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We study the small X behavior of the ground state energy, E(h), of the Hamiltonian 
-(@/dx”) + hV(x). In particular, if V(x) N -ax? at infinity and if s V(x)dx -r 0, we 
prove that (-E(h))1/2 = -[ah + aXgIn A] S&V(x) + 0(X2). 

1. INTRODUCTION 

It is well known that a sufficiently shallow square well in three dimensions will not 
bind. By contrast, in one or two dimensions, there is a special situation, due essentially 
to an infrared divergence, in which an attractive short-range potential always produces 
a bound state no matter how small the coupling. For the case of the one-dimensional 
Hamiltonian 

H = -(d2/dx2) + h V(x) 

Abarbanel et al. [l] derived a formal series for the ground state, E(h), for an attractive 
V of short range of the form 

This situation was further studied by Simon [2] who proved that SO long as 
J dx V(x) < 0, and J dx( 1 + x2) I V(x)1 -C co, there is a unique bound state for small 
h and its energy is given by (1.1). It was also shown that if j dx eYlrnl V(x) < co, 
then (-E(h)))1/2 is analytic at h = 0. 

In this note we wish to consider the case where V(x) is of sufficiently long range that 

s dx(1 + x2) I I’(s)1 = co. 
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There are three cases to consider with 

asx-+ co. 

V(x) N ---ax-~ (1.2) 

(A) If 2 < t9 < 3, then a simple modification of the argument in [2] allows one 
to prove that (1.1) is still valid. 

(B) If /3 = 2, there is still a unique bound state for small h so long as 
f dx V(x) < 0. However, if this integral is nonzero, then (1.1) is not valid because 
the h2 term is infinite; there is, in fact, a h2 In h term which we explicitly isolate. The 
situation here is reminiscent of some recent work of Greenlee [3,4] and Harrel [5] 
who study perturbations of the operator ( -d2/dx2) by potentials with X-Y singularities 
at the origin on the interval [0, CL] or (-(d2/dx2) + x2) on the interval [0, co] with 
4(O) = 0 boundary conditions. If y > 3, then first-order perturbation theory is 
infinite but there is an explicit X-g, g = (y - 2)-l leading term if y > 3 and a h In h 
leading term if y = 3. Harrel also considers situations in which the first-order term 
is finite but the second order is infinite; for example, if y = 2.5, there is a 
aA + bh2 In X + O(h2) behavior analogous to what we find in the /? = 2 case. 

(C) If 1 < p < 2, then there are infinitely many bound states for any h > 0 
in one and three dimensions. One may ask in this case if there is any difference between 
the one and three-dimensional case as there is for a short-ranged potential V(x). 
In fact, there is a difference; all the bound state energies in three dimensions and all 
but the ground state in one dimension are of order hh, h = 2(2 - /3)-l, as h approaches 
zero from above, The ground state energy in one dimension is special in that it is 
of order h2. One still finds that 

(--E(A))‘/” = - &A j dx V(x) + O(h). (1.3) 

We shall not consider the case /3 = 1 or 0 < /3 < 1 although on the basis of the 
work by Greenlee and Harrel and our case (C), there is a natural conjecture: At 
/3 = 1, all states but the ground state are of order X2, while the ground state is of 
order X2(ln X)“; for 0 < /? < 1, all states are of order hh, h = 2(2 - p)-’ and the 
ground state is of order hg, g = 2(3 - 2/3-l. 

The outline of this note is as follows. In Section 2, we consider, for motivation, 
the special case V(x) = -&(I x 1 + &2, which is solvable in terms of Bessel functions. 
In addition to verifying our general results for j3 = 2 (see also formula (4.2)) and small 
h, we check explicitly a curious behavior at h = 1; for x < 1, there is only one bound 
state, while for X > 1, there ate as infinite number. Such a behavior was proven in 
general for /3 = 2 potentials by Simon [6]. In Section 3, we consider the cases (A), 
(C) and certain general features of (B) as defined above, and in Section 4 the P In X 
term in case (B) is explicitly isolated. 
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2. AN EXAMPLE 

In this section we shall discuss the potential 

hV(x) = -$A( / x , + d)-2, (2.1) 

and the solution to the Schrodinger equation 

t)“(x) + [k2 - XV(x)] a)(x) = 0. 

