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We consider the family of operators A + r\B with A and B self-adjoint and B 
relatively form bounded. We consider situations where as X 1 h, , some eigenvalue 
r(h) approaches the continuous spectrum of A + I\B. Typical of our results is 
the following. If B is relatively form compact, and p(h) + r(h,), then either 
(p(A) - r(&))/x - X, -+ 0 or I is an eigenvalue of A + hlB. 

1. INTRODUCTION 

Let A and B be self-adjoint operators so that A 3 0 and B is A-form bounded 
with relative bound zero, i.e., Q(B) 1 Q(A) (where Q(C)={+ ] j I/\ 1 d(#,E,#) <co 
with EA as the spectral measure for C) and for any CI > 0 there is a b with 

for all 1,4 E Q(A). Under this hypothesis A + hB is an entire analytic family of 
type (B) in the sense of Kato [3]. In particular, the theory of Rellich [6] and 
Kato [2, 31 is applicable: If CL,, is an eigenvalue of A + X,,B which is discrete 
(i.e., an isolated point of spec(A + &,B)) an o multiplicity K and either k = 1 d f 
or h, is real, then for h near &, , the only spectrum of A + /\B near pa is discrete, 
of total multiplicity k, and given by one or more functions analytic in X near & . 

Let us restrict X to be real henceforth and suppose pFLo is a discrete eigenvalue 
of A + &,B (for simplicity, suppose k = 1). As /\ varies, the eigenvalue p,, 
varies being given by a real analytic function p(X). The Kato-Rellich theory 
described above continues to be applicable so long as r(x) stays away from the 
nondiscrete spectrum of A + XB. The questions which will concern us in this 
note involve the situation which occurs when p(X) approaches the nondiscrete 
spectrum as X approaches some critical value of X, . A typical phenomenon that 
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occurs is that the eigenvalue is “absorbed,” i.e., as h is continued past hi the 
eigenvalue disappears; put differently, as h is continued in the opposite direction 
the continuous spectrum “gives birth” to a new eigenvalue. Two specific 
questions concern us here. Can one tell by looking at A@,) and its relation to 
B that a new eigenvalue is about to appear ? What is the “threshold” behavior, 
i.e., as h 4 X, , p.(A) will approach some point of continuous spectrum I, 
what is the behavior of p(h) - &) ? 

Our interest in this set of problems was aroused by some work we have 
done on the behavior of the Schrodinger Operator --d + XI’ in one or two 
dimensions [9]. In that case, for suitable V, there is a single negative eigenvalue 
for h small. In one dimension, this eigenvalue is analytic at h = 0 so long as L,’ 
falls off at infinity at a sufficiently fast rate. In two dimensions, the eigenvalue 
is never analytic at X = 0. We feel that the results of the present note shed some 
light on this previous work. 

We have fairly general and complete results in the case that B is relative 
r2-form compact, i.e., [ B Ill2 (A + 1))’ 1 B Ii/a is compact. Some of these 
results are abstractions of ideas of Birman [l] and Schwinger [7]. These results 
appear in Section 2. In Section 3, we describe a meager result in case B is only 
form bounded. 

In interpreting the results of this paper, the reader should bear in mind the 
following result (which follows as in [8, II.8 App. 21): If A 2 0, if&h) is given 
by the min-max principle for A + M and if ~~(0) = 0 (all n), then &h) is 
monotone decreasing in h. This means that discrete eigenvalues are monotone 
and that C(h) = inf 0,,,&4 + M) = supn pJl\) is monotone. We also warn 
the reader that we systematically abuse notation and use (4, A$) to stand for 
the value of a quadratic form a at (4, $). 

2. RELATIVELY COMPACT PERTURBATIONS 

Suppose that A > 0 and that 0 E ess spec(d). If B is relatively form compact, 
then, by a general theorem, ess spec(d + M) = ess spec(A) for all real h 
(see, e.g. [4]). 

THEOREM 2.1. Let A and B obey the hypotheses of the last paragraph. Suppose 
that, for X E (h, , h, + E) C (0, co), A + hB has a largest negative eigenvalue p(X) 
which is nondegenerate. Suppose that p(h) 7 0 as h 4 X, and that no other eigenvalue 
converges to zero as X 4 h, . Then either 

(4 @ @ - Q-1 p(x) = 0 

or 
(b) 0 is an eigenvalue of A + X,B. 
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In the latter case, suppose that 0 is not an eigenvalue of A. Then 0 is a simple 
ei~envalue of A + h,B, and 

where 7) obeys (A + h,B) 7 = 0, 1177 11 = 1. (In particular, if 0 is not an eigen- 
value of A, then limA,,l( X - A,)-l p(A) # 0 if and only if 0 is an ezgenvalue of 

A + W) 

Proof. Suppose first that 0 is not an eigenvalue of A + X,B. Let r)(h) be 
normalized eigenvectors for A + XB with eigenvalue p(X). Since B is relatively 
form A compact, it obeys a bound of the form (1) with a arbitrarily small. 
Thus, for X E (A1 , A, + E), we have 

(9, (A + 1) #) G 44 [(A + W + cl 9) 

for some fixed c. It follows that \\(A + l)+o/a) q(A)\] remains bounded as h J A, . 
Let I,& be a weak limit point for (A + 1)+(1/2) 7(h) and let Q, = (A + 1)-(li2) I,$ . 
Then v(h) --+ r10 weakly, so for any $ E D(A) 

(4, (A + 4B) rlo) 

= (4, (A + W rl@N - (6 BrloX~ - 4) - (4, (A + WW) - rid = 0. 

