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We show that a system of particles in a homogeneous magnetic field, with translation 
invariant interaction, has a constant of motion analogous to the total momentum when 
B = 0. Next, we consider the separation of the center of mass. When the total charge of the 
system is zero, the situation is similar to (but more complicated than) the B = 0 case. 
When the total charge is nonzero, the analysis is quite different. The two-body problem is 
worked out in some detail and we also state and prove a version of the HVZ theorem in 
homogeneous magnetic field. 

1. INTRODUCTION 

The total momentum of N mutually interacting particles with translation invariant 
interaction is a constant of motion. Furthermore, the center of mass separates, 
i.e., the Hamiltonian can be factored into the Hamiltonian with the c.m. fixed and 
a part that describes the uniform c.m. motion. 

The sepa:ration of cm. is sufficiently useful to need no propaganda but we shall 
not resist the temptation of making some. First, the absorption and emission spectrum 
is, in fact, the spectrum of the Hamiltonian with the cm. removed and so is more 
natural. Second, one gets rid of three degrees of freedom and third, for the Hamil- 
tonian with the cm. removed one has the HVZ theorem. The HVZ theorem for 
atoms identifies the bottom of the essential spectrum for the N electron atom with 
the lowest eigenvalue of the ion with one electron removed (the theorem is, in fact, 
much more general). Technically, Hamiltonians with the c.m. removed are easier 
to analyze because the potential interaction is, in many cases, a (relatively) compact 
perturbation. This is very convenient and is responsible for the HVZ theorem. 

In the present work we describe the separation of c.m. in constant magnetic field B. 
Not surprisingly, B = 0 is a special case of the general theory. The theory has an 
interesting structure, apparent for B + 0, but which trivializes when B = 0. 

With an eye toward concrete application we mention that the separation of c.m. 
facilitates a more accurate treatment of the Zeeman effect for hydrogen and posi- 
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tronium, reducing them to a one-body problem. (The reduction is more complicated 
than merely the occurrence of the reduced mass.) This is discussed in Section 4. 

We do not consider perturbation theories in B since an exact treatment is preferable. 
Because of the singularity of the perturbation, rigorous perturbation theory is limited; 
see, however, [3, Section 61. 

In Section 2 we start by looking at conserved quantities of the full Hamiltonian 
analogous to the momentum. A “discrete” version of some of the ideas in this section 
has already appeared in connection with the magnetic groups in the one-electron 
theory of solids [5, 7, 11, 31, 321. The conservation laws, and the theory that evolves 
from them, lead to phenomena which are very different, qualitatively, from the 
B = 0 case. Tn fact B = 0 intuition is quite often misleading. We say more on this 
in Sections 3-5. Let us make a small digression on the analogous situation for a 
constant electric field. The results are 

(a) The Hamiltonian is translation invariant iff the total charge Q = CL, e, = 0. 

(b) The center of mass is always separable in the sense that it undergoes a 
uniform acceleration depending on Q. 

(Separation of c.m. and momentum-like constants of motion are evidently distinct 
notions.) 

We return now to discussion of the magnetic case. The vector potential is fixed 
only up to gauge transformations. This arbitrariness enables a realization of the 
translation invariance of the physics in constant magnetic field, as an invariance 
of the Hamiltonian under a “translation group.” More precisely, consider N particles 
in constant magnetic field B with a translation invariant potential interaction. The 
kinetic energy is Cy=, &r& with mivi = pi - eaAi . We shall henceforth stick 
to the gauge where Ai = +B x ri . Let 01 E R 3. The classical Hamiltonian, being 
a function of vi and coordinate difference xi - xj , is invariant under the phase 
space translation g, [ 1 l] 

ga[Xi > PiI = (Xi f (11, Pi + (d2)B X a>* 

g, describes a combined translation and gauge transformation. When B = 0, this 
is the usual coordinate translation, a “horizontal” translation in phase space. In 
general, it is a “skewed” translation in phase space. The translation group in quantum 
mechanics is not necessarily Abelian because in that case, phase space translations 
do not commute. Clearly, the generators of the group are the constants of the motion 
for the Hamiltonian, analogous to the total momentum for B = 0. 

In Section 3 we show that these generators are physical and not only formal 
pseudomomentum: Interaction with radiation conserves the sum of the photon 
momentum and the pseudomomentum. 

Sections 4 and 5 describe the invariance group and reduction of the c.m., including 
a detailed analysis of the two-body problem. Section 4 is devoted to a neutral system, 
Q = 0, and 5 to a charged system Q + 0. For the neutral system the invariance 
group is Abelian (this is remarked already in [35]) and so there is a close analogy 
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with the B = 0 case. There is one important difference, however. The reduced c.m. 
Hamiltonian depends, in general, in a nontrivial way on the total pseudomomentum. 
When B = 0, the “energy bands” are parabolas; for B # 0 they are asymptotically 
flat as the transverse quasi-momentum goes to infinity. 

Section 4 contains a discussion of the two-body problem (hydrogen, positronium) 
which can be worked out rather explicitly. In Section 5, we analyze Q # 0 where 
the invariance group is non-Abelian. Here not all the components of the pseudo- 
momentum commute and so they cannot be diagonalized simultaneously. Fortunately, 
a certain notion of c.m. separation holds also in this case. It corresponds to restricting 
the Hamiltonian to harmonic oscillator eigenstates. 

