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ANALYSIS WITH WEAK TRACE IDEALS AND THE NUMBER 

OF BOUND STATES OF SCHRODINGER OPERATORS 


BY 

BARRY SIMON(~) 

ABSTRACT. We discuss interpolation theory for the operator ideals 1; 
defined on a separable Hibert space as those operators A whose singular values 

pn(A) obey pn 4 cn-'Ip for some c. As an application we consider the function- 

al N(V) = dim (spectral projection on (--, 0) for -A + V) on functions V on 

R", n > 3. We prove that for any E > 0: N(V) < Ce(11V11n12+e + IIVIIn12, )n/2 

where Il.llp is an L~ norm and that ~ i m ~ + J ? ( h ~ ) l A ~ / ~  lnI2dnx= (2n)-n7nl~~_(x) 

for any V E Ln12* r l  LnI2+e. Here V- is the negative part of V and rn is the 

volume of the unit ball in R". 

1. Introduction. It is a fundamental result of Calkin [6] (see also [12], 
[23]) that all nontrivial two-sided ideals of operators on a separable Hilbert 
space can be indexed by a particular set of vector spaces of sequences. If Y is 
the sequence space, then an operator A € 7  y, the associated ideal, if and only if 
the singular values of A, {p,(A)},"=, (these are the eigenvalues of L4 I = (A*A)' 
arranged so that p1 2 p2 > - . . ) is an element of the sequence space Y. Among 
the allowed sequence spaces are the l p  spaces and the more general Lorentz 
spaces I@, q) [18] , [15] . The ideal Zp associated to 1p is precisely the ideal in- 
troduced by von Neumann and Schatten [24]. These ideals have been quite 
useful in a variety of analytic considerations (for example, recent applications to  
problems of mathematical physics, see Deift-Simon [8], Seiler [26] or Seiler- 
Simon [27]); of especial use has been the complex interpolation theory for these 
ideals, developed essentially by Kunze [I71 (see also [13], [21]). The more 
general ideals IPe4associated to l@,q ) have found some applications to a rather 
special problem in operator theory [I] ,  [2] but they do not appear to have 
found application to any wider class of analytic problems. Our goal in this 
paper is to develop the theory of the weak trace ideals 1: associated to the weak- 
lpspaces I@, =), especially their interpolation theory. 

Let us try to explain why the spaces 7; arise naturally, A positive selfad- 
joint operator A lies in 1; if and only if A is compact and its eigenvalues An obey 

Received by the editors October 17, 1975. 
AMS (MOS)subject classifications (1 970). Primary 47D99, 35P20; Secondary 41A05, 

81A09. 
Key words and phrases. Weak trace ideals, Schr'ddinger operators.. 
( I )  A. Sloan Foundation Fellow; research partially supported by N.S.F. under Grant 


GP-39048 A#l. 

367 Copyright 5 1977, American Mathematical Society 



368 BARRY SIMON 

1: allowed is called the c(the smallest norm, IIAllp,,, of A; it is not a norm 
however!). Now consider a positive operator B which is unbounded with com- 
pact resolvent so that 

Such a situation is quite common; for example a celebrated theorem of Weyl 
asserts that -A,, the Dirichlet boundary condition Laplacian for some region 
!2 C Rn, has the property (2) with p = n/2. If (2) holds and p > 1 then A = 
(B + I)-'
 1: lies in and this is the best information one can give for A in terms 
of lp,qspaces. 

