishing more information, and then we give a set of "abstracts" provided 
by the speakers (with a common bibliography appearing at the end of the 
paper). Some additional references are provided alphabetically following 
the references for the abstracts. 

LIST OF SPEAKERS AND ADDRESSES 

Monday, June 6 

W. Craig Department of Mathematics 253-37, California Institute of 
Technology, Pasadena, California 91125: Pure point spectrum 
for discrete almost periodic Schr6dinger operators. 

J. Bellissard Centre de Physique Theorique, CNRS, Luminy-Case 907, 
F-13288 Marseille Cedex 9, France: Small divisors effects in 
quantum mechanics. 

T. Spencer Courant Institute, 251 Mercer St., New York, New York 
10012: Absence of diffusion in the Anderson tight binding 
model. 

Tuesday, June 7 

R. Lima Centre de Physique Theorique, CNRS, Luminy-Case 907, 
[:-13288 Marseille Cedex 9, France: Spectral properties of the 
almost Mathieu Hamiltonian. 

P. Sarnak Courant Institute, 251 Mercer St., New York, New York 
10012: Complex almost periodic potentials. 

R. Prange Department of Physics and Astronomy, University of Maryland, 
College Park, Maryland 20742: A solvable almost periodic 
Schr6edinger equation with a singular continuous spectrum. 
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B. Simon Department of Mathematics 253-37, California Institute of 
Technology, Pasadena, California 91125: m Functions and 
the absolutely continuous spectrum of one-dimensional al- 
most periodic operators. 

D. Bessis Service de Physique Theorique, CEN Saclay, 91191 Gif-sur- 
Yvette Cedex, France: Green function behavior for a Hamil- 
tonian with purely singular spectrum. 

M. Kohmoto Department of Physics, University of Illinois, Urbana, Illinois 
61801: Dynamical map related to an almost periodic model. 

Wednesday, June 8 

Y. Guivarc'h Department of Mathematics, University of Rennes, Rennes, 
France: Products of random matrices. 

H. Kesten Department of Mathematics, Cornell University, lthaca, New 
York 14853: Convergence in distribution of products of 
random matrices. 

J. Poschel 

M. Mehta 

R. Carmona 

J. Laeroix 

Mathematik, ETH-Zentrum, CH-8092 Zurich, Switzerland." 
An extension of a result by Dinaburg and Sinai. 

Service de Physique Theorique, CEN-Saclay, 91191 Gif-sur- 
Yvette Cedex, France: Random matrices--A review. 

Department of Mathematics, University of California, lrvine, 
California 92717." One-dimensional random Schr6dinger 
operators--A survey. 

UER Mathematiques et Informatique, Campus de Beaulieu, 
35042 Rennes Cedex, France: Pure point spectrum for the 
limit difference Schr6dinger equation in a strip. 

Thursday, June 9 

F. Wegner 

B. Souillard 

Institut fiir Theoretische Physik, Ruprecht-Karls-Universi- 
ti~t, D-6900 Heidelberg, Federal Republic of Germany." Ander- 
son transition and nonlinear ~ model. 

Centre de Physique Theorique, Ecole Polytechnique, 91128 
Palaiseau Cedex, France." The study of a mobility edge--The 
Anderson model on the Bethe lattice. 
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F. Delyon 

J. Avron 

D, Thouless 

G. Toulouse 

Simon and Souillard 

Centre de Physique Theorique, Ecole Polytechnique, 91128 
Palaiseau Cedex, France: The density of states and the 
rotation number for finite difference equations and their 
properties. 

Department of Physics, The Teehnion, 32 000 Haifa, Israel: 
Topological invariants for periodic matrices. 

Department of Physics, University of Washington, Seattle, 
Washington 98195: Quantized Hall conductance, matter 
transport, and band gaps in quasiperiodic systems. 

Groupe de Physique des Solides, Ecole Normale Superieure, 24 
rue Lhomond, F-75005 Paris, France: Edge states in quan- 
tized Hall conductance and random walks on percolation 
clusters. 

Friday, June 

I. Herbst 

F. Bentosela 

R. Johnson 

10 

Department of Mathematics, University of Virginia, Char- 
lottesville, Virginia 22903: One-dimensional systems in an 
electric field. 

Centre de Physique Theorique, CNRS, Luminy-Case 907, 
F-13288 MarseiIle Cedex 2, France: Electrons in a solid 
submitted to an electric field. 