The last equality follows by taking h 4 A, and noting that (4, (A + U3) 7(h)) = 
P(W, r)(4) + 09 I(6 Brlo)(~ - &)I -+ 0 and (A (A + WrlN - d = 
(A$, v(X) - ?a) + )I(B$, T(A) - T,,) --t 0. Thus ~a is an eigenvector for A + X,B 
for eigenvalue zero so T,, = 0. Thus since {(A + 1)-(1/2) 7(A)} lie in a compact 
and the only weak limit point is zero, (A + 1)112 T(A) ---f 0 weakly. Since 
1 B Ill2 (A + 1)-(1/2) is compact by hypothesis, ] B Ill2 r](h) -+ 0 in norm so 
(7(h), Bq(A)) + 0. By the Kato-Rellich perturbation theory, for X E (A, , A, + E), 

444/~ = M4, BdU so 

1 A 
&a = - 

s h -A1 Al 
b&V, Brl(4) dh + 0 

1 

proving (a). 
Now suppose A + h,B has zero as an eigenvalue and that zero is not an 

eigenvalue of A. It follows that (7, B?) < 0 for any 7 with (A + h,B) q = 0; 
Al > 0. By a simple argument using the min-max principle, one sees that for 
h > A, , the spectral projection for (-co, 0) associated to A + AB has a dimen- 
sion at least as large as that for the interval (-co, 0] associated to A + X,B. 
It follows that 0 is a simple eigenvalue of A + X,B since, by hypotheses, only 
one eigenvalue is being absorbed. 

For X > A,, let PA denote the projection onto the orthogonal complement of 
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the eigenvectors associated to eigenvalues less than p(X). Let 71 obey 117 11 = 1, 
(A + h,B) 7 = 0. Then, by the min-max principle 

44 e (A - U(~A7, BP*7)- 

Since P,, -+ r] as A $ A, , it follows that 

@ 0 - w P(4 G (77, B7). 1 
By the mean value theorem, the set of limit points of (h - hi)-r p(h) is a subset 
of the limit points of dp/dX = (y(X), &(A)). It follows that there is a sequence 
X, i X, so that 

(7(U, B7GL)) - lim@ - 4-l k4v 

By passing to a further subsequence, we can suppose that q(X,) + Q, weakly. 
As above, 7m is an eigenvector for A + X,B so q, = (~7 with / a! 1 < 1. Thus 
since (7(h,), B&I,)) + (rlrn , B7,) as above, we have 

lim(h - 4-l ~(4 = I a I2 (7, B7) 3 (7, B7) 

(since (7, B7) < 0). Thus l&(X - h&r ,u(/\) > (7, B7) > E(A - X,)-l p(A) so 
the limit exists and equals (7, Bq). 1 

Remark. We have also proven that after a change of phase, 7(h) + 7 as 
X 4 h, weakly and thus, in norm, since II7(h)ll = 117 I1 = 1. 

EXAMPLE. Let V be a spherically symmetric function on R3 which is short 
range in some sense (Jr 1 x 1 1 V(x)] dx < co will do if Jost function techniques 
are used [5]). Thus there are no s-wave (spherically symmetric) zero-energy 
eigenvalues, but for p-wave and higher (angular momentum I> 1) the limit 
of negative eigenfunctions will be square integrable. It follows that when a 
new s-wave bound state appears its energy is o(X - hi) (in fact a more detailed 
analysis shows O(h - X,)2) but for new p-wave and higher bound states we 
have O(h - h,) behavior. 

As a particular consequence of this theorem, we see that dp(h)/dh is bounded 
as A & h, . It follows that 

COROLLARY 2.2. Let A and B obey the hypothesis of Theorem 2.1. Suppose 
that for all real h, the number N(h), of negative eigenvalue E,(h),..., EN&X) of 
A + M3 is finite. Then for any y > 1 

N(A) 

f,(h) = C (-E&9) 
n-1 

is continuously differentiable. 
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Our next two results which abstract ideas of Birman [l] and Schwinger [7] 
provide some illumination of Theorem 2.1. We state them in the case B < 0 
where the strongest results exist. Given A and B so that A 3 0, B is A-form 
compact, and A + hB has only finitely many negative eigenvalues, we call 
h, > 0 a threshold coupling constant if and only if for X > h, there are more 
negative eigenvalues than for h < h, . 