1: Our own interest in the spaces arose in a context more complex than 
that of the last paragraph, but one closely related to it. For any "potential" 
V E L " / ~ ( R ~ )+ L"(Rn), let -A + V be defined as a form sum (see Faris [lo], 
[ l l ]  , Reed-Simon [21] or Simon [28]). Let N(V) be the number of "bound 
states" of -A + V , i.e., the number of independent negative eigenfunctions for 
-A + V. Martin [19] (see also [33]) proved a beautiful result for V's which 
were HGlder continuous with compact support: 

where V- is the negative part of V and rn is the volume of the unit sphere in 
Rn. (3) is an especially beautiful result because of its connection with the re- 
lationship between quantum mechanics and classical mechanics; for the right side 
of (3) is just (2n)-" Vol where Vol is the volume of phase space where the 
classical energy p2 + V(x) is negative. On the other hand, since -A + XV = 
A(-1-'A+ V) the left side of (3) represents the number of bound states of a 
quantum system multiplied by hn in the limit as h -+0. Thus (3) gives meaning 
to  the statement that in the classical limit, the number of bound states of a 
quantum system is given by the volume of phase space divided by hn (where h = 

2n). Martin uses a technique of Dirichlet-Neumann bracketing [7], [22]. (3) 
has been proven independently by Tarnura 1331 using Green's function techni- 
ques. Tamura eliminates a certain amount of smoothness on V but still requires 
it to go to zero at infinity, be smooth near infinity and have only negative sin- 
gularities. 

One way of proving (3) for more general V's is by an approximation argu- 
ment. This requires a bound on ~ , , ~ N ( X V ) / X ~ / ~  if=N,(V)with N,(V) 
V is sufficiently small. We conjecture the bound 
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for n > 3 and will reduce this to a conjecture on certain integral operators lying 
in 1:. Using interpolation theory we will prove that 

for n >3, e >0, where l lfllpP = $1,lJ'dnx. (4) would allow us to extend (3) to 
all V E LnI2. Using (S), we will extend (3) to all V ELn12+' nL""-' . 

We will make extensive use of the following result which is a special case 
of an interpolation theorem of Hunt 1141 , [15]. 

THEOREM1.1. Let pl <p2, q ,  <q2 ,0 < t < 1 ,  and define p,, qt by p;' 
= tprl + (1 -tlpil;q;l = t q ~ '+ ( 1  -t )q i l .  Let T be a bounded linear map from 

L"(M. dp) to Lqt(iV, du) for t = 0, 1 with norm N,  men T takes L: to L> 
for 0 < t < 1 and 

for a constant C depending only on pi, q, and t. 

In (61, Il.llp,, is defined by: 

Since Hunt's more general theorem includes the Marcinkiewicz theorem, 
his proof is rather subtle. The special case Theorem 1 is very elementary and we 
provide a proof for the reader's convenience in Appendix 1.  

The content of this paper is the following: In 52, we present a few proper-
ties of 1;; in $3 we prove interpolation theorems for Z p  and 1; by reducing 
them to interpolation theorems for IF and 1; (we explore this idea further in 
Appendix 2). In $4 we make some conjectures about integral operators and 
prove some results slightly weaker than these conjectures. The proof of (5) and 
application to  prove (3) for LnI2-' nLnI2+' appear in $ 5 .  

It is a pleasure to thank G. Bennett for valuable correspondence and E. 
Seiler for valuable discussions. 

2. Properties of weak trace ideals. Throughout, we fur a Hilbert space: 
DEFINITION.Let A be a compact operator. The singular values of A,-

pn(A), are the eigenvalues of 1A1 =V/A*A listed according to p1 > > . 
We will need the following inequalities: 

(8) p,(BA) =&(AB) < IIBllp,(A), all bounded B, 
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(8) is elementary; (9) and (10) are inequalities of Fan [9] following from min-
max considerations; see, e.g. [13]. 

DEFINITION. A compact operator A is said to lie in l pif and only if 

Z,"=,y(A)P < llAllp is defined by: 

DEFINITION.A compact operator A is said to lie in 1: if and only if 
pn(A) <cn-llp for some c. IIAllpW is defined by: 

REMARKS. (1) Since pn is monotone decreasing,pn(A) C cn-'IP if and 
only if #{mlp,(A) <a) <cPai-P which is the more usual definition of lP,,. 