Department of Mathematics, Universitiit Heidelberg, D-6900 
Heidelberg 1, Federal Republic of Germany: Almost periodic 
spectral problems and nonlinear evolution equations. 

ABSTRACTS OF THE TALKS 

J. Avron, R. Seiler and B. Simon, Topologica/ invariants for 
periodic matrices: We described the geometric and homotopic signifi- 
cance of the quantised conductances in the (normal) Hall effect. See Refs. 
1, 81, and 83. 

J. Bellissard, Small divisors effects in quantum mechanics: In 
several examples of quantum mechanical systems, the perturbation theory 
exhibits small divisors. This occurs for almost periodic potentials and 
time-dependent periodic Hamiltonians. We show how to avoid the diver- 
gencies by using the Kolmogoroff-Arnold-Moser (vJ9'61'77) procedure 
adapted to the problem. It actually works only for a few number of 
examples and it would need an extension to treat the problem in full 
generality.(2,3,5,6A 4, 67 ) 
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In the region of energy corresponding to strong resonances the previ- 
ous procedure does not work. In quantum mechanics this is due to the 
possibility of long-range tunneling effects in the Fourier space. We argue 
that such effects occur. In this case the wave function should be extended 
and even chaotic. (4'28'44'65) It should actually be localized on an unbounded 
sequence of points in Fourier space, strongly sensitive to the value of the 
energy. The corresponding spectral measure should be singular continu- 
ous. (2) 

W e  also show an example of almost periodic Hamiltonian, (4) which 
has a Cantor spectrum of zero Lebesgue measure, and eigenstates which are 
likely to be chaotic in the large, with a sensitive dependence with respect to 
the energy. 

F, Bentosela, Electrons in a solid submitted to an electric field: 
(1) We prove that the Schr6dinger operator in one dimension correspond- 
ing to a particle in a solid (amorphous or crystalline) submitted to a 
constant external electric field has purely absolutely continuous spectrum. 
(2) In the case of the semi-infinite crystal we calculate numerically the 
electrical field dependence of the resonances and show that they oscillate 
strongly. The same study has been undertaken in the random case; its goal 
is now to study the dependence of the resonance width with respect to the 
disorder. See Refs. 8-10. 

D. Bessis, J. Geronimo, and P. Moussa, Green function behavior 
for a Hamiltonian with purely singular spectrum(l '): We analyze the 
end point spectrum of the quadratic map Hamiltonian (4) which is thought 
to be a paradigmatic example of a Schr6dinger operator with purely 
singular continuous spectrum. This is done by introducing the Mellin 
transform of the density of states, which is shown to be a meromorphic 
function in C with poles on a semi-infinite rectangular lattice. While simple 
scaling arguments propose for the density of states a formula of the type: 

o(E)~C(Een d -- E) 8 

Where 6 is the spectral dimension, this formula must be replaced in the 
presence of a singular spectrum by 

~ C +  k=, ~ C~cos[Icrln(Eend--E)+ q~K]} 

which shows that the "constant" C has no limit when E---> Eend, but 
presents infinite bounded oscillations. The same results hold for mechanical 
systems on fractal structure such as the Sierpinsky Gasket model, for 
instance.(7~) 

For the algebraic hierarchical models of statistical mechanics, (JT) for 
which the renormalization group reduces to a rational transformation, our 



278 Simon and Soulllard 

analysis leads to the introduction of an imaginary part to be added to the 
usual critical index to describe the critical behavior: this has for conse- 
quence the existence of an oscillatory behavior of the critical amplitudes. 

R. Carmona, One-dimensional random SchrOdinger operators--A 
Survey:  The talk begins with a quick review of the time-honored O.D.E. 
(ordinary differential equation) approach to the study of the spectral 
properties of one-dimensional deterministic Schr6dinger operators (Titch- 
marsch-Weyl m functions, eigenfunction expansions for Sturm-Liouville 
problems, Plancherel formula . . . .  ) 

Then the works done during the last decade in the random case are 
reviewed. This amounts to studying the almost sure spectral characteristics 
of Schr6dinger operators with stationary ergodic random potentials. We 
concentrate on (i) thermodynamic properties such that the existence and the 
regularity of the density of states, the attraction-repulsion problem for 
energy levels and central limit theorems and large deviation results for the 
density of states; (ii) spectral types: presence or absence of an absolute 
component in the spectrum, exponential localization when the spectrum is 
dense pure point, perturbations by deterministic potentials (for example, a 
constant electric field); (iii) the numerous problems still open. 