The outgoing wave solution for positive x can be written in terms of Hankel 
functions [7] 

cfG+(x) = T(k(x + d))1’2 H,‘l’[k(.u + d)], (2.2) 

where T is constant and v = f(1 - h)1/2. The solution for negative x includes an 
incident plane wave and a reflected wave at infinity and is written 

$44 = (k(d - .$y2 {lip’[k(d - x)] + RH,“‘[k(d - s)]]. (2.3) 

Matching boundary conditions at the origin yields a reflection coefficient, Y, and 
a transmission coefficient, t, of the form 

where 2 = kd and 

T = 4i/n-D(z) 

R = T - H~‘(z)/H,‘l’(z) 

an d 

D(z) = (d/dz)[z(H,“‘(z))]“. (2.4) 

The eigenvalue condition is equivalent to the vanishing of D(z) for z pure imaginary 
and in the upper half plane. Definjng z = &, it becomes 

y@/dv) Kv( Y) = -+KvC Y). (2.3 

where y = d(--E(h))1/2 and recall that v z i(1 - h)ll” where K,(y) is a modified 
Bessel function of the second kind related to HJl’(z) by K,.(y) : (ri/2) exp(irrv/2) Y 
H(l)( iy). 

For 0 < h < 1, there is always one solution to (2.3, as can easily be seen by 

considering the limiting behavior of both sides of this equation. For small A it is 
convenient to expand K,(y) as 
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and the eigenvalue condition can be expanded as 

2v = tanh[v ln(2/y)] + O(y) 

or 

y = =& - v[l - ($ - V) In 4/y2] + O[(+ - v)“]. 

This can be rewritten in the form 

(--E(W2 = - &[A + 2aX2 In A] J dx V(X) + @As), 

CW 

where a = 4. We shall return in Section 4 and derive this expansion for a more 
general class of potentials that behave as ---a~--~ for large x. 

If h is larger than one, then one sees that the index of the Bessel function becomes 
complex. This introduces an oscillatory behavior and profoundly affects the spectrum. 
If h is only slightly larger than unity, then a simple expansion is possible for small y. 
Defining v = 8, then the eigenvalue condition (2.6) becomes 

26 = tan[6 ln(2/y)] + O(y). (2.8) 

There are therefore an infinite number of bound states for X > 1, and their energies 
are geometrically related for weak binding. 

3. GENERAL CONSIDERATIONS 

Throughout this section we shall consider the family of operators H defined earlier 
with 

s dx I W < ~0, (3.1) 

and will often add the condition 

for some y > 0. 

s dx / x Iy I V(x)1 < co (3.2) 

The discussion in Ref. [2] assumed Eq. (3.2) with y = 2, and it is our purpose 
to extend the class of admissible potentials. We note that if V(x) N ---a~-~ for large x, 
and (3.1) holds, then (3.2) will also hold for y = p - 1 - E for any E > 0. Under 
condition (3.1) two results carry over from Ref. [2] (Propositions 2.1 and 2.2); 
namely, E = --a2 with 01 > 0 is an eigenvalue of H if and only if 

det[l + AK,] = 0 (3.3) 
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where K, is the integral operator 

US, .I,) = -& i V(x)1 li2 exp(- x ,Y -~ j’ ,) C J,z( J), 
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(3.4) 

and Yl+( y) == j V( 1;)l!2 sign(V(y)). Moreover, 

for some c and all small h. Thus one needs only look for solutions to (3.3) with 
0 < a(h) < (ch)liz for amsll h. 

It is convenient to decompose K, into two sets of integral operators 

K, = Qa + P, = Lo + Me 

First, 

where i x j< = 0 if XJ’ < 0 and j x )< = min j x ,, 1 J j otherwise; i x j> = max 1 .y ‘. 
I y ;. Second, 

L,(x, ,,) = & / V(x)l”’ V’2(y). 

(3.6) 

In Ref. [2], the latter decomposition was used since it results in a simpler implicit 
equation for 01 as deduced from Eq. (3.3) than does the former decomposition (com- 
pare our Eq. (3.8) with (9) of Ref. [2]). 

The advantage of the ~2~ , P, pair is that it is more convergent. As IY --f 0, the factor 
in brackets of Eq. (3.5) approaches , .X I< rather than a factor of + j x - J’ , as in 
Eq. (3.6). For fixed y, the latter approaches 4 1 x / for large x whereas for the former 
I x /< --L 0 or I 1’ / as 1 x 1 + co. Therefore PO is less singular than M, . 

