The Bound States of Weakly Coupled Long-Range One-Dimensional Quantum Hamiltonians*

R. Blankenbecler,[†] M. L. Goldberger, and B. Simon^{††}

Department of Physics, Princeton University, Princeton, New Jersey 08540

Received January 25, 1977

We study the small λ behavior of the ground state energy, $E(\lambda)$, of the Hamiltonian $-(d^2/dx^2) + \lambda V(x)$. In particular, if $V(x) \sim -ax^{-2}$ at infinity and if $\int V(x)dx < 0$, we prove that $(-E(\lambda))^{1/2} = -[\frac{1}{2}\lambda + a\lambda^2 \ln \lambda] \int dx V(x) + O(\lambda^2)$.

1. INTRODUCTION

It is well known that a sufficiently shallow square well in three dimensions will not bind. By contrast, in one or two dimensions, there is a special situation, due essentially to an infrared divergence, in which an attractive short-range potential always produces a bound state no matter how small the coupling. For the case of the one-dimensional Hamiltonian

$$H = -(d^2/dx^2) + \lambda V(x)$$

Abarbanel *et al.* [1] derived a formal series for the ground state, $E(\lambda)$, for an attractive V of short range of the form

$$(-E(\lambda))^{1/2} = -\frac{1}{2}\lambda \int dx \ V(x) - \frac{1}{4}\lambda^2 \int dx \ dy \ V(x) \mid x - y \mid V(y) + O(\lambda^2).$$
(1.1)

This situation was further studied by Simon [2] who proved that so long as $\int dx V(x) \leq 0$, and $\int dx(1 + x^2) |V(x)| < \infty$, there is a unique bound state for small λ and its energy is given by (1.1). It was also shown that if $\int dx e^{y|x|}V(x) < \infty$, then $(-E(\lambda)))^{1/2}$ is analytic at $\lambda = 0$.

In this note we wish to consider the case where V(x) is of sufficiently long range that

$$\int dx(1 + x^2) |V(x)| = \infty.$$

* Research supported by the U. S. National Science Foundation under grants MPS-75-11864 and MPS-75-22514 and in part by the Energy Research and Development Administration.

[†] Permanent address: Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305.

^{††} A. Sloan Fellow; also at Department of Mathematics.

There are three cases to consider with

$$V(x) \simeq -ax^{-\beta} \tag{1.2}$$

as $x \to \infty$.

(A) If $2 < \beta < 3$, then a simple modification of the argument in [2] allows one to prove that (1.1) is still valid.

(B) If $\beta = 2$, there is still a unique bound state for small λ so long as $\int dx V(x) \leq 0$. However, if this integral is nonzero, then (1.1) is not valid because the λ^2 term is infinite; there is, in fact, a $\lambda^2 \ln \lambda$ term which we explicitly isolate. The situation here is reminiscent of some recent work of Greenlee [3, 4] and Harrel [5] who study perturbations of the operator $(-d^2/dx^2)$ by potentials with $x^{-\gamma}$ singularities at the origin on the interval $[0, \alpha]$ or $(-(d^2/dx^2) + x^2)$ on the interval $[0, \infty]$ with $\psi(0) = 0$ boundary conditions. If $\gamma \geq 3$, then first-order perturbation theory is infinite but there is an explicit λ^{-g} , $g = (\gamma - 2)^{-1}$ leading term if $\gamma > 3$ and a $\lambda \ln \lambda$ leading term if $\gamma = 3$. Harrel also considers situations in which the first-order term is finite but the second order is infinite; for example, if $\gamma = 2.5$, there is a $a\lambda + b\lambda^2 \ln \lambda + O(\lambda^2)$ behavior analogous to what we find in the $\beta = 2$ case.

