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N Body Scattering in the Two-Cluster Region^

Barry Simon**"
Department of Mathematics, Weizmann Institute of Science, Rehovot, Israel

Abstract. We extend Combes' result on completeness of TV-body scattering
at energies below the lowest 3-body threshold from potentials with |x |~ v ~ ε

falloff (v = number of dimensions for each particle) to central potentials
with xl"1"8. We also treat the scattering of electrons from neutral atoms
in the two cluster region.

§1. Introduction

This paper is a contribution to our program [2, 8, 3] of using geometric ( = config-
uration space) methods to study multiparticle non-relativistic quantum mechani-
cal systems. Indeed, it can be viewed as an addendum to Section 3 of [8].

Consider the Hamiltonian of N particles in v-dimensions, i.e.,

on L2(RNv). As is traditional, we separate out the center of mass and consider
the "reduced" operator, H on L2(R(N~1)V). Corresponding to any decomposition
α of {!,..., rc} into two non-trivial subsets C(£\C%\ H decomposes into

) + H(Cf ) + Γα + Ia where IΛ is the interaction between clusters, i.e.,

and 7^ is the relative kinetic energy of the clusters.
One defines

and

where the operator is viewed as acting on L2(R(N 2)v). Finally, Σ2 = mm (Σ2 α),
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Σ3 = min(£3 α). The HVZ theorem (see [5, 6] for general information on TV-body
α

systems) asserts that the essential spectrum of H is [Σ2 , oo] and implies that Σ3 is
the lowest energy for breakup into three clusters. In the energy range [^2^3]'
the only open scattering channels are two cluster channels. The problem is genui-
nely multichannel since excitations and rearrangements are allowed but as it is
"essentially two body" one would hope that two-body methods, especially the
elegant Kato-Birman theory (reviewed in [5], §XL3) would be applicable.

That this is indeed the case was a discovery of Combes [1]. In §3 of [8], we
showed how Combes' proof could be streamlined and made quite elementary.
Both [1] and [8] require V^x) to (more-or-less) behave at | x |~ v ~ ε at infinity
([1] only considers v = 3) which is not surprising since this is well-known to
be the restrictions needed for the applicability of the Kato-Birman theory in
the two body case.

What is not so well-known is the remark of Kuroda [4] that for central poten-
tials where one can make a partial wave expansion, the Kato-Birman theory
applicable so long as V is O^^l"1"8). Our goal in §2 below will be to combine
this remark of Kuroda [4] with [1, 8] to prove completeness of the scattering in
the energy range [£2,£3] for central potentials Vtj with (Xl*!" 1" 6) falloff. There
is one irony in this situation : The study of non-central potentials in the two-body
case is often defended on the basis that they will better mock up the TV-body
situation where a partial wave expansion is not available. At least in the two
cluster region, this argument is discredited by our considerations in §2. To avoid
the special value / = — f which occurs in the v = 2 partial wave expansion, we
will suppose v ̂  3 in §2. It is probably quite easy to accommodate v = 2.

In the method of [8], one had to show that an operator Alβ was trace class
and there (and also in §2, below) we accomplished this by looking at each AV^B.
Doing this prevents the use of any kind of cancellations between the V t j . Such
cancellations are expected to be present in the scattering of an electron from a
neutral system. We discuss this problem in §3 and prove completeness in the
two cluster region by treating Alβ all at once. This is the first completeness
result for Coulomb systems with more than two particles.

§2. Short Range Potentials with Slow Decay

In this section, we will prove :

Theorem 1. Let v ̂  3. Let each potential V^ be central (spherically symmetric)
and obey:

for p = 2(v = 3), > 2(v = 4), v/2(v ^ 5). Then scattering is complete in the energy
range [Σ2,Σ3],i.e,

where Ω^ are the usual channel wave operators, and EΩ(Eac) are spectral projections
forH.
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Proof. We begin by recalling some notation and results from [8]. Let Pα be the
projection onto all states of the form ^(CJ^ίίaW'OU where £. is the coordinate
internal to cluster Cf\ ηa is the coordinate between the center of mass of the
clusters and φί9φ2 are eigenfunctions of H(Cf]} with energies £. obeying E1 + E2 <
Γ3 . By definition of £3 , we can (by replacing Γ3 by Σ3 — s) suppose each Pα is
"finite dimensional" in the £. coordinates.