Since separation of c.m. in magnetic fields is so different from the usual one, 
one naturally wonders why is it relatively unimportant for most applications in 
atomic physics. The reason is the extreme smallness of B. In atomic units, the natural 
unit for the magnetic field is 2 x 10s G. Most laboratory experiments are carried 
out with tiny B on this scale. Two situations where separation of cm. and the 
associated conservation laws may have observational effects are: Neutron stars 
physics where magnetic fields of the order of 1012 G are believed to exist, and precision 
experiments such as the 2s-2p degeneracy lifting in hydrogen. This splitting (also 
in the relativistic case) is partly due to the finite mass of the proton and so on the 
cm. separation and the associated conservation laws for radiation transitions (see 
Sections 3 and 4). 

It may be remarked that corrections due to the finite proton mass in magnetic 
field were calculated by Lamb in his celebrated papers [18, 191. The external magnetic 
field, in this case, was an rf field. The corrections are of the same order as relativistic 
effects so Lamb naturally considered the Dirac hydrogen atom. Lamb got around 
c.m. separation by a perturbation expansion in the electron-proton mass ratio. 

A relatedi notion of c.m. separation can be developed for excitons in solids [17]. 
This combines the ideas of Zak [32] and Brown [7] with the methods of the present 
work. 

Section 6 is devoted to the HVZ theorem. In fact, Propositions 4.7 and 5.5 are 
special cases of Theorem 6.1. 

This paper is the second in a sequence on the spectral theory of Schrodinger 
operators in magnetic fields [3, 41. Although the paper is self-contained, there is 
some interdependence of these papers, so we only consider the Schriidinger case. 
An extension of our results to the Dirac case should be straightforward. Indeed, 
parts of our results have been obtained in the Dirac case already by Grotch and 
Hegstrom [35]. 

2. THE PSEUDOMOMENTUM 

The Hamiltonian 

Ho = (1/2m)(p - eA)2, A=&Bxx 
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has a constant of motion, the pseudomomentum, which was recognized at least as 
early as Johnson and Lippmann [13]. It is the natural analog of the momentum 
for the Laplacian. There are three ways of looking at this constant of motion: The 
center of the Landau orbit [13]; the generator of skewed (phase space) translations 
[ll, 221; and a pair of creation-destruction operators. These descriptions are given 
in the next three propositions. 

PROPOSITION 2.1. Let c = x + (m/e)[(v x B)/B2], mu = p - eA. Then under the 
action of H,,: 

(a) c is the center of the classical Landau orbit (also called the guiding center). 

(b) dcJdt = (B *p)B/mB2. 

Thus, the perpendicular components of c are constants of the motion. 

(c) d2c/dt2 = 0. 

(d) c has commutation relation summarized by c x c = -iB/eB”. 

Proof. The Larmour frequency vector w  is equal to -eB/m. Hence the Larmour 
radius (classical) 

Parts (b) and (c) follow from the (Heisenberg) equation of motion m8 = ev x B 
(Lorentz force). Part (d) follows from CCR. fl 

Although c is very natural due to its geometrical meaning, a closer analog of 
the momentum is a suitable multiple of c: 

PROPOSITION 2.2. Let 01 E [w3 and U(CY) the strongly continuous unitaries U(a) = 
e-i(e/2)x~BxaeiP.as Then 

C-4 K-W, 81 = 0, 

(b) k = p + eA, the generator of U(E), is a constant of motion, 
(c) U(a) xU(a)-1 = x + a, 
(d) k has the commutation relation 

k x k = -ieB. 

Remarks. (1) U(a) is interpreted as skewed phase space translations: 

Tdx, P> = Ix + a, P + (e/W x al. (2) 

(2) The explicit formula in (b) for k is gauge dependent (A = $B x x). 
(3) We use k, throughout for the component of k perpendicular to B, and 

k,, = k . B/j B I. 
(4) k, = e(c x B); cI = (eB2)-l(B x k). 
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Proqfi 

U(a)-l (p - eA) U(a) = ecipa[p - eA - (e/2) B X a] einar 

=p - eA. 
(3) 

Part (b) follows by differentiating U(CX) and the Heisenberg equations of motion. 
Parts (c) and (d) are immediate. k is the pseudomomentum. 1 

The analo,gy of the usual momentum is quite transparent. {U(a)} realizes the 
Abelian group of translations (T=} as a projective representation with w(o1, ol’) = 
eieBxa’a’ as rnultiplier, i.e., 

U(a) U(d) = w(a, a’) U(a + a’). 

w(01, 01’) is determined by the flux through the parallelogram (a, 0~‘). 

(4) 

From a foundational point of view Eq. (4) is quite interesting. Let B = (0, 0, B). 
The family {U(a) 1 01 = (a,, my, 0)} together with rotations about the three axe, 
and the proj’ection valued measure associated to (x, y, 0), form a two-dimensional 
“position operator” in the sense of Mackey [21]. What distinguishes this situation 
from the usu,al one is that the representation of the Euclidean group has a multiplier 
which is nontrivial on the translations. One can show that this cannot happen in 
dimension larger than 2! For this reason, Mackey’s proof that only the Schrodinger 
representation occurs is not applicable. There is yet another way of looking at the 
pseudomomentum which is useful because it gives a natural tensor product decom- 
position of the Hilbert space. 