(C) If $1 < \beta < 2$, then there are infinitely many bound states for any $\lambda > 0$ in one and three dimensions. One may ask in this case if there is any difference between the one and three-dimensional case as there is for a short-ranged potential V(x). In fact, there is a difference; all the bound state energies in three dimensions and all but the ground state in one dimension are of order λ^h , $h = 2(2 - \beta)^{-1}$, as λ approaches zero from above. The ground state energy in one dimension is special in that it is of order λ^2 . One still finds that

$$(-E(\lambda))^{1/2} = -\frac{1}{2}\lambda \int dx \ V(x) + O(\lambda). \tag{1.3}$$

We shall not consider the case $\beta = 1$ or $0 < \beta < 1$ although on the basis of the work by Greenlee and Harrel and our case (C), there is a natural *conjecture*: At $\beta = 1$, all states but the ground state are of order λ^2 , while the ground state is of order $\lambda^2(\ln \lambda)^2$; for $0 < \beta < 1$, all states are of order λ^h , $h = 2(2 - \beta)^{-1}$ and the ground state is of order λ^g , $g = 2(3 - 2\beta)^{-1}$.

The outline of this note is as follows. In Section 2, we consider, for motivation, the special case $V(x) = -\frac{1}{4}(|x| + d)^{-2}$, which is solvable in terms of Bessel functions. In addition to verifying our general results for $\beta = 2$ (see also formula (4.2)) and small λ , we check explicitly a curious behavior at $\lambda = 1$; for $\lambda < 1$, there is only one bound state, while for $\lambda > 1$, there ate as infinite number. Such a behavior was proven in general for $\beta = 2$ potentials by Simon [6]. In Section 3, we consider the cases (A), (C) and certain general features of (B) as defined above, and in Section 4 the $\lambda^2 \ln \lambda$ term in case (B) is explicitly isolated.

2. AN EXAMPLE

In this section we shall discuss the potential

$$\lambda V(x) = -\frac{1}{4}\lambda (|x| + d)^{-2}, \qquad (2.1)$$

and the solution to the Schrödinger equation

$$\psi''(x) + [k^2 - \lambda V(x)] \psi(x) = 0.$$

The outgoing wave solution for positive x can be written in terms of Hankel functions [7]

$$\psi_{+}(x) = T(k(x+d))^{1/2} H_{\nu}^{(1)}[k(x+d)], \qquad (2.2)$$

where T is constant and $\nu = \frac{1}{2}(1 - \lambda)^{1/2}$. The solution for negative x includes an incident plane wave and a reflected wave at infinity and is written

$$\psi_{-}(x) = (k(d-x))^{1/2} \{ H_{\nu}^{(2)}[k(d-x)] + RH_{\nu}^{(1)}[k(d-x)] \}.$$
(2.3)

Matching boundary conditions at the origin yields a reflection coefficient, r, and a transmission coefficient, t, of the form

$$r = Re^{2iz}e^{-i\pi(\nu+1/2)},$$

$$t = Te^{2iz}e^{i\pi(\nu+1/2)},$$

where z = kd and

$$T = 4i/\pi D(z)$$

$$R = T - H_{\nu}^{(2)}(z)/H_{\nu}^{(1)}(z)$$

$$D(z) = (d/dz)[z(H_{\nu}^{(1)}(z))]^{2}.$$
(2.4)

and

The eigenvalue condition is equivalent to the vanishing of
$$D(z)$$
 for z pure imaginary
and in the upper half plane. Defining $z = iy$, it becomes

$$y(d/dy) K_{\nu}(y) = -\frac{1}{2}K_{\nu}(y). \qquad (2.5)$$

where $y = d(-E(\lambda))^{1/2}$ and recall that $\nu = \frac{1}{2}(1-\lambda)^{1/2}$ where $K_{\nu}(y)$ is a modified Bessel function of the second kind related to $H_{\nu}^{(1)}(z)$ by $K_{\nu}(y) = (\pi i/2) \exp(i\pi\nu/2) \times H^{(1)}(iy)$.