(2) l l ~ l l p , w  is not a norm but since Il.llp,, on lP,, is equivalent to a norm 
if p Z 1 [31],1: with the topology defined by Il.llp,, is equivalent to a symme-
tric normed ideal in the sense of [23] ,[13]. 

THEOREM2.1. (a) l pis an ideal and moreover llABllp < IIAll IIBllp; 

Ila +Bll, C ll.tllp t llBIIp;IMBllp C IHII,lBIIr where p-' = q-' t r-'. 
(b) 1: is an ideal and moreover IIABII,,, C IlAll IIBIIP,,; IIA + BII,,, 

<211p(~lallp,w+ llBlIp,,); lMBlIp,, G 211pllAllq,wll~llr,wwhere p-' =q-' t 
r - I .  

REMARK. The final inequality is intended to indicate that if A E 1:' B E 

1,W,then AB E 1:. 
PROOF. (a) is standard; (b)holds if we prove the inequalities. These fol-

low from (8)-(10). For example, by (10): 

and similarly for p,,-,(AB). 
Let 8 denote the family of orthonormal sequences in ff. On a sequence 

I l . l l p  and Il.llp,, denote the usual lp and 1: norm. 

THEOREM2.2. (a) IlAllp = sup{+ ){,k~II($n, Aqn)llp. 
(b) Let p # 1. Then for a suitable Cp >0:  

P R ~ O F .  The canonical expansion for A 1201 asserts that 
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for suitable (q,), (#,I E 8. Thus for any norm on sequences, 

For any f, g E 8: 

where a,, = (ip,, f,) (g,, $,). A simple application of Bessel's inequality 
shows [29] that a,, is doubly substochastic 

By (13), the matrix (a,,) defines a contraction on I, and 1,. Thus by the 
Reisz-Thorin interpolation theorem, it defines a contraction on each I p  and by 
Hunt's theorem, Theorem 1, a map of norm dp (independently of {a,,}). It 
follows that 

II(#np Aipn)II g IMII, 

THEOREM2.3. Let p > 2. A E 1; (resp. 1,) if and only ifA*A E 

(resp. Ipl2)and 

l ~ l l ; , ~= lM*Allp,w. 

PROOF. p,(A*A) = P,(A)~ so the result is trivial. 

3. Interpolation theorems for 7;. There is a general metatheorem which 
we discuss and prove in Appendix 2 which says that any interpolation theorem 
on symmetrically normal sequence spaces extends to the ideals indexed by these 
spaces. I will illustrate these ideas by proving Hunt's interpolation theorem for 
trace ideals: 

THEOREM3.1. Let T be a linear transformation from the finite rank oper- 
ators on a Hilbert space Hl to the bounded operators on a Hilbert space ff2. 
Suppose thatp, <p2.  q1 < q2 and that T m p s  Tpl  to Iq and Ip2to Iq2

iYwith IIT(A)IIq. G ClIAll,, . men, for any t E (0,11, T m p s  Iptto 2; P;' = 
tp,' + (1 - t)pol and q,' = tq;'t(l - t)qo1. Moreover 
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where D only depends on pi, qi and t (and is the constant in the usual Hunt 
theorem). 

In proving Theorem 3.1, we will also prove: 

THEOREM3.2. Theorem 3 .I remains true i f  HI is replaced by a finite meas- 
ure space (M, dp) and 1, (resp. 7:) by the corresponding LP (resp. LPvW) spaces. 

PROOF. Fix two orthonormal sets {PI ,  ($1 in Hz. Let T,,* :LP(M, dp) 
+I, be defined by 

T9,@V^)n= ( ~ n t  TCf)3rn). 

