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We study the analytic properties of the singular perturbation theory forp2 + x2 + gx*. 
We prove rigorously several of the properties of the energy levels, previously found by 
C. Bender and T. T. Wu using methods of unknown validity. In particular: (a) En@) has 
a “global” third-order branch point at /3 = 0, i.e., any path of continuation which winds 
three times around /I = 0 and circles clockwise about all branch points, returns E,, to 
where it started from and a path that makes one turn around does not. (b) On the three- 
sheeted surface, /3 = 0 is not an isolated singularity; thus, there are infinitely many 
singularities. (c) The singularities have f  270” as asymptotic phase. We also show that 
the perturbation series is asymptotic uniformly in any sector I arg /I I < tJ with 0 < 3~12. 
We extend these results to many dimensional oscillators and xanr perturbations. 

Finally, we study the PadC approximants formed from the Rayleigh-Schriidinger 
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yield E,, . A numerical analysis of the Pad& approximants, studying the convergence to 
E&9) is presented. 
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I. INTRODUCTION 

It is our purpose here to study the energy levels of the Hamiltonian p2+s2+~X4. 
For /? real and positive the Hamiltonian is well-defined and the energy levels are 
functions analytic in /c? in a neighborhood of the positive real axis. We are interested 
in the study of the analytic continuation of these functions and in particular, in 
the nature of the singularity at /3 = 0 which the folklore (and common sense) 
tells us exists. This is an interesting question for at least three reasons. 

The first involves the general mathematical theory of perturbations in Hilbert 
space. There is a well-developed theory of regular perturbations due to Kato and 
Rellich (see, e.g., [l]). This theory which guarantees convergence of the Rayleigh- 
Schrodinger series for small coupling depends in application on H(/3) possessing 
either an invariant operator domain, D[H@)] = D[H(O)] where D(H) = 

tsL I II W II < 4, on which H@) is closed or an invariant from domain, 
Q[H@>I = Q[H(O)l, where Q(H) = {# I (4, H$j < co>, on which H(P) is 
a closed form. For H@) = p2 + x2 + p.9, one finds D[H(@] = D(‘@) n D(x*) 
if ,6 > 0 and D[H(O)] = D(p2) n D(x2), and similarly if all D’s are changed 
to Q. Thus, 9 is a singular perturbation in the sense that D(H) and Q(H) are 
radically changed as soon as the perturbation is turned on. We are thus studying 
here the most tractable of singular perturbations; it is a member of what appears 
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to be a very distinguished class of singular perturbations; namely, those for which 
both the unperturbed Hamiltonian and the perturbation are positive. 

We remark that since singular (in fact more singular) perturbations abound in 
physics, a real understanding of singular perturbations would be useful. For 
example, the nuclear corrections to the Born-Oppenheimer approximation in 
solid or molecular physics are singular perturbations and there may be physical 
phenomena hidden therein. And, of course, in quantum field theory, the inter- 
action Hamiltonian is an ultrasingular perturbation. This brings us to the final 
pair of reasons for interest in this problem. Both come from the analogy of the 
problem to a :9: + :V+2: + nP:@: + ,!3:p: field theory (we may view 
p2 + x2 + /3x4 as a zero-space dimensional theory or as a theory in a box with a 
stringent ultraviolet cutoff) and both have been discussed by Wightman [2].l 

The perturbation series for both our anharmonic oscillator and the #’ theory [3] 
are known to diverge. However, divergent series are susceptable to various 
sumability techniques and these techniques are not unrelated to the analytic 
structure of the functions to which we would like to sum. 

The final reason we are interested in this analytic structure involves the analogy 
between field theories and statistical mechanics in finite volume. Typically, 
correlation functions depend on various real quantities such as temperature, 
activity, or density and typically in finite volume theories, one can prove analyticity 
in a neighborhood of the real axis. One expects there to be complex singularities 
that pinch the real axis as V + cc and produce phase transitions. In field theory, 
one expects phase transitions when new bound states appear and so this mechanism 
in the coupling constant is a candidate for their production2 

This problem has already been considered by C. Bender and T. T. Wu first in 
a brief note [4] and then in a lengthy paper [5]. The work of Bender and Wu is 
divided more or less into three parts: 