THEOREM 2.3. Let B < 0, A > 0 with B A-form compact. Then h, is a 
threshold coupling constant if and only if 

tz 11 1 B 11i2 (A + /\,B - E)-l 1 B Ill2 11 = co. 

Moreover, the largest negative eigenvalue p(X) for h > Al but near h, is given by 
the implicit equation 

1) 1 B Ill2 (A + h,B - p)-l ] B /1/2 I/ = (h - Q-l. (2) 

Proof. By a simple argument (see, e.g. [S]), a number E < 0 which is not 
an eigenvalue of A + h,B is an eigenvalue of A + XB if and only if (X - X,)-l 
is an eigenvalue of 1 B Ill2 (A + h,B - E)-1 I B Ill2 = K(E). Let e, < 0 be 
the largest strictly negative eigenvalue of A + h,B. For E > e, , K(E) is positive 
definite on a fixed space of finite dimension and is bounded on the negative 
definite space as E t 0. Since K(E) is compact, K(E) has an eigenvalue going 
to plus infinity as E t 0 if and only if I] K(E)11 7 co and the eigenvalue is given 
by the norm. 1 

Equation (2) sheds some light on Theorem 2.1 and could probably be used 
as the basis for an alternative proof. For, if 0 is an eigenvalue of A + h,B 
and 7 is the corresponding eigenvectors then (7, I B l1/2 7) # 0 so (7, K(E) 7) 
has a first-order pole as E 4 0, i.e., (2) has a solution p(h) with &)-l > c(X - Q-l. 
Conversely, if (2) has such a solution 1 B Ill2 (A + h,B - p)-l I B 11i2 has a p-l 
singularity at p = 0. Since I B Ill2 is compact, this should imply the existence 
of a fixed 77 with (7, (A + h,B - p)-l~) > c(p)-’ which implies the existence 
of a zero eigenvalue. 

By an argument very similar to that proving Theorem 2.3, one proves 

THEOREM 2.4. Under the hypothesis of Theorem 2.3, suppose that h = 0 is 
Bat a threshold coupling constant. Then lim,,, ) B Ill2 (A - E)-l ) B Ill2 exists 
(denote it by I B Ill2 A-l I B IlIz). Suppose that it is compact. Then the threshoM 
coupling constants Xi are related to the eigenvalue y1 of ) B I1ja A-l I B j1/2 by 
xi = yyl. 

Let us close this section by considering a class of examples which shows that 
when a new eigenvalue appears, it can happen that p(X) N c(h - hip for any 
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01 ;- 1. On L2(- co, co) consider the operators pa - k-is’. Then for 7 suitable 
(7, K,(E) 7) N const s (I ~,+)I~/(pa - E)) dp where #(p) # 0 near zero so 
(79 &3(E) 7) w cE-l+lla so long as /? > 1. By a detailed analysis along the lines 
of [9] we can show that 11 K(E)Ij N cE-l+l@ so there is a negative eigenvalue 
p(X) for h near zero with h-l N ~&-~+~‘a or p(X) N dP,‘e-l. For p = 1, one 
can show that p(h) N c exp(-l/dh), see [9]. 

3. RELATIVELY BOUNDED PERTURBATIONS 

We have less to say in case B is only assumed relatively bounded rather than 
relatively compact. What we can extend is the result that the approach of 
eigenvalues to the continuum is no faster than linear. 

THEOREM 3.1. Let A be a self-adjoint operator with 0 = inf ess spec(A). 
Let B be a symmetric quadratic form with Q(B) 1 Q(A) and 

For I A / < a-l, let Z(X) = inf ess spec(A + hB) and let p@) (i = l,...,) be 
g&n by the min-max principle [4] so that the pi are eigeneralues $ p%(X) < Z(h) 
and all eigenvalues below Z(h) occur as p?(X). Then for any E > 0, the pi(h) and 
Z(h) obey 

I P&v - P&q < c I x - A’ I, (4) 

/ Z(X) - Z(X)1 < c j A - A’ ‘) (5) 

all h, x’ E (-a-’ + E, a-l - c). In particular, the approach of any eigenvalue 
fo .Z is at fastest linear in the coupling constant. 

Remark. The idea of the proof follows an argument from Simon [g]. Since 
Z(h) = lim,,, pi(h), (4) implies (5). Given E, for any X E (-a-l + E, a-l - E), 
we see that (4, (A + M3) 4) < 2(#, i4#) + b 1 a 1-l (y5, #) so Z(h) < b I a 1-l. 
On the other hand, (4, (A + hB) #) > (a E)($, A#) - b 1 a /-I(#, #). Thus, in 
the min-max principle defining pi we need only consider I/J’s with jl I+$ I/ = 1 and 

By (6) and (3) for such #, the function 

obeys 
44 = (h (A + XB) 4) 

1 e&(A) - e,(X)! < b(2a-‘E-l + 1) 1 X - h’ ( (7) 

(7) and the min-max principle implies (4) with c = b(2a-‘c-1 + 1). 1 
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