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Let V be a multiplication operator, whose negative part, V-( V- < 0) obeys 
-A + (1 + c)V- > --c for some c, c > 0. Let W = Vx where x is the 
characteristic function of the exterior of a ball. Our main result asserts that 
the scattering for -A + V is complete if and only if that for -A + W is 
complete. Our technical estimates exploit Wiener integrals and the Feynman- 
Kac formula. We also make an application to acoustical scattering. 

1. INTRODUCTION 

Since the original papers of Cook [5], Jauch [14], and Kuroda [22], 
the scattering theory of two body Schrodinger operators has been 
extensively studied. A common thread running through much of this 
work is the idea that only the behavior at infinity is critical for scatter- 
ing and the finite singularities are merely an inessential technical 
complication. As far as existence of the wave operators is concerned, 
this idea is probably best expressed in the result of Kupsch-Sandhas 
[21] (not stated in exactly the form below; see also [37]): 

PROPOSITION 1. Let H,, = -A on L2(lRn) and let H be a self-a4oint 
operator so that for any 4 E 9’(W) with support of 4 outside some ball B, 
H+ = -A+ + V+ h w ere V is a multiplication operator. Let x be the 
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characteristic function of the exterior of B and suppose for a dense set D 
in C003, W = XV obeys the Cook condition: 

s m 11 WeqiHo*$ 11 dt < co; 4 ED. 
--m 

Then the wave operators s-lim t+F7m eiHte--iHot = Q*(H, Ho) exist. 

Our goal in this paper is to prove a result of Kupsch-Sandhas genre 
allowing one to conclude completeness of wave operators, i.e., 
Ran Q*(H, H,,) = Z&(H), the absolutely continuous space for H. 
In seeking such a result, one subtlety that one must bear in mind is 
that finite singularities can make a difference for the question of 
asymptotic completeness, a fundamental discovery of Pearson [31], 
who found an example of a potential V of compact support so that 
H = --d + V is essentially self-adjoint on D(A) n D(V), bounded 
below, and so that Ran Q+(H, Ha) # Ran Q-(H, H,). We will require 
a mild regularity condition on the negative part of the local singularity 
to eliminate the Pearson effect. Our main result is the following: 

THEOREM 1. Let V be a function on IWn which is locally L1 away from 
a set G C Iw” which is a closed set of measure xero. Suppose that VP , the 
negative part of V, obeys an estimate 

-~+(l+~)v-~-c (1) 

for some E, c > 0, as a sum of forms on C,,“(lP). Let H be the operator 
-A + V deJned as the form closure of the sum of forms on C,,*(FP\G). 
Let W be another function obeying (1) so that V - W has compact 
support. Let H’ = -A + W and H,, = -A. Then sZ*(H, H,) exist 
(resp. are complete) if and only ;f Q+(H’, H,,) exist (resp. are complete). 

Remarks. 1. For discussion of form methods see Faris [7], Kato 
[18], or Reed-Simon [33, 341. 

2. For the case of centrally symmetric potentials, results with a 
thrust related to Theorem 1 can be found in Pearson-Whould [32]; 
for related results see Amrein-Georgeseu [2]. 

3. Among the corollaries of the theorem is the existence and 
completeness of Q*(H, Ho) for a variety of H’s; e.g., when V > 0 in 
L:,,, (lIV\G) has compact support. To obtain results when V does not 
have compact support, one controls Q*(H’, Ho) by appealing to the 
various results for nonsingular potentials, e.g., Agmon [I], Kato- 
Kuroda [19]. 



220 DEIFT AND SIMON 

4. As another corollary, we are able to obtain Robinson’s 
extension [36] of Lavine’s work on repulsive potentials, given 
Lavine’s results [24]. 

Our main technique for isolating singularities is based on an idea 
in Pearson’s paper [31]. This technique of Dirichlet decoupling is 
discussed in Section 2. Decoupling via Dirichlet boundary conditions 
has been used in a variety of mathematical physics situations going 
back at least as far as the Courant-Hilbert proof [6] of Weyl’s theorem 
on the asymptotic number of eigenvalues of a vibrating membrane (see 
also Kac [17] and Reed-Simon [34]). More recent applications have 
been to statistical mechanics (Lieb [25], Robinson [35]), Schrodinger 
operators (Martin [29], Reed-Simon [34]), constructive quantum field 
theory (Glimm- Jaffe-Spencer [9], Guerra-Rosen-Simon [ 12]), and the 
connection of Thomas-Fermi theory with quantum mechanics 
(Lieb-Simon [26, 271). 

In Section 3, we use the ideas of Section 2 to prove a variety of 
results for central potentials generalizing those of [32] and also those 
of Theorem 1. Essentially the same results have been proven in [2] by 
related but different methods. In Section 4, we introduce the Wiener 
path integral ideas we will use to prove the estimates needed to verify 
Theorem 1 in the general case. We consider the special case of Theo- 
rem 1 where I’, W are nonnegative. In Section 5, we extend this idea 
to prove Theorem 1 in the general case. In the appendix we describe 
an application to acoustical scattering and the relation of our work to 
some work of Birman. 

Two remarks seem to be in order about possible ways of rewriting 
our methods in Sections 4, 5. First, it is likely that one can replace 
our use of the Feynman-Kac formula by the Trotter product formula 
and the positivity of various integral operator kernels. While this 
rewriting is “more elementary” in that it avoids the use of the Wiener 
integral, it also tends to obscure the intuition that led us to our 
results. Secondly, most of the estimates of Section 5 are expressed 
more naturally in terms of weighted L2 spaces (see, e.g., Agmon [I]) 
which we have avoided for reasons of simplicity of exposition. 