Then by hypothesis and the bound 

T,, is bounded from L~~to lqi (i = I ,  2) with bound C. Thus by the usual 
Hunt theorem T 9 ,  is bounded from L,' P to lqt,, with norm CD where D is a 
constant independent of cp, $ and only dependent on pi, qi and t. Thus, by 
Theorem 2.2(b): 

IIT(f)llqt,w SUP llT9,rV)IIqt,w CDlllfllpt,w.
9,JI 


PROOFOF THEOREM3.1. Fix A E 1;. We will prove that 


For let A = Zpn(cpn, .)$, be the canonical expansion for A. For any finite se- 
quence, define S({A)) by 

S({AI)= T &  an(% ,i$n) .  

By hypothesis, S takes 1 into I with norm bounded by C, so by Theorem 
pi Qi 

3.2, it takes lpt,, into Iqt,, with 

llS({~n~llqt,wG ~Dll{kIllpt,w-
Thus 

4. Some conjectures. 


CONJECTURE1. Let 2 <p <w. For functions f, g on Rn define an oper- 

ator AfSgon L ~ ( R " ,  dnx) by the integral kernel f (x -y)&). Then, i f  g E 

LP(Rn, dnx) and f ELP,'(Itn, d"x) (where p' = (1 -p-l)-l), Af,g E 7; and 
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This is the main conjecture of this paper. Its truth, as we shall see, would 
lead to  the Schrodinger operator bound (4). As support for the conjecture we 
note several results very close to it. The first two are certainly not new. The 
fourth is new and will lead to the bound (5). 

PROPOSITION4.1. I f f  E LP,' and g ELC (2 <p <so), then A f ,  is a 
bounded opentor; llAf,,ll g cllfllP~,,lMlp,,. 

PROOF. This follows from the generalized Sobolev inequality [32], p >q, 
p < = , q > l :  

(15) is proven first without the w by appealing to Young's and Holder's inequal-
ities and then by using the Marcinkiewicz and Hunt interpolation theorems. 

REMARKS.(1) For the case q = 2 of interest, (15) implies the operator 
inequality on L 2 ( ~ " ,dnx): 

so long as cr < lh. Conversely, using the symmetric rearrangement theorem [4], 
(16) implies (15) with q = 2. 

(2) We will see below that when g E LP, AfVRis compact. 

PROPOSITION4.2 (SEILER-SIMON[27] ,T. KATO(UNPUBLISHED)).If 
2 C p C =and i f f  E Lp', g E Lp, then A f ,  is in 1, and IIRf,,IIp <CILfllp~IUIp. 

PROOF. This is easy for p = 2 or p = = and follows for general p by com-
plex interpolation. o 

COROLLARY4.3. If 2 <p <=, f € LP,' and g ELP, then A f ,  is compact. 

PROOF. Since I!JI~,~II$ CI~Ip~,,IIgIIp,it suffices to prove it if g EL' n 
Lm. But, in that case f = f ,  + f2 with f ,  E LP,'-', f2 EL P ' ~ 'and Afir is in 
an Tp  space and so compact. o 

PROPOSITION4.4. Let 2 <p <=, f ELC, g E LP" nLP-'. m e n  Afd 
E 7 7  and IIAf,gIIpt,w Ce,pIVllp~,w(llsllp+,+ Ikllp-€1. 

PROOF. Let ar = @ + e)', 6= @ - E)'. Then since g E LP", f -+Afs 
maps Lw into 7, by Proposition 4.2. Similarly it moves L P  into Ip. The norms 
are bounded by Cl(gflp+, and Cllgllp-, respectively. By Theorem 3.2, it maps ,
LP, into 7p~ ,w.The norm relation is an easy consequence of the norm relations 
and the linearity of At,* in g. 
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In attempting to prove Conjecture I ,  several related questions have arisen: 

CONJECTURE2. Let f and g be positive functions on Rn. Let f",g* denote 
the spherical rearrangement o f f ,g. For any p >2, we have lMf,,llp g IIAf .a. lip 
and IjAf,gllp,w IVf*,g*llp,w. 