PROPOSITION 2.3. Let /3 = I eB l/2, 1 B / = B . 2 and Sa = 0 1 n)(n / with 
/ 12) = (a+)” 1 O}, a+ creation operator where 

a = $(p-lIz(pm + ip,) - i/lllz(x + iy)}, (5) 
b = *{p-““(py + ip,) - ij3’yv + ix)] (6) 

and j 0) is the state with a / 0) = 0. Then: 

(a) Z’ = &$ 0 9b @ L2(dz). 

(b) H, = h, @Z@Z+ Z@Z@p,2/2m, 

h, = (I eB l/m)(a+a + l/2). 

(c) b = pyc, - ic,). 

(d) L, = a+a - b+b. 

Remarks. (1) This proposition also exhibits the spectral properties of H,, . 
(2) The tensor product decomposition shows that the spectrum has a countably 

infinite degeneracy. 

(3) The natural “reduced” Hamiltonian is H,, j’xO,O1,,>OLZCdz) . 

We say more on this in Section 5. 
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Proof. Since H,, is quadratic in x and p it is clearly a “harmonic oscillator in 
disguise.” The content of the proposition is a Bogoliubov transformation to the 
canonical variables a and b. 

Alternatively, it is instructive to write 

and notice that the harmonic oscillator part of H,, is just (eB/2m)(a+a + b+b + 1) 
and that the L, term is (eB/2m)(a+a - b+b). The b’s cancel out. a 

The pseudomomentum carries over to multiparticle Hamiltonians in a way which 
is analogous to the momentum. 

THEOREM 2.4. Let H be the self-adjoint multiparticle Hamiltonian in a magnetic 
jield B given formally by 

Then: 

(7) 

(a) k = ~~=, ki is a constant of motion, i.e., [k, H] = 0, 

(b) k x k = -iBQ where Q = J& ei . 

Remarks. (1) We systematically use Aj for A(xJ = &B x Xi . 

(2) The main interest is for atomic physics, and so V(x) j 0, 1 x 1 + co, 
in some sense, is intended. We have kept the theorem general partly because V(x) = 
w2x2 is completely soluble and so of some interest. 

Proof. By Proposition 2.2 all we have to verify is the commutativity of 

~(~1 = e-(i/2)(%iri).B~a eixjpf.a 

with Vij . CyZ, pi commutes by translation invariance and CL1 e,A, is a multiplication 
operator. 

Part (b) follows from 
pi X Aj = -iEijkBk . @>I 

In summary: The multiparticle Hamiltonian is invariant under a family of unitary 
transformations corresponding to an E3 translation group. From this 2.4(b) it follows 
that the projective representation {U(a)} is: 

(a) A unitary representation of the Euclidean translation group in the zero 
charge sector, Q = 0. 

(b) A unitary representation of the Heisenberg group (with fi = B * Q) in the 
plane crossed with the translation group of the line in the Q # 0 sector. 
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The zero charge sector is discussed in Section 4 and the nonzero charge sector in 5. 
Concluding this section, let us recall: 

PROPOSITION 2.5. Let 

(a) For N three-dimensionalparticles, the spectrum of H, is absolutely continuous: 

o(H,,)=[$$$+ (12) 

(b) For N two-dimensional particles, (A = (B/2)(-y, x)), a(HJ is a countable 
set 0 < A, <: A2 *.* with h, = xi 1 eiB j/2mi and h, -+ 03. Each eigenvalue is of 
infinite multiplicity. 

Proof. Part (b) follows from 

and Proposition 2.3(b) since 

u(hJ= \F(ni+$/ni=o,1,2 ,... 1. 

This simple result, together with the invariance of the essential spectrum, will enable 
us to determ:ine the spectral properties of the two-body problem. a 

3. INTERACTION WITH RADIATION 

Here we prove that interaction with the radiation field conserves the total momen- 
tum-the sum of the quasi-momentum and the photon momentum. For simplicity 
we restrict ourselves to a single charged particle. The same applies to multiparticle 
Hamiltonians. 

A model Hamiltonian describing photon emission and absorption without pair 
creation is [Sr]: 

H = (p - eA - @2 + /d3K 1 K 1 aKtaK . (15) 

LX? is the radiation field: 

d(x) = (2%-))-3/2 j  (2 ,d,“h,,, (a’(K) CiKz + a(K) &‘). 

a+(~) is the photon creation operator and polarization indices have been suppressed 
(nothing changes in the argumentations). 
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We have also suppressed an ultraviolet cutoff in JCZ which is necessary for finiteness 
of various quantities. 

PROPOSITION 3.1. Let U(CY) E e-i(eJ2)x.BXoreip’~eix.~ where A’” is the radiation field 
momentum, i.e., 

Then 

eiX.mat(K) e-ix’” = at(K) eir.n* (17) 

U-l(a) HU(a) = H, a E R3. (18) 

Proof. All we have to check is 

U-l(a) d(x) U(a) = d(x). (19) 

Equation (19) follows from the cancellation of the phase shift produced by translating 
x and by (17), explicitly: 

ei(P+eA+.x-).u&(~) e--i(P+eA+X)w = eicP+ea,~a&(x _ a) e-i(PteA).a = &qg* p-4 

Remark. The recoil described by Proposition 3.1 is reminiscent of phonon and 
photon assisted transitions in the band theory of solids [16, 391. We shall say more 
on the implication of this for the hydrogen spectrum in Section 4. 