1. A series of exact statements with proofs presented. The arguments in these 
proofs are not very careful; any technicalities are ignored. For example, they state 
E,(p) has a singularity if and only if SC @[z, E,(p), /3]” dz = 0, where @ is the 
wave function and C a contour. They base their proof on the fact that the integral 
above is the denominator of an expression for aE/a/?. They do not, however, 
consider the possibility that the numerator might vanish at the same time. (We 

1 This article, which made a preliminary amrouncement of some of the results reported here, 
complements our discussion in much of the additional material it presents. It makes a preliminary 
study of the vacuum expectation values <O; B I eiH(s% xeiH(@lit*-tl)x... I 0; p> and discusses one 
of the Bender-Wu results we do not recover; namely, that one can get from any even (odd) 
parity level to any other by analytic continuation in coupling. 

2 We will have nothing more to say about this possibility except to note that the summability 
method theorems are strongest when there are no singularities in a cut plane, so our desires viz. 
a viz. these last two reasons are in conflict. 
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prove this can’t happen in Section 11.8). One result they discuss is that E&3) has a 
natural domain on a three sheeted surface. 

2. A W. K. B. analysis of the singularities. Their main results are: 

(i) On the three-sheeted p surface, /3 = 0 is a limit point of singularities. 
(ii) All the singularities (p f 0) are square root branch points. 
(iii) The asymptotic phase of the singularities arg /3 = 270”. It is our goal in 

Section II to provide rigorous proofs of (i) and (iii). Modulo certain technical 
difficulties (e.g., we are unable to prove E&3) d oesn’t develop natural boundaries3) 
we do provide these proofs. For two reasons, we feel a rigorous discussion is in 
order. First, the accuracy (or even validity) of the W.K.B method in the complex 
plane to a ground state problem is unknown. Second, their general procedure is 
of dubious validity as a general statement and probably is not an approximation 
to a correct theorem. This prcedure can be described as follows: One has a function 
E(P) and knows E has singularities when G(/3, E(P)) = 0, where G is a function of 
two variables. One finds approximations l? and e for E and G and supposes the 
solutions of @3, s(p)] = 0 approximate the singularities of E. Even if one had 
control over say sup, I E@) - &/I)1 and SUP~,~ / G(z, w) - G(z, uy)i, this assump- 
tion would be slightly shaky. Nevertheless, since we have been able to derive most 
of their results, we place credence in the ones we are unable to prove. In some sense, 
we view the W.K.B. analysis in a light similar to the way an axiomatic field theorist 
might view the Feynman series: as a reliable guide to what one should seek to 
prove and understand. 

3. An analysis, both exact and numerical, of the perturbation coefficients. 
By following Jaffe’s :@: divergence proof [3], they are able to show the n-th term 
a,, obeys CPr(&z) < ) a, / < EF”r(&r). The lower bound proves that the 
Rayleigh-Schrodinger series diverges for all coupling strengths (and provides 
the first rigorous proof of this fact to my knowledge). A direct use of the Rayleigh- 
Schrodinger formula (Bender and Wu use a Feynman series) will allow us to prove 
1 a, I < PnQnn (Appendix V) which implies the crucial result x u;1/2n+1 = co, not 
obtainable from the r(+?z) bound. Bender and Wu also use a recursive formula 
for a, to compute the first 75 a’s to 16 place accuracy. They then perform an 
impressive numerical analysis to guess a, has asymptotic form 

a, - w3f2 d/a 3nl+ + a) 

(in their normalization, which will differ from ours). 
Our derivation of the Bender-Wu results is found in Section II. Since much of 

the discussion is technical, we feel we should provide something of a guide to 

3 However, there are no natural boundaries on the first sheet by results in [38]. 
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that section. (The heart of the argument may be found in Sections 11.2, 
11.6, and 11.10.) After establishing various domain properties of assorted 
operators in 11.1, we turn to a crucial scaling argument suggested by Symanzik.4 
While the idea is simple, its ramifications are quite far-reaching. If one considers 
the scaling transformation p -+ hp; x ---f h-lx on p2 + x2 + /3x4, one obtains 
X21p2 + h-4~2 + /%Fx~]. Since the scaling is unitarily implementable, these two 
operators have identical eigenvalues. If we write EJoL, /3) for the n-th eigenvalue 
ofp2 + ax2 + ,8x4 (CX real, /3 > 0), we find (h = /3”“) 

E,(l, /3) = ~1/3En(/3-2/3, 1). 