CONJECTURE3. Let f andg be complex valuedfunctions. Thenfor any p Iz 

2, we have lMf,,llP Q llA,,,,,IIp and lMf,gllp,w g IMlfl,klllp,w. 

PROPOSITION^.^. Conjectures 2 and 3 are true in the 1, (rather than 1;) 
case when p is any even integer. 

PROOF, In that case, lMf,gllF = T~((A*A)*) is given by an explicit integral. 
Conjecture 3 is trivial and Conjecture 2 is a consequence of the spherical reanange-
ment theorem of Brascamp, Lieb and Luttinger [4]. 

We suspect Conjecture 2 is false in case p < 2. If Rn is replaced by a torus 
so that one can take g = 1, then Af is trace class if and only if ~ [ i (n ) l<a. It 
is easy to find f with Af not IPfor p <2 but A,, and Af. trace class. 

5. Application to Schrodinger operators. The key to applying 11,methods 
to the study of N(V) is the following result of Birman [3] and Schwinger [25] : 

THEOREM5.1 ([3], [25]). Let n >, 3. Let V <0. Then N(V) is equal 
to the number of eigenvalues of the integral operator Q(V) with kernel 

c,I~(x)I% -YI - "+~  I ~ 0 )I*,which are larger than 4-1. 
REMARK.C, is chosen so that Q(V) is just lVl*(-A)-' IVI'. The key 

idea in the proof (see also [28]) is that E <0 is an eigenvalue of -A 4- XV if and 
only if A-' is an eigenvalue of IVI*(-A-E)-~IVI'. n > 3 is critical for (-A)-' 
to define an integral operator. 

Now let 0(V) be the integral operator with kernel dn(x -y)-"+' IV@)I* 
with dn chosen so that w(V) = (-A)-* IVI*. 

PROPOSITION5.2. (i) Let V <0. N(XV) < cXnI2for all X i f  and only i f  
o(V) E 7: with llO(V)ll~,wg c. 

(ii) Let X be a Banach space of potentials in which is dense with 11 Ulx 
>dl1VIIn12. Suppose that,for any V E X, N(V) < cll V11Y2. Then for any V EX: 

PROOF. (i) By Theorem 5.1, N(XV) <cXnI2 if and only if the number of 
eigenvalues of Q(V) larger than 1-' is bounded by CX"/~.This is true if and 
only if Q(V) E ZZ2and l l ~ ( V ) l l ~ ~ ~ , w<c. Since Q(V) =w(yI*w(V), the proof 
is completed by appealing to Theorem 2.3. 

(ii) Let A be an arbitrary selfadjoint operator which is bounded from below. 
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Let n(A) be the dimension of the spectral projection P(-,,o). Then 

if &(A) nQ(B) is dense. A + B is defined as a form sum (Q(.) = quadratic form 
domain of .). We prove (17) in Lemma 5.3. 

Now, given V, W EX, by (17), we have: 

(18) <n(-eA + (V - W)) + n(-(l - e)A + W) 

=N(E-~(v- W)) +N((l - e)-' w). 
By hypothesis, given V EX and e, we can find W E with IIV - WII, < e2 +"I2 
and JIV!!/~ - w!12 1 <~ ( e ' + " / ~ ) .Then: 

by (3) (Martin [19], Tamura [33]). Interchanging V and W in (18) we see that 

Since e is arbitrary, we are done. 

LEMMA5.3. Let A and B be selfadjoint operators with HA)  nQ(B) dense. 
Define A +B as a form sum. Then 

PROOF. Without loss, we can suppose that n(A) < oo, n(B) <-. If 
n(A + B) >n(A) + n(B), then we could find a cp with (cp, (A + B)cp) <0 so 
that p is orthogonal to the n(A)eigenvectors of A and n(B)eigenvectors of B 
associated to negative eigenvalues. But then (cp, Ap) > 0; (cp, Bp) > 0. This 
contradiction proves that n(A +B) <n(A) + n(B). 0 

As immediate corollaries of Proposition 5.2 we have: 

THEOREM5.4. If Conjecture 1 holds, then (4) is true and (3) holds for all 
V E  ~ " 1 ~ .  