4. THE ZERO CHARGE SECTOR 

By Theorem 2.4(b), all the components of the total pseudomomentum k commute 
with each other in the zero charge sector. They are, therefore, simultaneously 
diagonalizable, as is the case for the momentum when B = 0 (Q arbitrary). The 
Hamiltonian is invariant under a phase-space translation group U(cx), 01 E R3, i.e., 

w4 WI = U(a: + B>. 
The precise statement of the simultaneous diagonalizability of k can be expressed 

in terms of direct integrals [21]. 

THEOREM 4.1. 

H = j-” d3k H(k), 
88” 

U(I7L) X = s” d3k eik.a s-gk 
R3 

(21) 

(259 

and the tik’s are unitarily equiualent. 
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Remark. That Y& is equivalent to &Q and that d3k occur are not consequences 
of the general theory of direct integrals but rather of the special circumstances here. 

When B = 0. 

H(k) = k3/2m + h. (23) 
Equivalently: 

2 = L2(d3k) 0 X0 , (24) 
H = k2/2m @ I f I @ h. (25) 

This trivial c-number and parabolic dependence on k (Eq. (23)) is special to B = 0 
and the k dependence of the reduced Hamiltonians is more complicated when B i 0. 
Proposition 4.2 describes a special circumstance for B f 0 where the k dependence 
trivializes, and one has a tensor decomposition somewhat analogous to (25). 

The following result depends on Lemma 5.2 and Theorem 5.3 and should be 
returned to after they are studied: 

PROPOSITION 4.2. Let Cl and Cz be noninteracting clusters with Q1 + Qz = 0, 
Ql # 0, i.e., 

on X = L2(IW31cl~) @ L2(Iw31czl). Then the reduced Hamiltonians H(k) are unitarily 
equiualent for two k’s with k’,, = k,, . Moreover, for suitable coordinates xi (dejined 
in Remark 3, below) 

2 s L2(d4x) @ So 

with 

H = (x12/2m, + x22/2m,) 0 I + I @ h, , 

where k,, = x1 + x2 , k, = (x3 , x,), and mi = CaeCl m, . 

Remarks. (1) Letting q = p(xlmT1 - x,m$) with TV = (my’ + m;‘)-l, the 
reduced mass, we see that 

H = k,,“/2M + q2/2p + h, 

so that H(k) is only a function of k,, and the k ,, dependence is a c-number and 
separates out.. 

(2) The independence of k, is an expression of the fact that H is independent 
of the distance between the charge centers of the two clusters. 

(3) If a (resp. b) are the k’s for cluster 1 and 2, then x1 = a,, , x2 = b,, , and 
(x3 , x4) = a,. + b, . 

Proof. An immediate consequence of Lemma 5.2 and Theorem 5.3. 1 

The two-particle interacting case can be worked out explicitly. Without loss of 
generality, we set e, = -e, = 1; let p be the reduced mass, A4 = m, + m2, r the 
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relative coordinate, and x the center of mass coordinate. p and Pr are the respective 
conjugate momenta. 

Warning. PT is distinct from k. 
As we shall see later, the reduced kinetic energy at zero total pseudomomentum is 

Hll = W~,)(P - 0 + W%)(P + w. (32) 

H,, “ties down” the particle in the following sense: 

LEMMA 4.3. 

$ (P” + A21 3 f&l 2 $ (P’ + A21 

where m, = max{m, , m2}, m, = min{m, , mz}. 

Remark. This is related to Lemma 6.4 for multiparticles. 

Proof. By the Schwarz inequality 

Thus 

IHP’ASA*p) 2 -(P2+~2). 

4P + Al2 + B(P - Al2 3 (a + /MP2 + A21 - I LY - P KP2 + A2) 
= 2 min(a, /3)(p2 + A2). 

Remarks. (1) Thus, the H,, of (32) has a compact resolvent in two dimensions. 

(2) Remark 1 and the inequality of Lemma 4.1 is clarified if one expands and 
notes that 

H,, = - 1 A + 
2P (32’) 

As a result, in the oscillator realization of Proposition 2.3 there is only partial 
cancellation between the oscillator piece and the L, term, i.e., 

HO=-&-$+$( ata + $ + g (btb + i)). 

(3) From (32’) we conclude that HO r (L, = 0) is only dependent on TV, the 
reduced mass, and not on the mass ratio ml/m2 . 

There are several unitarily equivalent representations of the reduced two-body 
Hamiltonian H(k). This is the subject of the next two theorems. 
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THEOREM 4.4. Let k E Iw3. Then the reduced Hamiltonian H(k): Lz(Iw3) -+ L2(Iw3) 
is unitarily equivalent to: 

H+(k) = & (2 k+p-A)2++--($k-p-Aj2+ V(r) 

where A = $B x r. 