Finally, let us close this introduction with a few words about 
various technicalities we will slough over in Sections 4, 5. We will 
make various formally correct manipulations involving commutators. 
The reader may wonder if these manipulations are legitimate for the 
singular V we are considering. We finesse this question by viewing our 
estimates as a priori estimates. That is, the result we wish to prove is 
that certain operators are trace class. Our manipulations are certainly 
legitimate if V is in C,” and result in trace norm estimates on the 
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objects of interest which only depend on the lower bound of --d + 
(1 + E) V- . Now --d + V is the limit in strong resolvent sense of 
--d + V, for suitable V, E C,,a (this may be established by appealing 
to monotone convergence theorems for forms [7, 181). The trace class 
nature of the objects of interest can then be established by appealing to: 

PROPOSITION 2. Let A, + A strongly for bounded operators, A, , A. 
If each A, is trace class with sup Tr( / A, I) < CO, then A is trace class, 
and Tr(l A 1) < lim Tr(l A, I). 

Proof. It follows by noting that A is trace class if and only if 
1 Tr(AB)I < c jl B [loi, for all finite real operators B. 1 

We also deal with integral kernels of various operators and it may 
not be clear that these operators have integral kernels. This problem 
can also be handled by a priori considerations of the type discussed 
above. Alternatively, we prove most of the objects that concern us are 
Hilbert-Schmidt or at least are Hilbert-Schmidt after multiplication 
by (1 + x2)-o for suitable p. Thus these are direct proofs that many 
of the operators are integral operators. Finally, by the Dunford-Pettis 
Theorem (see, e.g., [40]), an y continuous bilinear form on Ll(W) has 
an integral kernel in L”(R2”). This can be used to prove e--tH and 
(H + X)-l are integral operators if V > 0. 

2. DIRICHLET DECOUPLING 

In Sections 4, 5 we will consider potentials V E Li,,( W\G), where G 
is closed set of measure zero so that V- is a form bounded perturbation 
of --d with relative bound less than 1. Under this condition it is easy 
to see that the form h(#, 4) = (#, --d#) + (#, V#) with dense form 
domain Com(Ra\G) is semibounded and closable and so determines 
a self-adjoint operator H. Let S be a sphere in R” and define fl to be 
the operator determined by closing the quadratic form h restricted to 
C(‘(R”\(G u S)). W e say that A has a Dirichlet B.C. (boundary 
condition) added at S. Now S divides Iw” in two regions B and E 
(the interior of a ball and the exterior). The fundamental fact about Q 
is that: 

PROPOSITION 3. There are self-adjoint operators Hl on L2(B) and 
H2(R”) = L2(B) @ L2(E), I? = Hl @ H, . 

Proof. This follows directly from the fact that C,“(OV\(G u S)) = 
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Co”(B\G) + GV\G) (f or more details, the reader can consult 
[341)* I 

We also recall some elementary facts about relative wave operators 
(see Kato [18]). If A and B are self-adjoint operators and P,,(A) 
(resp. P,,(B)) is the projection onto the absolutely continuous space 
for A (resp. B), then we say that &)*(A, B) exists if the 

exists, and is complete if Ran sZ* = Ran P,,(A). 

(Remark. What we call J2*, many call LF). The following result 
is an immediate consequence of the transitivity of wave operators: 

PROPOSITION 4. Suppose that @(A, B) exist and are complete. Then 
G*(A, C) exist (are complete) if and only ifll*(B, C) exist (are complete). 

One also has the following basic result associated with the work of 
Birman, DeBranges, Kato, and Kuroda: 

PROPOSITION 5. Either of the following is sujicient for the existence 
and completeness of G*(A, B): 

(a) (A + i)-’ - (B + i)-’ is trace class, 

(b) A, B > 0 and f (A) -f(B) trace class, 

for a C2 function f on [0, a] with strictly negative derivative. 

THEOREM 2. To prove Theorem 1, it sujices to prove that for any V 
obeying the hypothesis of the theorem, e@ - emB is trace class. 

Proof. By Proposition 4, it suffices to prove that @(R, H), 
L?*@‘, H’), and sZ*(n, p) exist and are complete (for then SZ*(H’, H) 
exists and is complete). By hypothesis and Proposition 5, G*(H, H) 
and sZ+(g’, H’) exist and are complete. Now B = H1 @ Ha A’ = 
H,‘@H,‘andf or S chosen suitably He = H,’ (since V - W = 0 
on E). Now 

A > Ho + v- = (1 + c)-’ [H, + (1 + 6) v-1 + E(1 + c)-’ H, 

3 (1 + c)-’ (do - c). 

(All statements are intended as form inequalities in the sense: A > B 
if and only if Q(A) C Q(B) and (+, A+) >, (4, B+) for all 4 EQ(A); 
it is sufficient to prove such an estimate on a form core for A. Notice 
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in the first inequality it can happen that Q(A) # Q(B).) Let (H,“), 
be obtained by closing (4, --d$) on V,“(B). Now (Hi), < (H,,), as 
forms. Thus (Ha), has compact resolvent. Hence, since H1 3 
(1 + E)-~(E(H,,), - c) as above, so do EZr , and H,‘, so P,,JZ?) and 
Pac(Z?) have ranges in L2(E) and so Q*(A’, a) = P,,(H,) = 
Pa,(H2’) exists. 1 

Remark. A direct calculation shows that eea’ - e-&is trace class so 
that edH - e--H’ * is trace class under the hypotheses of the theorem. 