For $0 < \lambda < 1$, there is always one solution to (2.5), as can easily be seen by considering the limiting behavior of both sides of this equation. For small λ it is convenient to expand $K_{\nu}(y)$ as

$$K_{\nu}(y) = \frac{1}{2} \Gamma(\nu) \left(\frac{y}{\nu}\right)^{-\nu} \left[1 + \frac{\Gamma(-\nu)}{\Gamma(\nu)} \left(\frac{y}{2}\right)^{2\nu}\right] + O(y^{2-\nu})$$

72

and the eigenvalue condition can be expanded as

$$2\nu = \tanh[\nu \ln(2/y)] + O(y)$$
(2.6)

or

$$y = \frac{1}{2} - \nu [1 - (\frac{1}{2} - \nu) \ln 4/y^2] + O[(\frac{1}{2} - \nu)^2].$$

This can be rewritten in the form

$$(-E(\lambda))^{1/2} = -\frac{1}{2}[\lambda + 2a\lambda^2 \ln \lambda] \int dx \ V(x) + O(\lambda^2), \qquad (2.7)$$

where $a = \frac{1}{4}$. We shall return in Section 4 and derive this expansion for a more general class of potentials that behave as $-ax^{-2}$ for large x.

If λ is larger than one, then one sees that the index of the Bessel function becomes complex. This introduces an oscillatory behavior and profoundly affects the spectrum. If λ is only slightly larger than unity, then a simple expansion is possible for small y. Defining $\nu = i\delta$, then the eigenvalue condition (2.6) becomes

$$2\delta = \tan[\delta \ln(2/y)] + O(y). \tag{2.8}$$

There are therefore an infinite number of bound states for $\lambda > 1$, and their energies are geometrically related for weak binding.

3. GENERAL CONSIDERATIONS

Throughout this section we shall consider the family of operators H defined earlier with

$$\int dx |V(x)| < \infty, \tag{3.1}$$

and will often add the condition

$$\int dx |x|^{\gamma} |V(x)| < \infty$$
(3.2)

for some $\gamma > 0$.

The discussion in Ref. [2] assumed Eq. (3.2) with $\gamma = 2$, and it is our purpose to extend the class of admissible potentials. We note that if $V(x) \sim -ax^{-\beta}$ for large x, and (3.1) holds, then (3.2) will also hold for $\gamma = \beta - 1 - \epsilon$ for any $\epsilon > 0$. Under condition (3.1) two results carry over from Ref. [2] (Propositions 2.1 and 2.2); namely, $E = -\alpha^2$ with $\alpha > 0$ is an eigenvalue of H if and only if

$$\det[1 + \lambda K_{\alpha}] = 0 \tag{3.3}$$

where K_{α} is the integral operator

$$K_{\alpha}(x, y) = \frac{1}{2\alpha} |V(x)|^{1/2} \exp(-\alpha |x - y|) |V^{1/2}(y), \qquad (3.4)$$

and $V^{1/2}(y) = |V(y)^{1/2} \operatorname{sign}(V(y))|$. Moreover,

$$H = -\frac{d^2}{dx^2} + \lambda V(x) \geqslant c\lambda$$

for some c and all small λ . Thus one needs only look for solutions to (3.3) with $0 < \alpha(\lambda) < (c\lambda)^{1/2}$ for amsll λ .

It is convenient to decompose K_{α} into two sets of integral operators

$$K_{lpha}=Q_{lpha}+P_{lpha}=L_{lpha}+M_{lpha}$$
 .

First,

$$Q_{\alpha}(x, y) = \frac{1}{2\alpha} e^{-\alpha |x|} |V(x)|^{1/2} e^{-\alpha |y|} V^{1/2}(y),$$

$$P_{\alpha}(x, y) = \frac{1}{\alpha} |V(x)|^{1/2} [e^{-\alpha |x|} \sinh \alpha |x|_{+<}] V^{1/2}(y),$$
(3.5)

where $|x|_{<} = 0$ if xy < 0 and $|x|_{<} = \min |x|$, |y| otherwise; $|x|_{>} = \max |x|$, |y|. Second,

$$L_{\alpha}(x, y) = \frac{1}{2\alpha} | V(x)|^{1/2} V^{1/2}(y),$$

$$M_{\alpha}(x, y) = \frac{1}{2\alpha} | V(x)|^{1/2} [e^{-\alpha |x-y|} - 1] V^{1/2}(y).$$
(3.6)

In Ref. [2], the latter decomposition was used since it results in a simpler implicit equation for α as deduced from Eq. (3.3) than does the former decomposition (compare our Eq. (3.8) with (9) of Ref. [2]).