We thus can study the analytic continuation of En(ol, 1) at cy = CD in place of 
E,(l, /3) at /l = 0. The cube root nature of the singularity is immediately evident. 

A. Martin pointed out to US,~ that the relation Im En(a, I) > 0 if Im 01 > 0 
should play a crucial role. He remarked, for example, that such a function which 
is not linear cannot be entire so &(ar, 1) must have some singularity. One can 
improve this argument to prove (11.6) that 01 = co is not an isolated singularity. 
One shows that a function with this Herglotz property (i.e., Im E/Im cy. > 0) 
that has an isolated singularity at 01 = co, must have only a pole there. Thus if 
(II = co is isolated, E,(l, X3) has only a pole in X3 at h = 0. But it known 
(Appendix II) that perturbation theory is asymptotic in the direction X3 > 0. This 
can only happen at a pole if the asymptotic series converges. Since perturbation 
theory diverges (II.4 or Bender-Wu [5]), we have a contradiction to &((Y, 1) 
having an isolated singularity at 01 = co. 

In 11.9, we show that the Hamiltonian p2 + yx2 is an operator with pure point 
spectrum if y lies in a plane cut along the negative axis and derive various properties 
of the Hamiltoniansp2 + yx2,p2 + yx2 + /3x4(/3 > O),p2 + x2 + /lx4(/ Arg /3 I < n). 

In 11.10, we show that as 1 /I 1 4 0, the eigenvalues of p2 + yx2 + 1 /3 I x4 have 
asymptotic expansions and that the convergence of these expansions is uniform 
in compact subsets of the cut y-plane. In particular, for any I$ < rr and any n, 
there is a B such that E,(y, I p I) is analytic in / arg y I < 4, / /3 I < B. Scaling 
arguments then show for any n and any 0 < 3~/2, there is a B so that E-(1,/3) is 
analytic in {p / I /I I < B, I arg p I < e}. Since E,(l, /3) = -E,(l, e3ni/?), the 
behavior in / arg p I < 3~r/2 determines the behavior for all fl. This fact, the 
analyticity just discussed and the infinite number of singularities prove that the 
singularities have asymptotic phase &3n/2 (in the /I variable). 

In Section 11.12, we discuss dispersion relations in coupling constant. 

4 Private communication via A. S. Wightman. 
1 Private communication via A. S. Wightman. 
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The remaining sections of II (11.3, II.5, 11.7, 11.8) are of a somewhat technical 
nature. We mention here only that II.3 provides counterexamples to a well-known 
folk theorem. 

In Section III, we generalize the examples treated with most of the results of II 
carrying over. In Section III. 1 we consider p2 + x2 + fix2m Hamiltonians, a set of 
theories treated by W.K.B. methods in a recent preprint of Bender [6]. In Section 
111.2, we consider multi-dimensional anharmonic oscillators. It is here that the 
rigorous approach pays dividends for W.K.B. techniquesdo not have any immediate 
extension to this case. 

In Section IV, we use the analytic theory of Section II, to discuss a particular 
summability technique, the Pad& approximants. The results of this section are the 
most exciting we present in this paper as they tend to support the conjecture of 
Bessis and co-workers [7, 81 that the diagonal PadC approximants for the Feynman 
series of a relativistic field theory converge. 

Since the conclusion of the work described in this paper, Loeffel and Martin [37] 
have proven that none of the Bender-Wu branch points appear on the first sheet 
in /3 (which is true in the Bender-Wu approximation) and Loeffel et al. [38] have 
proven the absence of natural boundaries on the first sheet, thereby concluding the 
proof of analyticity on the first sheet. 

II. EIGENVALLJES AND EIGENVECTORS IN ONE DEGREE OF FREEDOM 

11.1. Hilbert Space Preliminaries 

As we have explained in the introduction, in studying the analyticity in p of 
p2 + x2 + /?x4, it is natural to treat the more general Hamiltonian 

H(cw, p) = p2 + ax2 + bx4. 

We begin by the consideration of domain questions, etc. for H(oI, /3) when fl > 0 
and 01 is complex. 