For consideration in Section 3, we need a slightly different result 
than Theorem 2. This result is essentially contained in Pearson [31]: 

THEOREM 3. Let V be a central potential which is in L~,,,(FP\{O}). 
Let H be self-adjoint operator commuting with rotations which is an 
extension of -A + V on C,,m(5P\{O}). Let H’ be a similar operator 
associated with a potential W. Suppose that V(x) = W(x) ;f / x 1 > a. 
Let HI (resp. HI’) b e any rotationally invariant self-adjoint extension 
of --A + V on Com(O < ] x 1 < a) (resp. --d + W). If HI and H,’ 
have no absolutely continuous spectrum on each space of constant angular 
momentum, then Q*(H, H’) exist and are complete. 

Proof. One need only prove that on each subspace of constant 
angular momentum that 52*(1-r, H) and .Q*(ff, R’) exist and are 
complete. Pick H, to be an arbitrary self-adjoint extension of --d + V 
on C,,“(I x 1 > a). Let R = HI @ H, . Then on such subspace, 
(Iif + i)-’ - (H + i)-’ is an operator of rank at most 4 and so trace 
class. By hypothesis !&(n, E?) = Q*(H2 , H,‘) = P,,(H,) = 

eLc(H2’)* I 

Remarks. 1. In Theorem 2 the easy part is that &&=(n, I?‘) exist 
and in Theorem 3 that Q*(fl, H) exist so the central case of Theorem 1 
is very easy. 

2. Note that if one particular choice for HI (respectively H,‘) 
has no absolutely continuous spectrum, then the same is true for all 
choices for the self-adjoint extensions HI (respectively HI’) by the 
Kato-Birman theorem. 

3. If V is central and in L&&P\(O)), and its negative part is form 
small with respect to --d, then of course Theorem 1 applies. If V 
is only L~,,(W\{O}), then the limit point/limit circle method can still 
be used to construct rotationally invariant self-adjoint operators 
H = --d + V. For such operators H, Theorem 3 is still true, though 
one needs more care in estimating (Z? + i)-’ - (H + i)-1. 

58QiX3/3-4 
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4. Theorem 3 makes assertions about all the self-adjoint exten- 
sions of (-A + V) r C,~(liV\(O>). If Y is not necessarily central but 
satisfies, in addition to the requirements of Theorem 1, V E LTO,( [W”\G) 
with G finite, then we conjecture that Theorem I extends to all self- 
adjoint extensions H of (--d + V) r CoCO(aBn\G). If G is an arbitrary 
compact set of measure zero in [w”l, however, then the particular 
choice of the self-adjoint extension H does affect the scattering! For 
in R3, Pearson’s [31] example of incompleteness with &functions is 
equivalent to taking V = 0 and requiring -A + V to satisfy particular 
boundary conditions on a countable number of spheres Si = 
{I x / x / = a,}, supi ai < co. If we were to take Dirichlet boundary 
conditions across these spheres, then Theorem 1 gives completeness. 
In the spirit of Theorem 3, Pearson’s example shows us that for general 
compact G one self-adjoint extension H may be connected to a decom- 
position l? = HI @ H, where the “core” HI has absolutely continuous 
spectrum, whereas another extension may be connected to a core 
without any absolutely continuous spectrum, The situation is not as 
simple as in Remark 2. 

3. CENTRAL POTENTIALS 

In this section, we apply Theorem 3 to central potentials with 
compact support. We then use Pearson’s decoupling to extend an 
approach due to Kuroda [22] for potentials satisfying a global 
integrability condition, to include potentials with a finite singularity. 

Let I’ = V(r) be a central potential in Iw”. Let -K, be the Zth 
eigenvalue of the Laplace-Beltrami operator on the (n - I)-sphere 
Sri-r: K~ >, 0. Where a > 0, let H$“’ be the operator (-d2/dr2 + 
(((n - l)(n - 3)/4) + ~J(l/r~) + V(r)) i’ Com(O, a). Rotationally in- 
variant self-adjoint extensions H of (--A + V) r C,,“(Rn\(0)) are 
direct sums of self-adjoint extensions H,, of Hi:“‘. The self-adjoint 
Laplacian H,, = --d on Rm is a direct sum of self-adjoint Dirichlet 
operators Hl,,O = -d2/dr2 + (((n - l)(n - 3)/4) + ~J(l/r~) on 
L2([0, co), dr). Scattering exists and is complete in Iw” iff Q*(H,,, H,,,,) 
exist and are complete for all Z, n. 

Theorem 3 immediately implies: 

THEOREM 4. Let V be a central potential which has compact 
support B and which is in L~,,(W\{O)). Let H and HI be as in Theorem 3, 
where a is any number for which B C {x: 1 x 1 < a]. Suppose that V 
satisjies at least one of the following conditions: 
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(i) V(r) + (((n - l)(n - 3)/4) + ~J(l/r”) is in the limit circle 
case at r = 0 in each space of angular momentum I; 

(ii) H, + (1 + E)V > - c on C,“(O, a) for some E > 0 and 
some real c; 

(iii) V is Ho-form bounded with bound 01 < 1, i.e., Q(H,) C Q(V) 
and there exist p > 0, 1 > a: 3 0 such that 

I($> vJ)l G 4+, f&d) + Bch 41) for all 4 E Q(H,), 

(iv) V 3 0. 

Then HI is discrete and L&(H, H,,) exist and are complete. 