Prooj Let F = &(B x r) . x, U = eim. Then 

U-‘PJJ = P, - A, 

U-IpU = p + B/2 x x. 

Using p1 = p - (m,/M)P, , pz = -p $ (m,/M)P, one gets 

1 A z U-‘HIV = 2ml -(zP,-p-A)‘+$--(sP,-p-A)’ i - V(r). (36) 

Moreover CT-lkU = PT . The lemma below proves the theorem. g 

LEMMA 4.5. Let 2 = J@ & d3k, let K = f” (kQ) d3k and H = J@ H(k) d3k. 

(33) 

(34) 

(35) 

Let U be a unitary operator from X to SF’ and let K’ = UKU-I. Then 2’ has a 
direct integral decomposition SF = J” &‘I d3k so that K’ = J-3 (kll) d3k with respect 
to this decomposition and so that H’ = UHF1 = J@ H’(k) dX. Moreover, U = 
J@ U(k) d3k with U(k): Zk -+ 2; and H’(k) = U(k) H(k) U(k)-‘. 

This lemma is just an expression of the invariant character of direct integral 
decompositions. 

Remark. The unitary transformation U above appears in [35]. 

EXAMPLE. A particularly simple situation arises for harmonic V(x) with m, = m,: 

H(k) = +(+k t p - A)2 + ;(&k - p - A)2 - (w2/2)x2. (37) 

The equations of motion are 

i =p, 

it = -(w” -f B2/2)x + +k x B + &B(B . x). 

In the B direction the characteristic frequency is w. In the perpendicular plane the 
“distance between the particles” rotates around 

$(k x B)/(cIJ~ + B2/2) 

with the frequency (CO” + B2/2)lj2. 
Theorem ,4.4 regards k as a momentum. The next theorem gives k a coordinate 

flavor: 
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THEOREM 4.6. Let /I = k x B/B2. Then H(k) is unitarily equivalent to 

Proof. Let W = ei(a’x+8.p), 01 = [(m2 - m,)/2M]k. Then W-lPTW = PT , 
W-lpW=p+ol, W-lAW=A-&B x 8, and W-4W = r - ,& Applying W to 
Eq. (36) gives Eq. (38). Note that W depends only on relative coordinates and so 
operates on a single k fiber. fl 

Let us turn to spectral properties of the reduced Hamiltonians H(k). 

PROPOSITION 4.7. Let V E L” + L,“. Then the essential spectrum of the reduced 
two-body Hamiltonian H(k) is 

~e,,WW) = [I B I/‘& + k2/2w ~1. (39) 

ProoJ It is enough to consider V E L2 and the theorem follows by a closure 
argument for compacts. Such V’s are form Hilbert-Schmidt relative to the Laplacian 
and so: 

I/ V1i2(H0 + 1)-l V1j2 Ii2 

< /I P2(-A + 1)-1’2 11; 

x II(J + ly (-A + x2 + 1)-l/2 (12 l1(-0 + x2 + lY2 (Ho + 1)P2 II2 < 00, 

where 

jl A 1/22, = {Tr(AA+)p}112p 

and Lemma 4.3 has been used in the last step. Hence V(r - p) in Eq. (39) is compact 
relative to the kinetic energy for all /3. The essential spectrum of H,,(k) is 
[I B 1/2~ + (k . B)2/2M, co). The result then follows by the stability of the essential 
spectrum under relatively compact perturbations [15, 231. b 

Remark. # E L2 + L,” if VJE > 0, 3JI,, , #2, such that # = z,& + #2, with 
SUP I ~&>I < E> II #2,E II2 < 0. 

In [2-41 we have discussed enhanced binding in magnetic fields. The following 
result is typical. 

PROPOSITION 4.8. Let V < 0 pointwise everywhere and as in Proposition 4.6. 
Then H(k) has at least one discrete eigenvalue. 

Remark. There is an important difference between the single-particle Hamiltonian 
treated in [4] and the reduced Hamiltonian above. In the single-particle case, V + 0, 
V < 0, and spherical symmetry imply an infinite number of discrete eigenvalues, 
with no additional assumption on the range of the potential. This is not the case 
here even under the same assumption on V. The reason for the difference can be 
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understood from Lemma 4.3. Let us call the bottom of the essential spectrum of 
I-I, (k = 0), restricted to a fixed L, subspace the L, threshold. For the single-particle 
case, the bottom of the essential spectrum is an L, threshold for an infinite number 
of LZ’s, but this is not so for Eq. (32); the L, thresholds accumulate at infinity. See 
Remark 2 following Lemma 4.3. The eigenvalues associated with these thresholds 
are therefore not discrete in the total spectrum. Thus if we add a smooth negative 
noncentral Ipotential to V, we expect that H (k = 0) will have only finitely many 
eigenvalues, whereas in the one-body case, H will continue to have an infinity of 
eigenvalues. In particular, for k # 0, we expect only finitely many eigenvalues for 
H(k) (discrete or nondiscrete) even if V is central. 