The advantage of the Q_{α} , P_{α} pair is that it is more convergent. As $\alpha \to 0$, the factor in brackets of Eq. (3.5) approaches $|x|_{\leq}$ rather than a factor of $\frac{1}{2} |x - y|$ as in Eq. (3.6). For fixed y, the latter approaches $\frac{1}{2} |x|$ for large x whereas for the former $|x|_{\leq} \to 0$ or |y| as $|x| \to \infty$. Therefore P_0 is less singular than M_0 .

We emphasize that P_{α} is very natural, it arises from replacing the Green's function in K_{α} by the Green's function in which a zero boundary condition is imposed at the origin. The fact that when Eq. (3.2) holds with $\gamma = 1$, then det $(1 + \lambda P_{\alpha}) = 0$ has no solutions for λ small is intimately connected with Schwinger's proof [8] of Bargmann's bound [9].

In order to bound P_{α} independently of α , note that the elementary inequality for x > 0

$$x^{-1}\sinh x \leq \cosh x \leq e^x$$

leads to

$$|P_{\alpha}(x, y)| \leq |V(x)|^{1/2} |x|_{<} |V(y)|^{1/2} \leq |xV(x)|^{1/2} |yV(y)|^{1/2}$$
(3.7)

so that by letting

$$P_0(x, y) \equiv |V(x)|^{1/2} |x| < V^{1/2}(y),$$

we have by the dominated convergence theorem

$$\int dx \, dy \mid P_{\alpha} - P_0 \mid^2 \to 0$$

as $\alpha \rightarrow 0$ so long as (3.2) holds with $\gamma = 1$. With this result, one can now mimic the proofs of Theorems 2.4 and 2.5 of Ref. [2] and obtain

THEOREM 3.1. Suppose that (3.1) holds and that (3.2) holds with $\gamma = 1$. Then H has at most one negative eigenvalue for λ small and this occurs if and only if $\int dx V(x) \leq 0$. If this condition holds, then $\alpha = (-E(\lambda))^{1/2}$ is given by the implicit condition (expand the determinant using the fact that Q_{α} is a separable integral operator)

$$\alpha = -\frac{1}{2}\lambda (e^{-\alpha|x|} V^{1/2}, (1 + \lambda P_{\alpha})^{-1} e^{-\alpha|y|} |V(y)|^{1/2})$$
(3.8)

and, in particular, Eq. (1.1) holds. This immediately extends the results of Ref. [2] from $x^{-3-\epsilon}$ potentials to $x^{-2-\epsilon}$ potentials.

To understand and to anticipate our next result, suppose that V(x) = V(-x)and $V \sim -ax^{-\beta}$ at infinity. If ψ_0 and ψ_1 are two bound states with energies $E_0 < E_1$, then it is possible to find a linear combination $\phi(x)$ on $(0, \infty)$ that vanishes at the origin. Therefore,

$$E_1\int_0^\infty dx\ \phi^2(x) \ge \int_0^\infty dx\ [(\phi')^2 + \lambda V(x)\ \phi^2(x)].$$

As is well known, if $\phi(0) = 0$, then [10]

$$\int_0^\infty dx \ (\phi')^2 \geq \frac{1}{4} \int_0^\infty dx \ \phi^2(x) \ x^{-2},$$

so that

$$E_1(\lambda) \ge \min(\frac{1}{4}x^{-2} + \lambda V(x)) \sim -\lambda^g$$

where $g = 2(2 - \beta)^{-1}$ if $\beta < 2$. Thus one expects that all bound states *except* for the ground state will have energies that behave as λ^g whereas the ground state energy will be $O(\lambda^2)$.