We emphasize that P, is very natural, it arises from replacing the Green’s function 
in K, by the Green’s function in which a zero boundary condition is imposed at the 
origin. The fact that when Eq. (3.2) holds with y -= 1, then det( 1 + tie) = 0 has 
no solutions for h small is intimately connected with Schwinger’s proof [8] 
of Bargmann’s bound [9]. 

In order to bound P, independently of LX, note that the elementary inequality for 
.Y :’ 0 

x-l sinh x < cash x g eJ 
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leads to 

1 P,(x, y)l < j V(x)ll’z I x I< I V(y)l”” < I xV(xW2 I yV(y)11’2 

so that by letting 

(3.7) 

P,(x, y) = I V(x)11’2 I x I< V1’Yy), 

we have by the dominated convergence theorem 

s dxdy 1 P, - P,12-+0 

as a: -+ 0 so long as (3.2) holds with y = 1. With this result, one can now mimic the 
proofs of Theorems 2.4 and 2.5 of Ref. [2] and obtain 

THEOREM 3.1. Suppose that (3.1) holds and that (3.2) holds with y = 1. Then H 
has at most one negative eigenvalue for h small and this occurs if and only if 
J dx V(x) < 0. If this condition holds, then o( = (-E(h))l12 is given by the implicit 
condition (expand the determinant using the fact that Qa is a separable integral operator) 

a = -~h(e-~l~l W2, (1 + APE)-l e-allll V(y)[ll”) (3.8) 

and, in particular, Eq. (1.1) holds. This immediately extends the results of ReJ [2] 
from X-~--E potentials to x-2-c potentials. 

To understand and to anticipate our next result, suppose that V(x) = V(-x) 
and V - -ax-B at infinity. If &, and. I,& are two bound states with energies E,, < E1 , 
then it is possible to find a linear combination d(x) on (0, 00) that vanishes at the 
origin. Therefore, 

El Irn d-x 4”(x) t Jrn dx I(W + XV(x) +Yx)]. 
0 0 

As is well known, if d(O) = 0, then [lo] 

s,I dx (&)2 2 $ lm dx 4”(x) x-~, 

so that 

E,(h) 3 min(&2 + AV(x)) N -As 

where g = 2(2 - /3)-l if /3 < 2. Thus one expects that all bound states except for 
the ground state will have energies that behave as hi whereas the ground state energy 
will be 0(h2). 

THEOREM 3.2. Let V obey (3.1) and (3.2) f or some y, where 0 < y < 1; then there 
is a constant C so that at most one bound state occurs with an energy smaller than 
-CA”, h = 2(1 - y)-l, for amsll h. Such a bound state will exist if J dx V(x) < 0, 
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and in that case its energy,, E(h), is girlen by Eq. (3.8) with u = ( -E(h))liz. III particular. 

Proqf 1 Since 

(-E(h))‘/” = - ;A J’ do V(s) + O(h’ ‘). (3.9) 

then 

Recalling the bound on 1 P, / given by Eq. (3.7), one has for 0 < fl < I 

1 P,(x. ?)I < (+J (xy)B’” ! V(.u)(l/” 1 V( J$“z. 

Therefore, the Hilbert-Schmidt norm for P, , choosing 6, = y, is bounded by 

It now follows that if h 1; P, JjHS < 1, or equivalently 

E(h) < - 4’ [A j d.v I s j 1 I’(.Y)~]~’ (3.10) 

where h = 2( I - r)-l, then (1 + hP,) is invertible and thus for such 01 and A. Eq. (3.3) 
has a solution if and only if (3.8) has a solution with a: > 0. Then E = -2 is the 
unique eigenvalue and satisfies the inequality (3.10). The result now follows by 
mimicking the arguments given in Ref. [2]. 

The 0(X1+‘) error comes from 

Error = - ~h(e-*I~I VlP(,y), [(I + AP,)-’ ~ 11 / v ‘1:~ +s/ ) 

- Ah d.y V(x)(e-aizi - 1). s 

The first term in the error is of order A2 I( P, jlHS = O(h2nY-1) = O(h’+) since 01 = O(h). 
By using Ce-UITI - 1) < (n 1 x jp, the second term is also seen to be of order 
O(hcP) := O(hl+q. 