Let E,(k) denote the discrete eigenvalue function of H(k). E,(k) depends trivially 
on k ,, , i.e., 

-G(k) = O,,)VM + 6dk.J (40) 

That the functions E,(k) are nice follows from 

PROPOSITI~ON 4.9. Let V be as in Proposition 4.6 and real. Furthermore, let k = hP 
with e” a fixed unit vector. Then H#(h@) in the realization of Theorem 4.4 is holomorphic 
of type (B) in h [15]. In particular, E,(h) are real analytic as long as E,(h) stays away 
from the essential spectrum. 

Proof. p f A is form bounded relative to (p f #. This remains invariant 
under the addition of V to (p & A)2 for relatively compact V. The basic Rellich 
criterion for type (B) can be applied to Eq. (33) to yield the result. 1 

The 1 k, ) + co behavior is determined by: 

PROPOSITION 4.10. Let V be as in the previous proposition and Hb(k) in the realiza- 
tion of Theorem 4.7. Then Hb(k) + H,b(k) in norm resolvent sense as I k, ] ---f CO. 
(H,,(k) is independent of k, .) Consequently 

Inf Spec {H(k)} + Inf Spec {H,,(k)} = -$! + $$f 

as / k, 1 + cx). 

Proof. B:y an approximation argument, we may assume, that VE Corn. By the 
resolvent equation 

II R - &I II G II R It 11 “q +1x2)l,2 1) ll(1 + x2Y2 & II 

G c II R II// v (1 +;2)li2 /) 

and Lemma 4.3 was used in the last step. The result follows now from 

V(x + P> 
“u,P (1 + x2)1/2 -O as j k, I + CO. 1 

595/114/I/=9 
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FIG. 1. Schematic energy curves for the reduced two-body Hamiltonian. 

The qualitative behavior of the functions E,(k) is shown in Fig. 1. This should 
be contrasted with the parabolas of the B = 0 case. 

Remark. It seems a little surprising that for an infinitesimal field, the parabolas 
change so drastically, especially since the (local in time) physics is clearly continuous 
as B -+ 0. The point is that spectral information is global in time and that globally 
things are very different (on a classical level periodic in time) no matter how small 
the field is. When m, = m2 = 1 and V = 0 and k = k, we can get a state of minimal 
energy if B = 0 by giving both particles velocity k,/2, so E = ko2/2 (the parabola). 
IfB#O,sok=p,+p,+l-Bxr,wetakev 1 = v2 = 0 and get k by choosing r 
large (i.e., as 1 k 1 B-l) whence E = +(v,~ + vJ2) = 0. Notice that as B -+ 0, these 
states have no limit in the physical Hilbert space. 

We can say something about the curvature of the ground state function E,(k): 

PROPOSITION 4.11. E,(k) - k2/2M is concave downward. 

This follows from Theorem 4.4 and a general concavity of the ground state of 
A + kB (a consequence of min-max). 

In addition, if V(X) is spherically symmetric, rotations around the B axis give: 

PROPOSITION 4.12. E,(k,) is only a function of j k, I. 

For Coulomb potentials we have an additional result: 

THEOREM 4.13. The ground state for the attractive two-body Coulomb Hamiltonian 
(hydrogen, positron&m) is k = 0 more precisely 

El(O) < Edk). (41) 

ProojI The special property of the Coulomb potential is that the ground state 
for the corresponding one-body problem (infinitely massive proton) has L, = 0. 
(See [1, 41 for further discussion.) We shall use this in our proof. Let 

where vimi = 1. Then: 

J%,v2 9 k) = Edk) (42) 

E(v, , ~2, W >, --!%- 
Vl + v2 

EC4 ~1 + v2,k) + *E(Yl + v2,0, k) 

= E(O, ~1 + ~2, k) = E(O, vl + v2,O) = E(v, , v2,0). 

(43) 
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The first inequality comes from the convexity of the ground state in vi . The first 
equality colmes from complex conjugation which implies E(v, , v2 , k) = E(v, , v1 , k). 
The following equality comes from the fact that H(k) and H(0) are unitarily equivalent 
when m;’ == 0; this is evident from (33) and a gauge transformation. The last equality 
comes from the third remark following Lemma 4.3 and the fact that the ground 
state of the Coulomb problem has L, = 0 [4]. 1 

Remark. There are central V’s for which the ground state is not L, = 0 and 
presumably, there are also V’s for which the ground state does not have k = 0. 
The exact Coulomb force is not essential in the above. What is needed is that I’ 
is central, V’(x) 3 0 (see [4]). 

Let us conclude with a few remarks on possible spectroscopic implications. The 
simple models we have been treating, dubbed hydrogen and positronium for illustra- 
tive purposes, have, in the absence of a magnetic field a fourfold degeneracy 2S - 2P. 
Part of this degeneracy is removed, in lowest order in B, but the 2S is still degenerate 
with 2P (L., = 0) in this order in B. This degeneracy is removed by the center of 
mass and for k f 0 there is no degeneracy. Since the recoil due to photon absorption 
or emission will change k, a removal of degeneracy is predicted for the model. 

We have remarked in another paper of the series that for spherically symmetric 
attractive I’, the one-body Hamiltonians (in particular the spinless hydrogen with 
an infinitely massive proton) have bound states, embedded in the continuous spectrum 
at arbitrarily high energies [4]. 