By Propositions 5.2 and 4.4: 

THEOREM5.5. The bound (5) holds and (3) extends to all V E ~ " 1 ~ "n 
L " / ~ - ~for any e >0. 
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REMARK.Conversely if the bound (4) holds, then for any V with V Q 0, 
Ilo(V)IInl2,, Q cIlVllnl2 and so, for any V, lIo(V)lln12,w 2cll Vlln12. Thus the 
truth of (4) and Conjectures 2 and 3 would imply Conjecture 1 for p = n/2. We 
feel that Conjecture 1 is "substantially equivalent" to equation (4). This be-
speaks the "naturalness" of the methods we describe. 

Appendix 1. Hunt's interpolation theoren. In this appendix we describe 
a proof of Theorem 1.1. We do this not only because we wish this paper to 
be self-contained, but also because the proof of this special use of Hunt's more 
general theorem is much simpler than the general case. The proof we give is not 
readily available; we learned it several years ago from E. Nelson. 

LEMMAA.1.1. Let p, <p,, 0 < t < 1 ,  and p;' = t p ~ '  + (1 - t)pol. 
Then there exists a constant C (depending only on t, p, and p2) so that, for any 
f € L:, and any h € (0,m), there are fJMandf,(" so that f = f t  + f f A ) ;&('I 
E LPi and 

P t  X ( ~ z - ~ t )
I & ( ~ ) I I ; ;G cllfllpt,w 

PROOF. Let fiO)(x)be 0 or f(x) depending on whether [f(x)lis QA or 
> X .  Let f i l ) ( x )  be 0 or f(x) depending on whether If(x)l is > X or <A. o 

LEMMAk12.Fir p,, pi, t, p, as in Lemma A.1 .I. Then there exists D 
(depending only on t, pl and p2) so that for any function f with the property 
that for any A E (0, A), f =f i x )  + f i x )  with 

(19) l ~ ' ) l g :Q clXpz-pt, 

f is in L: and llf l l ; : ,  <Dcl. 

PROOF. Let m f i )  = meas{x I If(x)l> y). Then by an elementary calcula-
tion, 

Thus 

Since mPg(X) <m@2) + mg(X/2),the result follows. 
PROOFOF THEOREM1.1. We rewrite condition (19) by taking pith roots 

and letting yo = A with 0 =p;' b;' -pyl]-' . Thus we see that (19) is re-
placed by requiring a breakup f =g, + h, with 
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We can make a similar change in Lemma A.l .l. Suppose f EL,' P with llfllpt,, 
< 1. Then we can write f =g, + h, with 

lk,llpo <CP-~; llh,llpl <~ l - ~ .  

Thus Tf = Tg, + Th, and 

so n€ ~ f :and IITflIqt,, <CD max(No, N,). (6) follows by homogeneity. 

Appendix 2. Interpolation theorems for symmetrically normed ideals of 
operators. Among the operator ideals are the symmetrically normed ideals stud- 
ied in [13], [23]. These correspond to sequence spaces which are Banach spaces 
whose norm %al, a2, . . . ) has the following properties: 

(i) %ai) = limn+w+(al,. . . , a n ,  0, 0 , .  . . ,0, ...). 

Ci) %ai) = %bit). 

(iii) (a,, . . . ,a,) -++(a1, . . . ,a,, 0, 0, . . . ) is a symmetric function 

on Cn. We denote the corresponding ideal by I,, i.e., A E laif and only if its 
singular values p,(A) obey @@,(A)) <-. Among the 1, are the Zp-ideals, the 
weak trace ideals 1,,, with p f 1 with an "honest" norm equivalent to Il.llp,, 
(which is not a norm) and also Orlicz ideals corresponding to Orlicz sequence 
spaces [16] . 