THEOREM 3.2. Let V obey (3.1) and (3.2) for some γ , where $0 < \gamma < 1$; then there is a constant C so that at most one bound state occurs with an energy smaller than $-C\lambda^{h}$, $h = 2(1 - \gamma)^{-1}$, for amsll λ . Such a bound state will exist if $\int dx V(x) < 0$,

74

and in that case its energy, $E(\lambda)$, is given by Eq. (3.8) with $\alpha = (-E(\lambda))^{1/2}$. In particular,

$$(-E(\lambda))^{1/2} = -\frac{1}{2}\lambda \int dx \ V(x) + O(\lambda^{1-\gamma}). \tag{3.9}$$

Proof. Since

$$e^{-lpha |x|_>} \sinh a |x|_< \leqslant rac{1}{2} e^{-lpha (|x|_2 - |x|_<)} \leqslant rac{1}{2}$$
 .

then

$$|P_{\alpha}(x, y)| \leq \frac{1}{2\alpha} |V(x)|^{1/2} |V(y)|^{1/2}.$$

Recalling the bound on $|P_{\alpha}|$ given by Eq. (3.7), one has for $0 < \theta < 1$

$$|P_{\alpha}(x, y)| \leq \left(\frac{1}{2\alpha}\right)^{1-\theta} (xy)^{\theta/2} |V(x)|^{1/2} |V(y)|^{1/2}.$$

Therefore, the Hilbert–Schmidt norm for P_{α} , choosing $\theta = \gamma$, is bounded by

$$\|P_{\alpha}(x, y)\|_{\mathbf{HS}} \leq (2\alpha)^{\gamma-1} \int dx \cdot x \, |\gamma| \, V(x) \, .$$

It now follows that if $\lambda \parallel P_{\alpha} \parallel_{\rm HS} < 1$, or equivalently

$$E(\lambda) < -\frac{1}{4} \left[\lambda \int dx \mid x \mid \mid V(x)^{\dagger} \right]^{h}$$
(3.10)

where $h = 2(1 - \gamma)^{-1}$, then $(1 + \lambda P_{\alpha})$ is invertible and thus for such α and λ , Eq. (3.3) has a solution if and only if (3.8) has a solution with $\alpha > 0$. Then $E = -\alpha^2$ is the unique eigenvalue and satisfies the inequality (3.10). The result now follows by mimicking the arguments given in Ref. [2].

The $O(\lambda^{1+\gamma})$ error comes from

Error =
$$-\frac{1}{2}\lambda(e^{-\alpha|x|}V^{1/2}(x), [(1 + \lambda P_{\alpha})^{-1} - 1] | V^{11/2} e^{-x|y|})$$

 $-\frac{1}{2}\lambda \int dx V(x)(e^{-\alpha|x|} - 1).$

The first term in the error is of order $\lambda^2 || P_{\alpha} ||_{HS} = O(\lambda^2 \alpha^{\gamma-1}) = O(\lambda^{1+\gamma})$ since $\alpha = O(\lambda)$. By using $(e^{-\alpha |x|} - 1) \leq (\alpha |x|)^{\gamma}$, the second term is also seen to be of order $O(\lambda \alpha^{\gamma}) = O(\lambda^{1+\gamma})$.

4. The Second-Order Term for $\beta = 2$ Potentials

In this final section, we will consider potentials that behave as $V \sim -ax^{-2}$ at infinity. For later convenience we will decompose V as

$$V(x) = V_1(x) + V_2(x)$$
(4.1)

where

$$V_1(x) = -a(1 + x^2)^{-1}$$

and demand that

$$\int dx |x|^{1+\delta} |V_2(x)| < \infty \qquad (4.2)$$

for some $\delta > 0$. It will be proved that if $\int dx V(x) < 0$, the ground state energy obeys

$$(-E(\lambda))^{1/2} = -\left[\frac{1}{2}\lambda + a\lambda^2 \ln \lambda\right] \int dx \ V(x) + O(\lambda^2). \tag{4.3}$$