Proof. In the notation of Theorem 3, let H’ be H, . InL2{X: 1 x 1 < a} 
let HI’ be the (rotationally invariant) self-adjoint operator associated 
with the closure of the form (6, H&) on Corn(~ : 0 < 1 x J < a}. HI’ 
is discrete. Now if (i) is satisfied, then all rotationally invariant self- 
adjoint extensions HI of (H,, + V) I‘ CO”{x: 0 < 1 x 1 < a} are 
discrete (see Coddington and Levinson [4, pp. 242-2441). Also, the 
conditions (iii) and (iv) separately imply (ii), so we can assume 
Ho + (1 + ,)J,’ 2 - c on Com(O, a). But if we define HI as in Section 2 
by means of forms, we again have the forms inequality HI = 
Ho + v > (1 + +‘(4, - 1, c so HI is discrete. If Hi is some other 
(possibly unbounded from below) rotationally invariant, self-adjoint 
extension of (H, + V) r Com{x: 0 < 1 x 1 < a), then in each space 
of angular momentum I, [((E1))2 + 1)-l - ((H,)2 + 1)-l] is at most 
a rank 4 operator. It follows then from the min-max principle and the 
spectral mapping theorem for self-adjoint operators that R1 is also 
discrete (and with a little more work, also bounded below). The 
result follows. 

Remarks. 1. The conditions (ii) and (iii) are essentially due to 
Pearson and Whould [32]. 

2. Each “core” HI is discrete: this is of course more than is 
required for Theorem 3. 

Theorem 4 gives an easy discussion of commonly occuring poten- 
tials, e.g., suppose that for r < a, V(r) = lyrB for some real (II, /3. 
Then near r = 0, W(r) = (((n - l)(n - 3)/4) + K~)( 1/y2) + C@ behaves 
as &r-B’ for some reals 01’, /3’ with p’ > 2. If 01’ < 0, then W(T) 
decreases as r -+ 0 and so is limit circle at 0 (see, e.g., Titchmarsh 
[39, p. 1271). If (Y’ > 0, regard W(r) as a potential in R3. Since W(r) 
obeys hypothesis (iv) of Theorem 4, and since any self-adjoint 
extension on the zero angular momentum subspace can be extended 
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to a rotationally invariant extension of --d + W in [w3, the conclusion 
of Theorem 4 implies that any self-adjoint extension of 

(-(wq + W(Y)) r ci=(o, 4 

= [(-d2/dy2 + ((n - l)(n - 3)/4) + Kl)(l/~2)) +- ,YB] r c,yo, a) 

has discrete spectrum. It follows that we have completeness for all 
rotationally invariant self-adjoint operators --d + orrsx where x is the 
characteristic function of some ball. 

At first glance one might think that for potentials of form -r-” 
(n > 2) near the origin, the classical phenomenon of fall-in to r = 0 
is connected with asymptotic incompleteness. The preceding result 
shows, however, that this is not the case. In order to model the classical 
phenomenon quantum-mechanically, one must use non-self-adjoint 
extensions of --d - Y--~ as discussed by Nelson [30] and Pearson [31]. 
To get breakdown of completeness for self-adjoint (--d + V), we 
must have (H& # 0. Pearson’s [31] construction gives a central 
potential I’ with compact support in Rs for which Hi has precisely 
this property. 

We now develop an approach due to Kuroda [22] and eventually 
prove: 

THEOREM 5. Let V be a centrat potential which is in L~&P\{Oj). 
Let H and HI be as in Theorem 3, where a is any positive number. For 
each 1, let H,, be the component of H in the space of angular momentum 1. 
Suppose that O*(H, H,,) exist and that (H& = 0. Then .Q*(H, H,,) 
are WAC [i.e., weakly asymptotically complete: Ran Q+(H, H,) = 
Ran Q-(H, H,,)]. If o&HJ C uac(Hln,,-,) = [0, oo), they are complete. 

In order to prove Theorem 5 we introduce some notions from real 
analysis. Let E be a Bore1 set in Iw and let dh be Lebesgue measure. 
If x E iR and B(x, b) is the open ball (X - b, x + b), then we say that x 
is a point of density of E (Stein [38, p. 121) if 

lj$h(E n B(x, b))/X(B(x, b))) = 1. 

Let S(E) be the set of points of density of E. 

PROPOSITION 2. (Stein [38]). AZmost every point x E E is a point of 
density of E. 
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A self-adjoint operator Ton a Hilbert space His said to be spectrally 
simple (Reed-Simon [33, pp. 231-2341) if it is unitarily equivalent 
to multiplication by h onLa([W, d v ) f or some (regular) Bore1 measure dv. 
If in addition T is absolutely continuous then there exists a Bore1 set 
ET(X - a.e) with characteristic function xr(h - ae) such that T is 
unitarily equivalent to multiplication by X on L2([w, xr dh). It is easy 
to see that on the space of simple, self-adjoint absolutely continuous 
operators T, the map T -+ S(E,) is well-defined and l-l. Also it 
follows from the proposition that the spectrum a(T) = S(E,). We 
call S(E,) the spectral support of T. The map T --+ o(T), however, is 
not l-1, even when restricted to the above space of operators, e.g., 
let {rn};=r be an enumeration of the rational in [0, 11, let E = [Cl, 11, 
and let E’ = U,“=, {B(r% , 2-“-2) n [0, l]}. Where x (resp. x’) is the 
characteristic function of E (respectively E’), let T (resp. T’) be 
multiplication by X on L2((w, xdh) (resp. L2(Iw, X’dX)). T and T’ are 
self-adjoin& simple and absolutely continuous. As h(E’) < 4 < I, 
we have T # T’. However sp(T) = sp(T’) = [0, l]! 