In this appendix, we prove a general metatheorem which allows one to 
transfer interpolation theorems from symmetrically normed sequence spaces to  
their associated ideals. Included in this general theorem is a Reisz-Thorin theo- 
rem for lp[17], interpolation theorems for Orlicz ideals which follow those 
for Orlicz spaces [5] ,the theorems we prove for Ip,, in 53, and a Marcinkie-
wicz theorem. The same method allows the transfer of Stein interpolation theo- 
rems [30] and "wandering analytic function theorems" [13]. 

The key is the following: 

LEMMAk2.1. Let + be a symmetric noming function. Let Bii be a 
doubly substochastic matrix, i.e., ZilBiil < 1, all j ;  ZilBiil < 1, all i. Let a E I,, 
the associated sequence space and define 

= ~ ~ ~ a ~ . 

Then Ba E 1, and +(Ba) <@(a). 

PROOF. By a simple limiting argument, we can suppose that B is a finite 
matrix and deal with sequences (a,, . . . ,a,, 0, . . . ). We claim that in that 
case we can find B* with lBiil <B$ with B* doubly stochastic, i.e., ZfB; = 
ZiB$ = 1. Temporarily deferring the proof of this claim, we note that WBa) 
<qB*lal) (since @(a) <@(b) if lail < Ibil; see [13]). Since B* is doubly 



378 BARRY SIMON 

stochastic, it is a convex combination of permutation matrices (i.e., doubly sto- 
chastic matrices with all elements 0 or 1). Since @ is convex and symmetric, we 
conclude that @(B* lal) <Ylal) = +(a). 

This leaves us to  verify the claim about the existence about B*. Without 
loss suppose that Bii 2 0. Define B$ inductively, defining first BT1, then BT2, 
. . . ,BTn, BZl, . . . ,B,*,: at each stage define B$ to be as large as possible 
without destroying the double substochasticity. Thus at each stage, we increase 
the i, j element until either the ith row or the jth column sums to 1. We claim 
that B* is doubly stochastic. For, if some row, say the ith, does not sum to 1, 
then by the above, each column must sum to 1. But a doubly substochastic 
finite matrix in which each column sums to 1 is doubly stochastic. 

As in the proof of Theorem 2.2, Lemma A.2.1 immediately implies: 

THEOREMA.2.2. Let A E I@.Let B denote the family of all orthonom- 
a1 sequences. Then: 

Given Theorem A.2.2, we can mimic the methods of $3 to prove: 

THEOREMA.23. Any interpolation theorem between Banach spaces re- 
mains true if all symmetrically nomed sequence spaces are replaced by their 
corresponding operator ideals. 

REMARK. By interpolation theorem, we think of 6 spaces Xo, XI, ?yo, 
N 

Y1 and 7 and Xo nXI (resp. Yo n Y1) dense in Xo, X1 and X (resp. Yo, Yl. 
hr 

Y')so that any map from Xo nXI into Yo + Yl which takes Xi to Yi takes 
N N 

X to Y with a corresponding inequality on norms. 
Added notes. (1). Some work related to this paper, and, in particular, a 

version of Proposition 5.2, appear in papers of M. S. Birman and coworkers; see 
Birman-Borov, Topics in Math. Phys. 5 (1972), 19-30, Birman-Solomjak, Func- 
tional Anal. Appl. 4 (1960), 265; Trans. Moscow Math. Soc. 27 (1972), 1-52; 
28 (1973), 1-32. 

(2) The bound (4) conjectured in this paper has been proven independent- 
ly by E. Lieb (Princeton Univ. (preprint)) M. Cwickel (Institute for Advanced 
Study (preprint)) and M. Rosenbljum (Leningrad (in press)). Cwickel, in partic- 
ular, proves our Conjecture 1. 
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