To motivate this result, consider the direct expansion of the determinant, Eq. (3.3); after some slight manipulations one finds to second order in λ ,

$$\alpha = -\frac{1}{2}\lambda\int dx \ V(x) + \frac{\lambda^2}{8\alpha}\int_0^\infty dz \ (1 - e^{-2\alpha z})\int_{-\infty}^\infty dx \ V(x) \ V(x+z).$$

The small α limit of the second term depends upon the large z behavior of the convolution integral between two V's. One estimates that

$$\int dx \ V(x) \ V(x+z) \simeq [V(z) + V(-z)] \int dx \ V(x)$$

and for even potentials one finds

$$\int_0^\infty dz \ (1 - e^{-2\alpha z}) \ V(z) \simeq -2a\alpha \ln \alpha + O(\alpha^2).$$

Now by noting that $\alpha = O(\lambda)$, the expansion (4.3) immediately follows.

In order to prove this result, let us return to the eigenvalue condition (3.8) and using Theorem 3.2, where $\gamma = 1 - \epsilon$ for $\beta = 2$, one has

$$\alpha = -\frac{1}{2}\lambda \int dx \ V(x) \ e^{-2\alpha|x|} + \frac{1}{2}\lambda^2 (e^{-\alpha|x|} V^{1/2}, P_\alpha \mid V \mid^{1/2} e^{-\alpha|y|}) + O(\lambda^{3-\epsilon})$$

$$= -\frac{1}{2}\lambda \int dx \ V(x) \ e^{-2\alpha|x|} + \frac{1}{2}\lambda^2 (V^{1/2}, P_\alpha \mid V \mid^{1/2}) + O(\lambda^{3-\epsilon}).$$
(4.4)

Now the second term is most easily estimated by using the relation $P_{\alpha} = M_{\alpha} + (L_{\alpha} - Q_{\alpha})$, and one has

$$\begin{split} \frac{1}{2}\lambda^2(V^{1/2}, (L_\alpha - Q_\alpha) \mid V \mid^{1/2}) \\ &= -\frac{1}{2}\lambda^2 \int dx \, dy \, V(x) \, V(y)(e^{-\alpha \mid x \mid} - 1)/\alpha + O(\lambda^{3-\epsilon}) \\ &= \lambda \int dx \, V(x)(e^{-\alpha \mid x \mid} - 1)[(1/\alpha)(\alpha + O(\lambda^{2-\epsilon})] + O(\lambda^{3-\epsilon}) \\ &= \lambda \int dx \, V(x)(e^{-\alpha \mid x \mid} - 1) + O(\lambda^{3-\epsilon}). \end{split}$$

76

Thus Eqs. (4.4) achieve the form

$$\alpha = -\frac{1}{2}\lambda \int dx \ V(x) + \frac{1}{2}\lambda^{2}(V^{1/2}, M_{\alpha} + V^{-1/2}) + \frac{1}{2}\lambda \int dx \ V(x)[2e^{-\alpha|x|} - e^{-2\alpha|x|} - 1] + O(\lambda^{3-\epsilon}).$$
(4.5)

This result shows the advantage of using the P_{α} , Q_{α} decomposition, because if one had instead used M_{α} and L_{α} directly, the third term in (4.5) mught have been missed by assuming that $\lambda^{3}(V^{1/2}, M_{\alpha}^{2}, |V|^{1/2})$ is of order $\lambda^{3-\epsilon}$. However, we shall see that this term contributes to order λ^{2} only and does not contribute to the $\lambda^{2} \ln \lambda$ term that we wish to isolate.