W. Craig, Pure point spectrum for discrete almost periodic 
Schr6d inger  operators:  The discrete Schr6dinger operator on Z ~ is 
considered in this talk: 

1 (~+)J= ~k~, ~J+k+ -; q+~j = X~j (1) 

We consider sequences ~ that are almost periodic in the sense that there 
exists a "reasonable" function Q(x)  on the torus T ~ such that for some 
rationally independent v vectors w: 

qj = Q(wj) (2) 

"Reasonable" is a technical condition, which for 7/1 is taken to be "of 
bounded variation" (this implies that at least qj is/Z-almost periodic). 

Examples of such potentials with entirely pure point spectrum are 
constructed for c sufficiently small. The method is an inverse spectral 
procedure, with a rapidly convergent iteration scheme to overcome small 
divisors similar to the method of Kolmogorov, Arnold, and Moser. Input is 
a spectral generating sequence dj satisfying (2) and as well a nonresonance 
condition. 

[dj - dkl = ID(oaj) - D(a~k)i > cl j  - k[-"  (3) 

The potential ~ is constructed along with a unitary operator G such that 

o-' rO = D ------ d18  
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and 

]g/j - 8,~[ < e e x p ( - p ] i - J l )  

Examples are given in which the spectrum is an interval, and in which the 
spectrum is a Cantor set of any fractal dimension from 0 to 1. See Refs. 5, 
14, 38, and 67. 

F. Delyon, The density of states and the rotation number for finite 
difference equations and their properties: For a continuous Schr6- 
dinger equation with an almost periodic potential, it was proved (38) that the 
integrated density of states k09, which is equal to twice the rotation 
number a0t), lies in the frequency module of the potential when )t is 
outside the spectrum; this yielded a labeling of the gaps of the spectrum. 
Except in the special cases where C* algebra technics give the result, the 
question was opened whether an analogue does hold for Jacobi matrices 
acting on 12(Z), 

(Hu)(n)  = - u ( n  + 1) - u(n - 1) + V(n)u(n)  

and more generally for second-order finite difference equations. 
We discussed (16~ a rotation number a()0 for finite difference equa- 

tions. The integrated density of states k0t  ) is related to it by k0t ) = 2a0t  ). 
For almost periodic operators, k 0  t) is proved to lie in the frequency module 
whenever )t is outside the spectrum. The homotopic invariants appearing 
there are related to the value of the quantized Hall effect of a two- 
dimensional electron in a periodic potential and a strong orthogonal 
magnetic field. 

J. Frohl|ch and T. Spencer, Absence of diffusion in the Anderson 
tight binding model:  We prove the absence of diffusion (23) and the 
existence of a dense family of eigenstates (with probability 1) for the 
Hamiltonian 

H = - A + X v  o n Z  a, d >l 1 

provided that either X is a large or that the energy lies in the band tails. The 
potential vj are assumed to be independent, mean zero random variables 
with a bounded distribution. Our proof is based on perturbation theory 
about an infinite sequence of block Hamiltonians and is related to KAM 
methods. See also Ref. 24. 

Y. Guivarc'h, Products of random matrices: We described the 
known results about random matrix products in the following directions: 
characteristic exponents, limit theorems (independent case), stability prop- 
erties of the characteristic exponents. In the following references others can 
be found: 18, 25, 26, 29, 30, 31, 32, 33, 34, 36, 40, 49, 52, 53, 54, 55, 64, 70, 
75, 76, 86, 87, and 88. 
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I. Herbst, One-dimensional systems in an electric field: In this 
talk ! presented a simplified version of joint work with J. S. Howland (35) 
dealing with a one-dimensional system (periodic, random, etc.) in an 
electric field. The work shows that under certain analyticity assumptions on 
the potential, it is possible to discuss resonances as poles of resolvent matrix 
elements. 

In addition, I speculated about the time development of a localized 
random system after the electric field is turned on. 

R. Johnson, Almost periodic spectral problems and nonlinear 
evolution equations: We discussed the discrete rotation number, its 
reduction to the continuous rotation number via the suspension procedure, 
and the connection with C*-algebra theory. We also posed two problems, 
one having to do with nonlinear evolution equations and the other with 
numerical evaluation of Lyapounov exponents. 