We now prove a lemma of Kuroda which is fundamental in proving 
Theorem 5. Kuroda’s argument in [22] is incomplete in that he does 
not distinguish between u(T) and S(E,). 

We say that a Bore1 set E in [w is closed (a.e.) if h(E\E) = 0. 

PROPOSITION 3. (Kuroda [22]). Suppose A and B are self-adjoint 
operators in a Hilbert space S. If both S(B, A) exist, and the absolutely 
continuous part of B is spectrally simple, then Q+(B, A) are WAC. If 
a,,(B) C a,,(A), and ;f the spectral support of A,, is closed (a.e.), then 
Q*(B, A) are complete. 

Proof. Let Es, with characteristic function xB , be the Bore1 set 
for which B,, is unitarily equivalent to multiplication by A on 
P([w, xe dX). We have Ran SZ*(B, A) C S&,(B) and both Ran Q*(B, A) 
reduce B. As the cornmutant of B,, on Z&, is the set of Bore1 functions 
of X, it follows that the orthogonal projections P* onto Ran Q+(B, A) 
respectively, are represented on L2(88, xe dh) by multiplication by x* 
respectively, where x* are the characteristic function of two Bore1 sets 
Ep+ respectively. We have E+ C EB , i.e., x* = x*xB resp. Thus A,, 
is unitarily equivalent to multiplication by X on both L2(Iw, x+ dX) and 
L2(Iw, x-dh). The essential uniqueness of the spectral representation 
[33], implies that x+ = x-, i.e., Ran Q+(B, A) = Ran SZ-(B, A), so 
we have WAC. Let E’ = E,+ = Ep- and let x’ = x+ = x-. If we 
have a,,(B) C a,,(A) and E’()S = S(E’) (a.e.) then 

S(E) C S(E,) C u&l) C u&A) = S(E’) = S(E) (a.e.). 
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Thus S(E) = S(E,) a.e., so E’ = EB (a.e.) by the previous proposi- 
tion. I 

In general the condition a,,(B) C o,,(A) is not sufficient for com- 
pleteness: for let E’, x’ be as in the example preceding Proposition 3. 
In Z = L2([0, 11, dh), let B be multiplication by h and A be multiplic- 
ation by Xx’. Then Q*(B, A) exist and equal x’ and a,,(A) = o,,(B) = 
[0, 11. But Ran Q*(B, A) = ~‘~8 # L2[0, l] = Z&J@. Of course the 
spectral support S(E’) of A,, is not closed (a.e.). We have, however: 

THEOREM 6. Let V, H, HI , H,, be as in Theorem 5. Suppose also 
that (H& = 0, Then (Hl& is spectrally simple. 

Proof. Let H = HI + H, be the decoupling across the ball Ba. 
It follows from the proofs of Theorems 3 and 4 that the absolutely 
continuous part of H is unitarily equivalent to (H),C = (H,),, + 

(Hdao = (H2)ac . Thus it suffices to prove that for each 1, the com- 
ponent H2, ln of H, in the space of angular momentum 1, is simple. 
But in limit point/limit circle terminology [(4, Chap. Xl), only the 
point at infinity is singular for H,, (a*m). The limit point/limit circle 
method then explicitly exhibits each self-adjoint extension Hz,In of 
H$“’ as a simple operator. I 

Theorem 5 now follows from Proposition 3, Theorem 6, and the 
fact that s(H,,,) = (0, a) = [0, co) a.e. 

In a later paper [23], Kuroda proves existence and completeness in 
[wa for central potentials satisfying J”: I 1 V(r)1 dr + Jam 1 V(Y)] dr < co 
for some a > 0. His method is easily combined with Theorem 3 to 
prove : 

COROLLARY. Let V, H, HI , H,, be as in Theorem 5. Suppose there 
exists a > 0 swh that jam / V(r)] dr < co. Suppose also that (H& = 0. 
Then oac(Hln) = uac(HwJ = LO, ~0) and Q*(H, H,,) exist. Hence 
they are complete. 

Remark. Results for V with Jz 1 V(r)1 dr < 00 are also in Lundquist 
[28], Green and Lanford [l I], Pearson and Whould [32], and Amrein 
and Georgescu [2]. 

4. POSITIVE POTENTIALS 

In this section, we illustrate a number of the ideas we will exploit 
in the proof of Theorem 1 by proving: 
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THEOREM 7. Let V be a positive function in Ll(W\G). Let H = 
-A + V and l? be H with an added Dirichlet boundary condition on 
the sphere {x 1 1 x / = R}. Then, ;f 01 > 2 and LY. > n/2, (H + 1)-a - 
(A + 1)-a is a trace class operator. 

Remarks. 1. By a simple modification in the statement of Theorem 
2, this result implies Theorem 1 in case V is positive. 

2. The first difference of the above form that one might try to 
prove trace class is when 01 = 1. However, when V = 0, (H,, + 1)-l - 
(I?,, + 1)-l is a positive operator with positive integral kernel 6G,,(x, y) 
which one can show has an (I x 1 - R)2--n singularity as 1 x j -+ R if 
n > 3 (and only a log(j x / - R)) singularity if n = 2) so the 01 = 1 
result is only true if n < 2. For cy < n/2 and V = 0, the singularity 
should only be (I x j - R)2a--12 so the condition 01 > n/2 can probably 
be replaced with cy. > (n - 1)/2 but its proof seems to be a little 
simpler when 01 > n/2. The requirement a: > 2 is probably not 
necessary but is convenient. 