Introducing the Fourier transform by

$$\hat{g}(k) = (2\pi)^{-1/2} \int dx \ g(x) \ e^{-ikx}$$

then we find that

$$\hat{V}_1(k) = -\frac{1}{2}a(2\pi)^{1/2} e^{-|k|}$$

and V_2 is continuously differentiable with

$$|\hat{V}_{2}(k) - \hat{V}_{2}(k')| \leq c |k - k'|^{\delta}.$$

and hence by Taylor's theorem with remainder

$$\hat{V}(k) = \hat{V}(0) + \frac{1}{2}a(2\pi)^{1/2} |k| + ck + O(k^{1+\delta}).$$
(4.6)

Now using the fact that the Fourier transform of $\exp(-b|x|)$ is $(2\pi)^{-1/2} 2b(b^2+k^2)^{-1}$, the third term in (4.5) becomes

$${}_{2}^{1}\lambda\int dk \, [\hat{V}(k) - \hat{V}(0)](2\pi)^{-1/2} \, 4\alpha[(k^{2} - \alpha^{2})^{-1} - (k^{2} - 4\alpha^{2})^{-1}]. \tag{4.7}$$

The contribution to the integral in (4.7) outside the region (-1 < k < 1) is easily seen to be of order $\lambda \alpha^3 = O(\lambda^4)$. From this region itself, one sees that the *ck* term in (4.6) contributes zero and the $O(k^{1+\delta})$ term contributes of order $\lambda \alpha^{1+1/2\delta} = O(\lambda^{2+1/2\delta})$. Finally the |k| term yields (neglecting $O(\lambda^4)$ terms) $\lambda a \alpha \ln 4 = O(\lambda^2)$. As claimed, this contributes a term of order λ^2 to α .

The second term in (4.5) is

$$\frac{\lambda^2}{4\alpha}\int dx\,dy\,V(x)\,V(y)(e^{-\alpha|x-y|}-1),$$

which can be written as

$${}_{2}^{1}\lambda^{2}\int dk \; (k^{2}+\alpha^{2})^{-1} \; [\hat{V}(k)|^{2}-|\hat{V}(0)|^{2}].$$
 (4.8)

Using the expansion (4.6), we have

$$|\hat{V}(k)|^{2} - |\hat{V}(0)|^{2} = 2 \operatorname{Re}[\hat{V}(0)(\hat{V}(k) - \hat{V}(0))] + |\hat{V}(k) - \hat{V}(0)|^{2}$$

= $a(2\pi)^{1/2}\hat{V}(0) |k| + c'k + O(k^{1+\delta}).$

Thus Eq. (4.8) is estimated to be

$$= \lambda^2 a (2\pi)^{1/2} \hat{V}(0) \int_0^1 dk \ k (k^2 + \alpha^2)^{-1} + O(\lambda^{2+\delta})$$
$$= -a\lambda^2 \ln \lambda \int dx \ V(x) + O(\lambda^2).$$

This then proves Eq. (4.3).

ACKNOWLEDGMENTS

It is a pleasure to thank S. Chandrasekhar for arousing our interest in potentials with x^{-2} behavior at infinity. One of us (RB) wishes to thank the Princeton University Physics Department for their kind hospitality.

REFERENCES

- 1. H. D. I. ABARBANEL, C. CALLAN, AND M. L. GOLDBERGER, unpublished.
- 2. B. SIMON, Ann. Physics 97 (1976), 279.
- 3. W. GREENLEE, Bull. Amer. Math. Soc. 82 (1976), 341-344.
- 4. W. GREENLEE, "Proc. Flagstaff Conference on Perturbation Theory," 1976.
- 5. E. HARREL, III, Princeton University thesis, 1976.
- 6. B. SIMON, Helv. Phys. Acta 43 (1970), 607-630.
- 7. G. N. WATSON, "Theory of Bessel Functions," Cambridge Univ. Press, New York, 1922.
- 8. J. SCHWINGER, Proc. Nat. Acad. Sci. 47 (1961), 122-129.
- 9. V. BARGMANN, Proc. Nat. Acad. Sci. 38 (1952), 961-966.
- 10. For a discussion of generalized versions of this inequality see, V. BARGMANN, Helv. Phys. Acta. 45 (1972), 249-257.