Let P be the projection onto the span of the Pα and let Q = I — P. Then,
as in [8], (P - P^~ϊtHEφ and Q(e~ίtHEφ) -> 0 as t -> oo where E = EacE[Σ^Σ3Γ

The proofs of these facts depended not at all on the |x |" v ~ ε falloff of V. Thus,
as in [8], the proof is reduced to showing the existence of the limits (HΛ = H — /α)

Ω±(Hol,HιPα) = s - HmeίtH«PΛe-ίtH.
ί-* +00

Now let J be the total angular momentum of the particles about their center
of mass. We use the symbols <2j^.(resp. QJ=j) to denote the projection onto all
vectors with J2 ^j(j + l)(resp. J2=j(j+ϊ). We are supposing for notational
simplicity that v = 3 otherwise more involved notation is needed to label the
relevant spherical harmonics and representations. For each α, we can write
J = Lα 4- Sα where Sα is the angular momentum of the cluster about their centers
of mass and Lα is the angular momentum of the two clusters about each other.
Notice that J commutes with H, Hα,Pα and that Lα,Sα commutes with Hα,Pα.
Moreover

for some 5, since Pα is "finite dimensional in the ζ. coordinates".
Since J commutes with H, the existence of Ω±(Hα,H;Pΰ) follows from the

existence of Ω±(H0[,H;PαQJ^j) for each). By Birman's form of the Kato-Birman
theorem, we only need that (for [Hα, PαβJΐSj] = 0)

C = Hx(PΛQj^ - (P.Qκj)H = - P.Qj^jI..

has the property that Ej(Hx)CEj(H) is trace class for each bounded interval.
(Mutual subordination is trivial.) As in the proof of Lemma 3.4 of [8], write

EI(Hα)CEI(H) = ABDE (2)

(3)

(4)

where we have used P^ = Pα and the fact that Pα and J commutes with Pα, Tα

and I τ?α |
2. Now A and E are bounded as in [8].

The proof will be completed if we show that D is bounded and B is trace class.
To handle D, decompose Iα = ΣVtj and for a given term, write
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for a suitable internal coordinate ζ. Then using that

is bounded by hypothesis and that

is bounded by the exponential falloff of bound states, we conclude that D is
bounded.

To control B, use (1) and write

where we have used the fact that if J2 =j(j + 1), S2 = s(s + 1), then L2 can only
have eigenvalue /(/ + 1) with I ̂  j + s. Thus, we only need that

is trace class for each fixed /. Now, Pα is a sum of rank 1 operators in the C's, so
we can suppose that Pα is rank 1 in the C's. But then the operator in (5) is a finite
direct sum of operators unitarily equivalent to

on L2(0, oo, dr) where h0>l is the operator with angular momentum barrier, /, i.e.,

, d2 1(1+1)
Λ° I ~ dr2 + r2 '

Let p2 be the operator — d2 /dr2 on all of ( — oo, oo). Then,

(We remove a Dirichlet B.C. in the last step.)
By a standard theorem,

for ε < \ (which can be assumed without loss). Thus, since

( 1 + Γ2)-l/4-ε ( p2+ 1 )-l/2-ε ( 1 + r2 )-l/4-ε

is known to be trace class on L2(R) (see e.g. [5] ), we have that

is trace class. Using the fact that

(1 + ΓJ-^-d + \η, 2)-^-(l +

is bounded, we conclude that B is trace class. Π

§3. Scattering from Neutral Coulomb Systems

In this section, we want to prove :
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Theorem 2. Let N = m +2 and v=3. Suppose that V^x) = \x\~l for i^j ^m + 1
and J^ (x) = — m \ x \ ~~ 1 for i < m + lj = m + 2, Then scattering is complete in the
region[Σ29Σ3].

Remarks. 1. We describe a system with a nucleus of charge m and m + 1 electrons.
Thus we are talking scattering of an electron off a neutral atom at energies too
small to ionize a second electron.

2. Since atoms have an infinity of bound states [9, 7], as Σ3 is approached,
an infinity of channels open. But at no energy that we consider, is the problem
genuinely infinite channel.

3. One can allow more than one positive change so long as one cluster is
neutral in each allowed two cluster state in the energy range considered. Also,
one can add central short range potentials as in §2.

Proof. We follow the proof of Theorem 1 including the decomposition (2). A and
E are bounded as before and B is trace class. All that is different is the proof that
D is bounded. Let/(x) = x^1 (if |x| ^ 1) and = 1 (if |x| ^ 1). Let g(x) = j x j - 1 -
f(x). Let Vtj =ftj -f gtj and let IΛ = IΛΛ + IΛ 2 corresponding to this decomposition.
IΛ 2 is a sum of finite range pieces, so its contribution is bounded as in §2 and
[8]. Restricting to a "rank 1" Pα and to specific coordinates, we find that it suffices
to show that the following operator is bounded :

where we have passed to atomic coordinates ^j = r — rm+2 and we use Dirac
notation for Pα.

Now, |(Vf)(x)| < |x|c-
2 where \x c = \x\ (if |x| ^ 1) and - 1 (if |x ^ 1). Thus

I/O* - y) -/(x)| ̂

It follows that we need only prove that

is bounded. This is easy; for

(1 + a2) [min(α, a - b)~\~ 2

^ max[(l + α2K~2,(l + a2)(a - b)~

where we used a2 ^ 2(α - b)2 + 2b2. Thus taking ε = \ (without loss) and using

Ίm+i ^ 2xm+ι + 2 |C| 2

? we need only that

\ηxη xm(3 + 2x2)

is bounded. This is immediate from the exponential falloff of η in the xj(j ^ m)
variables. Π
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