3. One difficulty that confronts us is that for CY > 1, (H,, + l)+ - 
(ir, + I)-” still h as an integral kernel X(x, y) which is positive but 
it is no longer a positive operator. Thus it is not sufficient to prove 
J X(x, X) dx < CO to conclude that the difference is trace class. 
For this reason, we resort to proving certain operators are Hilbert- 
Schmidt and writing (H,, + 1)~~ - (A,, + 1))” as a sum of products 
of Hilbert-Schmidt operators: 

LEMMA 1. If (y. > n/4 and (y. > 1, then for any real m, E > 0; 
(x2 + l)“/“[(HO + E)-a’ - (I&, + E)-a] is Hilbert-Schmidt. 

Proof. Let MC,,, be the integral kernel of (H,, + E)-“l - (I& + E)-e. 
Then for (Y > 0: 

(Sl&J(x, y) = C, Iorn dt P’-leetE[eetHo - eetRo](x, y) 

for a constant C, . Since the integral kernel for e--tHo - e-&o is 
positive (see the discussion of path integrals below) we see that 
W,,, > 0 and if cy > ,8, E > E’, UC,,, < (U&t) (const.) (since 
t”-Be-“E-E” is bounded). Thus we may suppose that 01 < n/2. The 
required estimate J (x2 + l)m 1 S&,(x, y)12 dx dy clearly follows 
from the hypothesis 01 > n/2 and the pair of estimates (C, D > 0): 

I S~,,B(X, Y)l < c I x - y I--n+2a all x, y 

I SG& r>l G C exp[---D(I x I + I Y III if 1x1 or jyl>R+l. 
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Since e-@o has a positive integral kernel 

0 < 6&,(x, y) < C, jrn t”-lemtE(eetHo)(x, y) dt 
0 

< ca s 
m 

t’“-le-tHo(x, y) dt = H;a(x, y) 
0 

= const. / x - y p+2a 

since 01 > n/2. This proves the first required estimate. 
Since 01 3 1, SK&X, y) < (X,,,,,(x, y)) (const), so we need only 

prove the second estimate when 01 = 1. By a simple application of the 
maximum principle for harmonic functions (see, e.g., [12]) for any 
IyI > R+ landallx: 

I @G& Y)I G ,yn Gob, Y) G Cl exp(---B I Y I) 

where Gs(x, y) is the kernel of (Ha + R)-l which is convolution with 
a function falling as exp(--(JP) 1 x 1) as 1 x 1 + co. Thus for 1 x I < 
R + 1 we certainly have 

and for 1 x I > R + 1, by symmetry of X: 

I %(x9 Y)I d [Cl exp(-8 I x W2 WI exp(--B I Y W2, 

proving the second estimate. I 

LEMMA 2. If 01 > n/4, (HO + l)-~l(x~ + 1)-a a&(&, + l)-~l(x~ + 1)-m 
are Hilbert-Schmidt operators. 

Proof. Since 01 > n/4, ( p2 + 1)” E L2(Rn), so its Fourier transform 
is in L2. It follows that (HO + 1)-=(x2 + l)ed has an integral kernel in 
L2(W x UP). Since the integral kernels, K, and R,, of (HO + 1)-cl 
and (A,, + 1)-a obey 0 < R,(x, y) < K,(x, y) (as above), (A,, + I)-” 
(9 + 1))a also has a square integrable kernel. I 

LEMMA 3. If 01 > n/2 and a > 2, then (H,, + 1)” - (J& + 1)~ 
is trace class. 

Proof. Write (Ho + 1)-d - (R. + 1)-0 = AB + (CB)* where 
A = (H,, + l)-a/a(~~ + 1)-~/a, C = (n,, + l)-a12(x2 + l)-a/2 and B = 
Ed; l)a/z[(HO + 1)-a/2 - (no + 1)-al/z] and appeal to Lemmas 1 

I 
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Our proof of Theorem 7 is based on the Feynman-Kac formula of 
Kac [15]; see also Kac [16], Nelson [30], and Reed-Simon [34]. The 
n-dimensional conditional Weiner measure dp,,y,t is a positive 
measure on those continuous functions, w, from [0, t] to IP with 
w(O) = x and o(t) = y of total mass (4~rt)-“/~ exp(- 1 x - y Iz/4t); 
see Ginibre [8], Ito-MacKean [13], or Nelson [30] for a precise 
description. The Feynman-Kac formula asserts that for H and A as 
we have defined them (by means of form sums on Com(lP\G) and 
Co”Pn\P ” lx I I x I = RI)) 

vw, y) = 1 
bdo(s)dG,all d 

exP (-1” wJ(~N ds) dtlwt > 
0 

(e-tR)(x, y) = exp (-it F44) ds) dvwt - 

Before proving Theorem 7, we introduce the notation A ,< B for 
operators A, B on L2(Rn) to indicate that B - A is an ‘integral 
operator with a positive kernel (note the dot in <). 

Proof of Theorem 7. By the Feynman-Kac formula 

(ctH - e+(x, y) 

G .S (WI Iw(s)~=Rsomed 
dpZ,y:t = (emtHO - e-“&)(x, y) 

where we have used V > 0 in the inequality and the Feynman-Kac 
formula with V = 0, G = 4 in the last step. Thus, since 
Je-lAe-tta-l dt = C;l(A + I)-“, 

0 5 (H + l)-” - (B + 1)-a 5 (I&I + 1)-a - (if, + 1)-a. 