The exist.ence of these bound states is a consequence of rotation invariance around 
the B axis which prevents their coupling to the background continuum. Once the 
symmetry is broken, one expects these states to become resonances [27]. For k = 0 
the reduced Hamiltonian is invariant under rotations around the B axis and so 
has high bound states. This is not the case for k # 0 and so probably there are no 
such high bound states. Hence, the center of mass motion couples the high bound 
states to th.e continuum to cause their decay. 

5. THE Q # 0 SECTOR 

The zero charge sector produced a situation which differs from the standard 
reduction of center of mass in important details, but not in a fundamental way. 
The nonzero charge sector, on the other hand, leads to a different state of affairs; 
one cannot: diagonalize the full symmetry group so there is no reduced center of 
mass Hamiltonian in the conventional sense. We shall, nevertheless, be able to 
analyze the: problem. Most striking is the existence of an underlying infinite degen- 
eracy, that is, the well-known Landau degeneracy, is a feature of any Q # 0 system 
in constant Jield. In addition, there is a notion of reduced Hamiltonians that is 
applicable also for this case. 

PROPOSITION 5.1. k generates the Heisenberg group in 2-dim perpendicular to B 
(with ci = QB) crossed with the translation group. 
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Remarks. (1) Identify k, with p and k, with q. 

(2) The Heisenberg group in 2-dim is: 

d@l > (41 3 PI)) &% 7 (42 9 P,)) 

= &Jl + % - (h12)(91Pz - 92PA (41 + 92 7 Pl + Pz)>, (44) 

It is easy to check that g(a) = eiL.Or satisfies (44) by Theorem 2.4 (use the Baker- 
Hausdorf formula). 

Separation of the c.m. motion in the direction parallel to B is trivial: 

LEMMA 5.2. Let t = k,, . Then 

2 = L2(dt) @ X1 , 

H=t2/2M@I+I@H,. 

In the following we shall proceed to analyze HA . Here it proves somewhat more 
convenient to take a multiple of k, , namely, c = cF=, ei(cJ, , with c x c = 
-iBQ/l B 12. 

THEOREM 5.3. HL is a tensor product, i.e., for suitable h, 

% = LW) 0 =%, , 

H1 =I@h,, 

c, = -@Q/l B 12W/dy) 0 I, 
c, = y @I. 

COROLLARY 5.4. The spectrum of H1 is of infinite multiplicity (so that 

%sc(HJ = @I* 

The natural notion of c.m. reduction is the restriction of HL to the subspace 
f @ tiO, f~ L2(dy). In fact a natural distinguished basis is the eigenstate for the 
number operator C*C = cE2 + cV2. The reduced subspaces are therefore labeled by 
a positive integer in contradistinction with the Q = 0, where the labeling is by a 
two-dimensional vector. 

Proof of Theorem 5.3. c, and c, satisfy the canonical commutation relations 
(fi = Q 1 B I). It is well known that the Heisenberg group has the property that any 
representation with (w, x = 0, p = 0) -+ eiwQ is a direct sum of the unique irreducible 
representation. Thus, the von Neumann algebra a generated by (eic.a} has the form 
B @ Z with B the von Neuman algebra of all bounded operators on L2(dc). eiHlt is 
in the commutant of a by Theorem 2.4. By an abstract result, eiHl, = I @ eiht which 
proves the theorem. 1 
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5’ = (2Q)-l12(c, - ic,) is creation operator: 

L2(dc) = @ I n) = @ ([‘>” I 0). (45) 
n R 

This decomposition is natural for center of mass reduction, as the next result shows 
(Proposition 5.5 is the analog of Proposition 4.7): 

PROPOSITION 5.5. Consider the two-body Hamiltonian. Let V E L2 + L,“, then V 
is compact relative to h, . 

Proof. Suppose we show that V(H, + (e2B2/2M) 1 c j2 + 1)-l is compact on 98”. 
Then restricting to the space with c2 = const, we see that V(h, + const + 1)-l is 
compact on X0 . 

In %’ we can use the five coordinates r = x1 - x2 in R3 and B x R in R2 where 
R = tlxl + e2x2 in R3 (it is here that e, + e2 + 0 enters for it implies that R is 
independent of r). Let A be the operator (M = m, + m,) 

A := &- P,’ + &- 
1 2 

Pzz - & + & (B x R)2 + & (P, + I’,)“. 

We will prove in Lemma 6.4 that 

[H, + ((eB)2/2M)j c 1’ + 11-l 6 (A + I)-” 

where C 6 D means that ) C# 1 < D 1 $J 1 pointwise. It follows by general principles 
(see [3]) that it is sufficient to prove that 

V(A + 1)-l E A$ 

for some p -: 00 where -“, = {C ) tr(i C 1”) < co}. Let p = (B x R). Let 

A, = --d, - d, + p2 = A, + A,. 