4. THE SECOND-ORDER TERM FOR p = 2 POTENTIALS 

In this final section, we will consider potentials that behave as V N -ax-’ at 
infinity. For later convenience we will decompose V as 
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where 

and demand that 
VI(X) = -a(1 + x2)-’ 

s dx / x (I+6 j V,(x)1 < 03 (4.2) 

for some 6 > 0. It will be proved that if J dx V(x) < 0, the ground state energy obeys 

(-E(h))1/2 = -[&A + ah2 In A] j dx V(x) + O(h2). (4.3) 

To motivate this result, consider the direct expansion of the determinant, Eq. (3.3); 
after some slight manipulations one finds to second order in A, 

1 &Z----X 
2 

j dx V(x) + & Jim dz (1 - e-2UZ) j Ocl dx V(x) V(x + z). 
-cc 

The small LY limit of the second term depends upon the large z behavior of the con- 
volution integral between two V’s. One estimates that 

j dx V(x) V(x + z) N [V(z) + I’( -z)] j d.x V(x) 

and for even potentials one finds 

s 
m dz (1 - e-lorz) V(z) N -2aor In 01 + O(a2). 

0 

Now by noting that a: = O(A), the expansion (4.3) immediately follows. 
In order to prove this result, let us return to the eigenvalue condition (3.8) and using 

Theorem 3.2, where y = 1 - E for ,B = 2, one has 

a=-@ 
s 

dx f/(x) e-*al~l + $,l2(e-~l~l VI/*, P, / v]l/* e-alvi) + 0(x3-f) 

(4.4) 

= - $A 
s 

dx V(x) e-2aiZi + $A2(W2, Pa 1 J’ l1j2) + O(h3-r). 

Now the second term is most easily estimated by using the relation Pa = M, + 
(L, - QJ, and one has 

+h2(W2, (L, - QJ 1 Y l1i2) 

zz.z- $I2 j dx dy V(x) V(y)(e-“‘“1 - 1)/a + O(h3--E) 

= h j dx V(x)(e- aI4 - l)[(l/Lu)(oI + O(P’)] + O(P-F) 

= h j dx V(x)(e-+ - 1) + O(h3-r), 
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Thus Eqs. (4.4) achieve the form 

This result shows the advantage of using the P, , Qa decomposition, becuase if one 
had instead used M, and L, directly, the third term in (4.5) mught have been missed 
by assuming that X3(V1/2, Mm2, / V 11/2) is of order h3-e. However, we shall see that this 
term contributes to order X2 only and does not contribute to the X2 In h term that we 
wish to isolate. 

Introducing the Fourier transform by 

then we find that 

j(k) = (2~)-li” 
s 

d,x g(x) e- “lbr. 

jFl(k) = -+4277)1/2 e-Ii’1 

and V2 is continuously differentiable with 

( P2(k) - p2(k’)i < c , k ~ k’ 6. 

and hence by Taylor’s theorem with remainder 

B(k) -2 r(O) + &(2~~)l/” i k 1 i ok + O(klr”). (4.6) 

Now using the fact that the Fourier transform of exp( --h( .Y I) is (2~). l/l 2b(&+k2)--1, 
the third term in (4.5) becomes 

;A .i * dk [p(k) - l30)](2~)y~/~ 4rx[(k” 7 &’ - (k’ .~ 4$x2)-‘]. (4.7) 

The contribution to the integral in (4.7) outside the region ( -1 I.:. k i. 1) is easily 
seen to be of order hn3 = O(A4). From this region itself, one sees that the ck term 
in (4.6) contributes zero and the O(kl-*) term contributes of order XCY?+~J’~*; 
O(h2L1r2fi). Finally the I k j term yields (neglecting O(h4) terms) XUY In 4 -: O(h”). 
As claimed. this contributes a term of order h2 to CX. 

The second term in (4.5) is 

which can be written as 

(4.X) 
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Using the expansion (4.6), we have 

1 V(k)/” - 1 ~(0)j2 = 2Re[p(O)(@?) - p(O))] 4 I p(k) - p(0)12 

= ~2(2,7)~/~@0) I k I + c’k + O(k1+6). 

Thus Eq. (4.8) is estimated to be 

Zz.7 X2a(2n)1~2 p(O) 1’ dk k(k2 + c?)-~ + 0(X2+“) 
0 

= --ah2 In h 
s 

dx V(x) + O(A2). 

This then proves Eq. (4.3). 
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