So, by Lemma 1, if OT > 1, cx > n/4, m real, 

(x2 + 1)*/B [(H + 1)-a - (A + 1)-a] 

is Hilbert-Schmidt. By a simpler use of Feynman-Kac than above 
(and V > 0), 0 \< (H + l)-a 5 (H, + l)+ and 0 5 (g + 1)-s 5 
(& + I)-=. Thus by L 
(x2 + l)a(R + I)-” 

emma 2, if L~I > n/4, (x2 + l)-a(H + l)-d and 
are Hilbert-Schmidt. As in the proof of Lemma 3, 

we conclude that 01 > 2 and 01 > n/2, then (H + l)-a - (R + 1)-a 
is trace class. 
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5. PROOF OF THEOREM 1: GENERAL CASE 

The basic idea of the proof will be to use the Feynman-Kac 
formula to handle the positive part of V. In order to establish the 
analog of Lemma 1, we will use the Feynman-Kac formula and the 
analog of Lemma 2, which is our first goal. Thus we first prove that 
if OL > n/4 is an integer, then (x2 + l)-a(H,, + V- + c)-” is Hilbert- 
Schmidt for suitable c. 

We require the following general interpolation result: 

PROPOSITION 4. Let Ii, denote the family of operators with 
Tr(l A 1”) < co where 1 A / = (A*A)l12, for p < 00. Let I, denote 
the compact operators and I, the bounded operators. Let D be a dense set 
in Z and suppose that for each complex z with 0 < Re x < 1, we are 
given a quadratic form t, on D x D so that 

(1) for 4, # E Q t,(#, 1cI) is continuous on 0 < Re x < 1, analytic 
on 0 < Rez < 1; 

(2) for each d, # E D, In I t&d, #)I < G,, exp(h,6 I Im x I) with 
b < r. 

(3) If Re x = 0 (resp = I), there is an operator T, in IP, (resp. 
I,J with t&, $1 = (4, T,$), all 4, # E D. 

(4) For suitable m, sup2/(l + I y 1))” I/ Ti, &,, < co and 
SUP&~ + I Y I)-” II Tl+iy lip, < 00. 

Then, for any z, there is a bounded operator T, so that (4, T,$) = 

t,(A 1G) (all $9 #) and zf Re z = t, then T, E IP, where pyl = 
tprl + (1 - t) p,? Th e results remains true if I, is replaced by lb, 
everywhere. 

Interpolation results of this type go back to Kunze [20] and 
Calderon [3]; see also Gohberg-Krein [lo] and Reed-Simon [34]. 
This particular result when m = 0 follows from the proof of Gohberg- 
Krein if one restricts oneself to operators K of the form CT A,(@ , *) #n 
with +, , #, E D. By replacing tB with (1 + z)-“tz the general result 
follows from the m = 1 result. 

LEMMA 4. Let H, = --d on L2(Rn). Let a > n/4. Then for any 
real m, y; (x2 + l)“(HO + 1)-a+iu(x2 + 1)-m-w is Hilbert-Schmidt with 
Hilber-Schmidt norm bounded independently of y. 
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Proof. Suppose first that m is a positive integer and let A, = 
(~2 + l)%AH$x2 + 1)--a. Then A, has integral kernel 

Qt(x, y) = (x2 + l)m (&t)-“I2 exp(- 1 x - y 12/4t)(y2 + 1)-m-a 

< C f tfnj2 exp(-z2/4t) (7, (z”)j (y2 + I)-j-a 
j=O 

where z = x - y. Thus 0, is in L2 with a norm bounded by (const) 
[t+][l + t”]. Th us since 01 > n,‘4, Jr 11 A, I)Hge-tta-l dt < CO so 
C, J Ale-fta-iY-l dt is Hilbert-Schmidt. This proves the result for m 
a positive integer. We get the general m result by duality and inter- 
polation with D = Y(Rn)). I 

LEMMA 5. Let H,, = --A. For any real y, m; (x2 + l)“(Ho + l>ig 
(x2 + 1)” is a bounded operator with a norm bounded in y by (1 + 1 y I)k 
for suitable k. 

Proof. By interpolation, we need only consider the case where m 
is a positive integer. In that case by passing to the representation with 
x = id/dp we obtain the result by explicitly commuting the x’s 
through. m 

LEMMA 6. For any real m, and any p with p > n, (x2 + l)m 
(Ho + 1)-1/2(x2 + 1)-n-(1/2) is an Ip operator on L2(R”). 

Proof. Follows from Lemmas 4 and 5 by interpolation (with 
D = Y(W)). I 

LEMMA 7. Let A = (x2 + 1)” with m a positive integer and B = 
(~2 + E)Ii2. Then [B, A] A-Ill-l and AB-lA-l[B, A] A-l are bounded 
operators whose norms go to zero as E goes to infinity. 

Proof. Passing to the representation with x = id/dp, this is an 
immediate computation. II 

LEMMA 8. Let W be a multiplication operator so that ( p2 + E)--112 
W( p2 + E)-l12 is a bounded operator whose norm approaches a < 1 
as E -+ co. Then for any positive integer m, there is an E,, so that 
(x2 + l)p(l + ( p2 + E)-1/2W(p2 + E)-1/2)-1(x2 + 1)-o is boundedfor 
allpwithjpl <mandE>E,. 