LEMMA 11.1. The operator H(0, 1) = p2 + x4 is a self-aa’joint operator on the 
domain, 

D = D(p2) n D(2), 

i.e., 

595/58/I-6 
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where $ is the Fourier transform qj” #. Moreorer, H has compact resolvetlt awl for 
all #E D, 

/i p”$b 11” + ii X4* 11’ < Np” + x4) * II2 + 6, II * II”, (11.1) 

where b, is a constant.6 

Proof. By a general theorem of Carleman [9],’ H is essentially self-adjoint on 
C,,m (the Cw functions of compact support) and thus on D.8 By a standard closure 
argument, H will be closed on D if we can prove (II. 1) for # E C,,m and (11.1) will 
extend to all of D. To prove (II.1) we compute: 

(p” + x4)2 = p” + x8 + p2x4 + x”p’ 
= PQ + x8 + (P, [P, x41) + 2PX4P 
= p4 + x8 - 12.X” + 2px4p. 

All manipulations are justified when the operators are applied to # E Corn. Pick 6, 
so that $x8 - 12x2 + $b, 3 0 all X. Then: 

(p” + x4)$ + +b, = +(p4 + x8) + 2px4p + ;p” + &A-* - 12x2 + $6, 
> $(p” + 9). 

Taking expectation values, we prove (11.1). 
Finally, to prove H has a compact resolvent, we need only remark that 

x4 2 x2 - 1 for all x, so that the min-max principle and the known spectrum 
for p2 + x2 - 1 imply H has discrete spectrum with eigenvalues converging to 
infinity, i.e., p2 + x3 has compact resolvent.g Q.E.D. 

Remark. The double commutator technique used here is due to Jaffe [IO]. 

THEOREM II. 1.2. x2 is Kato ritzy relative to p2 + x4, i.e., for any a > 0, there 
is b such that 

II x2$ II G a II W4 1) s(I II + b II # Il. (11.2) 

Proof. Given a, find E so that 

Then 

x2 < aax4 + E, for all x. 

II x2$ II < ia II x4+ II + E/l $ II d a ll(p2 + x4) # II + (E + b,)ll # II. QED. 

6 By varying b, , 2 may be replaced with any a > 1. 
’ For the special case needed here, see [lo]. 
8 For p2 + xp rD is a symmetric extension of p2 + x4 rCom . Since the latter is essentially self- 

adjoint, it has the same closure as the former. 
B For an alternate proof, see Titchmarsh [l I], p. 113-l 14. 
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COROLLARY II. 1.3. For any complex 01, H(N, 1) = p2 + 01x2 + x4 is defined as a 
closed operator on the domain D of Lemma II. 1.1. It has the following properties: 

(1) H(iy, I)* = H(ol, 1). 

(2) H(oI, 1) has compact resolvent. 

(3) The resolvent is analytic itz 01, i.e., if z 4 spec[H(n, , l)], then for all CL 
tzear a,,, z $ spec[H(ol, l)] and the resolvent [H(cy, 1) - z]-’ is analytic in (Y. 

(4) For any q, and C > 1, there is a d so that 

II HP4 1) # II < C ;I ff(ao > 1) # II -t d II ~4 :I (11.3) 

for all $ t- D. 

Proof. (1) is a direct consequence of (11.2) and Lemma 11.1. 
(2) and (3) also follow from (11.2), which implies that H(iy, 1) is a holomorphic 

family of type (A) in the sense of T. Kato (see [l]. p. 3755385). Explicitly, (11.2) 
implies 

1) as2[H(0, 1) - z]-’ j/ < 1, 

for 1 Im z 1 large. Thus, 

[H(a, 1) - z]-l = [H(O, I) - z]-l(l + ax2[H(0, I) - z)-l)-l, 

which yields the compactness (as the product of a compact and a bounded 
operator) and analyticity of the resolvent. 

(4) follows from the computation, 

II ff(O, 04 II G II Nolo 2 1V II + I 010 I II x2$ II 

< II ma0 2 l># II + I a0 I@ II 9 II + a II WO, 1) 1cI II), 

from which follows 

II WO, I># II < (1 - a I x0 I)-’ II H(aO t I># II + (1 - a I a0 IV ) a0 I b II # Il. 
Q.E.D. 