Then it is easy to see [23, Vol. II] that D(A) = D(A,) = D(--d,) n 0(-O,) n D(p2)) 
and thus (A, + l)(A + 1)-l is bounded (by the closed graph theorem). It 
thus suffices to prove that V(A, + 1)-l ~9~ . Since A, and A,, commute, 
(A, + l)1’2(A, + l)liz(A,, + 1)-l is bounded and thus we need only show that 
V(A, + 1)-l 2(A, + 1)-l 2 is in J$ . For I/ in Corn, V(A, + 1)-1/2 is certainly in Xv 
in the r variables for p > 3 and (A, + 1)-lj2 is in SD in the p variable for p > 4, 
so we are done. 1 

6. THE HVZ THEOREM 

In Sections 4 and 5 we have described a special form of the HVZ theorem, i.e., 
for the two particle problem. We shall now consider the more general case. 
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The two-body problem has a trivial aspect about it which is that the essential 
spectrum starts at ( B 1/2~ + (/c,,)~/~P, i.e., it has an explicit k dependence. This 
is not true in general and the bottom of the essential spectrum will have a k dependence 
that depends on details of the interaction. 

We shall follow [24] in our proof of HVZ. 

THEOREM 6.1. Let H, be an N particle Hamiltonian with c.m. removed, i.e., 
H, = H(k) if Q = 0 and H, = Hl,,,sO if Q # 0. Let 01 be apartitioning into disjoint, 
nonempty clusters C;, C2a and 

H, = H1a@I+Z@H2cL+ V” 

with the obvious meaning, e.g., V” = interaction between cl’11 and C,=. Then 

Before getting into the proof, let us consider some applications: There is a natural 
concept of atoms, ions, and molecules in this framework with point particle nuclei. 

For atoms and ions one has: 

PROPOSITION 6.2. The inf, in Theorem 6.1 is obtained for 01~ with one electron 
removed. 

This is an easy application of HVZ together with the fact that the electronelectron 
interaction is purely repulsive. 

A consequence of Proposition 6.2, Theorem 6.1, and Proposition 4.2 is 

COROLLARY 6.3. Let H(k) be the reduced Hamiltonian for an N particle, neutral 
atom. Then 

infb,,,(H(Wl = c + k,,212M 

where c = min energy of ion in magnetic field. 

For molecules one expects, in general, a nontrivial dependence on k. This means 
that the “kinematic” conservation law of energy does not follow a universal curve 
(parabola) but depends on the details of the interaction. For example, the disassocia- 
tion of the hydrogen molecule into two hydrogen atoms involves the nontrivial 
function 

$,f {El&L) + kfl2M + E,(k - k;) + (k - k’)li/2M} 

where E,(kJ is the ground state energy function of hydrogen (Propositions 4.12 
and 4.13). 

Pointwise bounds on the resolvent played an important role in Avron et al. [3]. 
These are convenient for proving compactness of certain operators. Since HVZ 
is basically a compactness result, they enter naturally also here. In [26, 361 a sufficient 
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condition for the pointwise inequality (H + 1)-l 6 (A + 1)-l was formulated which 
is of the form Re[(sgn 1cI> H#] 3 A [ # 1, pointwise, with e-tA positivity preserving 
and sgn 4 q = $//I ~,4 1 if I # j # 0 and 0 otherwise. 

LEMMA 6.4. Let M = Cr=, mi , R = 2 eixi , 

Then 

ReKw 16) fW1 3 A I # I, SL E D(H). 

Proof. Kato’s inequality in magnetic field (see, e.g., [23, Vol. II]) asserts that 

for any positive definite quadratic form t and any smooth ai . The idea is to rewrite 
Has t(pj) -/- function of ri . By finding the minimizing point of 

one finds that 

(4 - eAtI2 + & (&’ (ei + +&I) 
z 

with 

Thus 

i~i = % (B X R) + eiAi . 

H=~~(p,-ni)2+~(S(~i--23)e+~(B x RY 
z I 

whence Kato’s inequality implies the lemma. ( 

By the result of [26, 361, we have the following (used already to prove Proposi- 
tion 5.5): 

COROLLARY 6.5. Let H, A be as in Lemma 6.4. Then 

(H + I)-’ < (A + I)-‘. 
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Proof of Theorem 6.2. Let 1 x I2 = Ciu (xi - xi)“, y(x) E Cgrn such that v = 1 
if I x I < 1 and 0 if [ x I 3 2 and J&X) = &in). Let H, be the Hamiltonian with 
no pair interaction and c.m. motion in the B direction removed and let 

A = (H,, + 1)-l J+ . 

Since J is translation invariant, A is reducible. By [24] the proof of the “hard 
direction” of HVZ is reduced to proving compactness of A with c.m. removed. 
In the zero charge sector, Q = 0, this means A(k) is compact. In the nonzero charge 
sector if is sufficient to show that the nonreduced 

A’ = (H,, + k2 + 1)-l Jsn 

is compact. For the Q = 0 sector (resp. Q # 0) this just follows the proof of Proposi- 
tion 4.7 (resp. Proposition 5.5). 1 

The easy direction, u(H,. - Va) C a(H,.), follows Hunziker’s proof [12]: Given 
any u E D(H,), lims.+,, ll(H, - E) Ws% 11 = II@&. - vlar - E)u )I where Wsu translates 
the clusters Cla, &a relative to one other in the B direction by an amount s. This and 

spec(A) = {E I VE, 324 II u II = 1, lI(A - E)u I/ < E> 

imply that a(H, - Va) C o(HT). n 

Remark. The proof of the “hard direction” works for two-dimensional particles 
but the easy direction depends on the possibility of translating parallel to the fields. 
Indeed, the continuous spectrum is only present for this reason and will not be 
present in two dimensions. 
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