Proof. By interpolation and duality, we need only consider the case 
p = m. By choosing E,, sufficiently large, we can suppose that 
(1 + ( p2 + E)-li2 W( p2 + E)-V2)-l . 1s g iven by the geometric series 
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CzDDEo (- l)“[( p2 + E)-‘/“I+‘( p2 + E)-1/2]k. It thus suffices to prove 
that D = (x2 + l)“(p” + E)-l12W( p2 + E)-l12(x2 + 1)” is bounded 
with norm less than 1 for E > E,, . Let A = (x2 + I)“, B = 
( p2 + E)+l12, C = B-l WB-l. Th en, using the fact that A commutes 
with W one finds that 

D=C+K+Dc 

where 6 = AB-lA-‘[B, A]A-l and C = [B, A]A-lB-l. It follows 
that if 1) E 11 < 1, then D is bounded and 

II D II ,< (1 - II E IO-’ (1 + II 8 II> II C Il. 

Since II E IL II 6 It -+O as E-+ co (by Lemma 7), JJDIJ--+a < 1 as 
E-+ co. I 

LEMMA 9. Let W be a multiplication operator where ( p2 + E)-l12 
W( p2 + E)-l12 is bounded with norm strictly less than 1 for E su$icientZy 
large. Then for any sujiciently large E, and any integer 01, (x2 + l)-” 
(H,, + W + E)-a is an operator in Ip so long as alp > in. 

Proof. It suffices to prove that (3” + I)-“(H, + W + E)-l(x2 + 1),-l 
is in 1, for any p > n/2. But this follows from Lemmas 6 and 8 by 
writing 

with 

(x2 + l)-” (H, + w + E)-1 (x” + 1),-l = ABC 

A = (x” + I)-” (p” + 1)-l/2 (x” + l)m-(l/2) 

and 
c = @2 + 1)-m+(1’2) (p” + 1)-l/2 (x2 + I)+ 

in IzP and 

B = ($ + 1)-m+(V) (1 + (~2 + E)-l/2 W(p2 + ,I+l/2)-1 (~2 + l)m--(1/2) 

in 1, and using Holder’s inequality for the spaces I,, . I 

LEMMA 10. If W obeys the hypotheses of Lemma 9, then for any 
integer 01 > n/4, (x” + l)-“e--t(Ho+W) is Hilbert-Schmidt for all t > 0. 

Proof. It follows from Lemma 9 by writing 

(x2 + 1)-a e-tH = (x” + 1)-m (H + E)-= [(H + E)o! t+]. 1 
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Proof of Theorem 1. By Theorem 2, it suffices to prove that 
(~2 + l)-%+‘/a, (x2 + l)-ae-a/2 and (x2 + l)+a(e--H/2 - eeRi2) are all 
Hilbert-Schmidt (and then follow the proof of Lemma 3). By the 
Feynman-Kac formula, we can bound the objects when H = 
H, + V by the objects with H = HO + VW, i.e., we may suppose 
G = + and V+ = 0. By Lemma 10 for 01 > n/4, (x2 + l)-“le-H/2 has 
a Hilbert-Schmidt kernel and thus so does (x2 + l)-ae-R12. For some 
/3 > 1, H = H’ + /IV- also has (9 + I)-“c~‘/~ Hilbert-Schmidt. 
Let K’ be the kernel for e-H’/2. Let 6G be the kernel for e-Ho/2 - 
e -RoP. Then, by Holder’s inequality: 

0 < (ecHj2 - e-8-/2)(x, y) 

= 
s exp 

{W I I&)l=R.some 81 
(- s,1’2 ~-6-4)) ds) d~awt-m 

5 [K’(x, y)]“a [SG(x, y)]l-l/B. 

Since (1 + x~)-~K’ E L2 and (1 + x2)%G E L2 for all m, again using 
Holder’s inequality, we see that (1 + xa)m[e-H/2 - e-&l21 is Hilbert- 
Schmidt for any m. I 
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APPENDIX 

Application to Acoustical Scattering 

In this appendix, we wish to describe an application of our ideas to 
acoustical scattering. We wish to prove: 

THEOREM A. 1. Let G be a bounded set whose boundary has measure 
0. Then the two Hilbert-space wave operators of Kato [A21 (see also 
Wilcox [A5]) for acoustical scattering exist and are complete. 

Remarks. 1. Kato [A2], using results of Birman [Al] has proven 
a similar theorem when G has a boundary which is a C2 manifold. 

2. Birman’s results in [Al] are similar to some of ours. They are 
weaker in their smoothness restrictions on G and V but stronger in 
allowing more general boundary conditions than Dirichlet. He does 
not seem to use decoupling to do Schrodinger scattering theory. 

3. For more details on acoustical scattering, see Lax-Phillips 
[A31 and Wilcox [A4]. 

By Kato’s methods, Theorem A.1 follows from: 

LEMMA A.1. Let r(= aG) b e a bounded closed set of measure zero. 
Then, for any t > 0: 

e+tA _ e+tAr 
(A-1) 

where -A, is the Laplacian with Dirichlet conditions on I’, is trace class. 

Proof. As in the method of Section 4, (A.l) follows if we prove that 
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(I + x2)k(e+tA - e+tA J-) is Hilbert-Schmidt. Let S be a sphere which 
surrounds r. Then 

e tA _ etAr < etA _ eWw 

= (etA _ et”“) + (etAS - et’rus). 

Now (1 + x2)k(etA - elds) is Hilbert-Schmidt by our methods in 
Sections 4, 5. Now eiAS - etAw- is zero on L2(Rn\B) where B is the 
ball with aB = S. Moreover, (1 + x2)k is bounded on D(B) and 
elAS - e[ASur < etds is Hilbert-Schmidt on L2(B). I 
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