H. Kesten and F. Spitzer, Convergence in distribution of products 
of random matrices: We discussed conditions for convergence of the 
distribution of M n := A1A2... A~, where the Ai, i/> 1 are independent, 
identically distributed nonnegative matrices. The limit distribution should 
not be concentrated on the zero matrix. Note that the Mn are not normal- 
ized. It turns out that such convergence is also equivalent to the equality 

log(largest eigenvalue of<A 1>) = lim 1 log][ M~II (1) 

The almost sure existence of the limit in the right-hand side was proved in 
Refs. 26 and 41. For nonegative Ai one always has the left-hand side of 
(1)/> the right-hand side of (1), and usually this is a strict inequality. 

M. Kohrnoto, Dynamical map related to an almost periodic model: 
A class of the (discrete) almost periodic Schr6dinger equation is related to a 
three-dimensional volume-preserving map. (42'44) An existence of a con- 
served quantity actually restricts it on a two-dimensional manifold. The 
potentials are constant except for steps at special points. 

There are various types of cycles. (39) Each represents some scaling 
behavior of the system. In particular, a fixed-point analysis of the six cycle 
develops the scaling for the spectrum found numerically. (43) The hetero- 
clinic points of the map explain the infinite hierarchical structure of the 
energy spectrum which is likely to be a Cantor set. (45) 

J. Lacroix, Pure point spectrum for the limit difference SchrO- 
dinger equation in a strip: Let H be the finite difference SchrOdinger 
operator with a random potential in a strip of width d. We suppose that the 
sequence of potentials is a family of independent random variables with a 
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common law, absolutely continuous of E. In the case d = 1, it was known 
that the spectrum is almost surely pure point, with exponentially decaying 
eigenvectors (see Ref. 47 or 49). We establish here the same result for all d, 
using the theory of operators associated with the action of the symplectic 
group on some compact boundary appearing in classical symplectic geome- 
try. tit was already known that the strict positivity of the smallest positive 
Lyapounoff  exponent, associated with a random product of symplectic 
matrix, implies absence of absolutely continuous spectrum for H (see Ref. 
50).] (See also Ref. 51.) 

R. Lima, Spectral properties of the almost Mathieu Hamiltonian: 
This seminar is a report on a joint work with J. Bellissard and D. Testard. (6~ 
We study some properties of the spectrum of operators of the form 

/ L ( ~ ( n )  = +(n + 1) + ~(n  - 1) + ~V(x - nO)r 

where ~p ~ 12(E), V is a continuous function on the circle II, 0 is an 
irrational number, x E Fi, and /t is a real positive number (the coupling 
constant). The case where V(y)= 2cosTry (almost Mathieu potential) is 
particularly interesting from our point of view because in that case it is 
possible to relate the spectral properties for small/~ with spectral properties 
for large/~, using a duality argument. 

First we use the Kolmogorov-Arnold-Moser  recursion process in 
order to treat the small divisor problem which naturally arises in this 
problem. Then the existence of absolutely continuous spectrum for small 
coupling is proved, together with an estimation of the Lebesgue measure of 
this part of the spectrum, showing that the measure is positive. The result is 
true for all x E T and a subset of 0 of full measure. Specifying 0 to be a 
Roth number with special type of continued fraction (lim supn>~a . = 
+ or), then for any e > 0 there is a X 0 > 0 such that, for almost all x E T 
and /~ ~< X0 the absolutely continuous part of the spectrum of the almost 
Mathieu Hamiltonian has a Lebesgue measure greater than 4 -  e (remark 
that 4 + 41/~[ is a trivial upper bound of the measure of the spectrum). Still 
such 0 have full measure. Passing from small coupling constant to large 
coupling constant we prove the existence of an infinite number of eigenval- 
ues whose closure has positive Lebesgue measure. The corresponding 
eigenvectors have exponential decay. For  the special class of 0 described 
above we can give an improvement on the size of the closure of the set of 
eigenvalues, since in that case we prove that the Lebesgue measure is 
greater than (4 - e)/~. 

M. Mehta, Random matrices A review: The review articles or 
books on the topic are as follows. Some of them have a considerable list of 
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references (e.g., Ref. 13 refers to more than 300 articles). See Refs. 12, 13, 
20, 27, 56, 57, 58, 59, 60, 66, and 91]. 

J. Moser and J. Poschel, An extension of a result by Dinaburg 
and Sinai: We consider the stationary Schr6dinger equation (.) Ly = 
- y " +  q(x)y = Xy on the real line, where q is quasiperiodic with basic 
frequencies ~0 = (o~ 1 . . . . .  ,0a). The result of Dinaburg and Sinai (19'77~ is 
extended in the following way. 

If /x = (k, c0)/2 is sufficiently large and badly approximable by all 
other resonances (j,~o)/2, j v~ k, then the spectral gap a-I(/x) (a the 
rotation number) is generally open, and (*) has solutions e i~(x  t + xx2), 
e-i~X3 at the endpoints of the gap, where Xl, X2, X3 are quasiperiodic with 
basic frequencies ~. If the gap is collapsed, then X2 = 0. 

These gaps cluster at the points in the absolutely continuous spectrum 
provided by the theorem of Dinaburg and Sinai. Also see Ref. 38. 

R. Prange, A solvable almost periodic SchrOedinger equation 
with a singluar continuous spectrum: The papers of J. Bellissard, P. 
Sarnak, and M. Kohmoto at this symposium are particularly closely related 
to this work. For references see 22, 28, 68, and 69. 

P. Satnak, Complex almost periodic potentials: Spectral proper- 
ties of Schr6dinger operators of the type H = - A  + eV, where A is the 
Laplacian, V a quasiperiodic potential, and e a coupling constant, are 
developed. V is taken to be finite sum of exponentials with generic 
frequencies. For small e a strong stability is shown. On the other hand, 
examples (in the finite difference case) are given, for which a transition in 
the type of spectrum occurs, as is increased. The talk is based on the 
author's paper. (78) 

B. Simon, m Functions and the absolutely continuous spectrum 
of one-dimensional almost periodic operators: Discussion of the re- 
sults in the following five papers: Refs. 15, 38, 46, 62, and 80. 

B. Souillard, The study of a mobility edge: The Anderson model 
on the Bethe lattice: We consider the Anderson model on the Bethe 
lattice. It is proved (48) for a large class of distributions of potential that with 
probability 1 : 

(i) For large disorder, the spectrum is pure point with exponentially 
decaying wave functions and the static conductivity vanishes. 

(ii) For small disorder, the spectrum is purely absolutely continuous 
for small energies whereas it is pure point with exponentially decaying wave 
functions and the static conductivity vanishes for energies large enough. 

(iii) The density of states is an analytic function of the energy at the 
mobility edges. 
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(iv) The localization length, if measured with the natural distance on 
the Bethe lattice, diverges with the critical exponent v = 1. This result 
implies v = 1/2  for the Anderson model in large enough dimension. 

These results provide the first model where the Anderson transition is 
proved and the first exact critical exponent for the localization problem. 

D. Thouless, Quantized Hall conductance, matter transport and 
band gaps in quasiperiodic systems: An account was given of the 
theory of the Hall effect in a two-dimensional periodic potential, in which 
sub-bands can be characterized by a topological invariant proportional to 
the Hall conductance. (s3) The same invariant describes the integrated 
current carried by a potential which is the sum of two periodic potentials, 
one of which is moved slowly relative to the other. (81) In the case of 
incommensurate potentials, or a two-dimensional potential incommensu- 
rate with the flux lattice, this gives an extra physical significance to the 
integers used to characterize the energy gaps. (38) 

G. Toulouse, Edge states in quantized Hall conductance and 
random walks on percolation clusters: Solving the Schr6dinger equa- 
tion on various structures, regular lattices, fractal s t ruc tu re s , . . ,  with or 
without an applied magnetic field, one is able to treat a number  of 
applications: superconducting diamagnetism, Landau levels, diffusion. Two 
such applications were chosen for discussion. For references, see 72, 73, 74, 
84, and 85. 

F. Wegner, Anderson transition and nonlinear a mode/: The 
behavior of a quantum mechanic particle moving in a random potential is 
considered. Symmetry arguments are given which allow the mapping of 
such a system onto a field theoretic model of interacting matrices. This 
model yields an expansion of the critical exponents at the mobility edge 
around the lower critical dimensionality two. For references, see 21, 37, 63, 
79, 82, 89, and 90. 
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