Kato uses (3) to show that the eigenvalues of a holomorphic family such as 
H(ol, 1) are given by analytic functions &(a, 1) in the following sense. If E,(olo , 1) 
is a nondegenerate eigenvaluelO of H(oc, , I), then there exists a neighborhood of 01~ 

lo Nondegenerate means more than (H - E)# = 0 has only one solution (= geometric 
multiplicity one). It requires J~,I-~ dz(H - E - z)-’ to be a one-dimensional projection. In case 
H has compact resolvent, it is equivalent to saying that there is only one solution of (H - E)“# = 0 
(= algebraic multiplicity one). When H is self-adjoint, however, nondegenerate has the usual 
meaning of (H - E)+ = 0 having a unique solution (geometric multiplicity = algebraic multi- 
plicity). 
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and an analytic function &(a, 1) defined in that neighborhood so that &(a, 1) is a 
non degenerate eigenvalue for all cy in that neighborhood and no other eigenvalue 
of H(a, 1) is near E,(iuO, 1). (cf. Kato [l], p. 368-370). If there is an N-fold 
degeneracy,ll then there are < N eigenvalues &(cx, 1) for 01 near iy,, which coalesce 
to E(%, 1). The E, are analytic near CX~ and have at worst an algebraic branch 
point at 01~. (c.f. Kato [I], 370-371). Since H(cx, 1) has compact resolvent, we 
conclude that all its eigenvalues are analytic functions with at worst algebraic 
branch points. This last statement is intended as a local statement, i.e., we do not 
rule out the inability to analytically continue the E,(n, 1), nor the possibility of 
limit points of algebraic branch points (cf. [1], p. 371-372 for an elementary 
example of this latter pathology). We return to these questions in Sections II.3 
and 11.5. 

COROLLARY II. 1.4. For any /3 > 0, H(cu, /3) = p2 + ax2 + ,8x“ obeys Conditions 
(l)-(3) of Corollary 11.1.3. Moreover [H(q) 8) - z]-’ is analytic in fl for /3 in a 
neighborhood of the positive real line. 

Proof. (l)-(3) follows as in the proof of 11.1.3 from (11.1) and (11.2). 

II x4+ II < 3/l WE,, I># II + dll # II. 

Thus, H(cu,, ,@ . is a h 1 o omorphic family of type (A) for j3 near 1. Similarly, it is 
holomorphic near any ,6 > 0. Q.E.D. 

The nondegenerate eigenvalues are thus analytic in 01 and ,8 near (01~ , /!&,) with 

PII > 0. 
Finally, let us examine the number of eigensolutions: 

THEOREM 11.1.5. For ally p > 0, 01 and E, there is at most one (linearly inde- 
pendent) solution of 

H(a, /+I = W. 

Proof (See also [12], p. 225-231). Let &, #2 be two solutions. Since &, 
& E D(p2); &I, #2’ E L2 and so z,!~r’$~ - I,&#~’ E L1. But I,$‘& - #1z/2’ is a constant. 
Thus, it must be zero and so & = (const) $2. Q.E.D. 

Remark. The care with domains which we used to conclude I+&’ E L2 is essential; 
e.g., -$I” - x4+ = E# h as t wo L2 solutions for any E (but &’ 6 L2 in this case). 
Bender and Wu [5] have an argument analogous to the one given above. In place 
of domain considerations, they use a demanded falloff at infinity. 

I1 N-fold degeneracy means dim &l-E dz (If - E - z)-‘1 = N, or alternately, in the compact 
resolvent case, that (H - E)“$ = 0 has at most N solutions (for any m). 
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In particular, there is, thereby, no degeneracy for p > 0 and oi real,12 a result we 
could have obtained by a Sturm Liouville nodal analysis. Thus, we can label the 
eigenvalues by an ordering &(ol, fl), n = 0, l,..., for cy. real, /3 > 0. The E,‘s are 
analytic in a neighborhood of the region /3 > 0, OL real. 

II.2 Scaling Transformatiot+’ 

As we have already remarked, the first important technique in studying E,(l, /?) 
is to use scaling. 

THEOREM 11.2.1 (Symanzik). Let g > 0, h > 0, LY real. Then 

E,(a, /3) = AE,(aP, pi-“); 

in particular, 

E,(l. /3) = jg1/3En(fl-2/3, 1). 

Proof. Let U(h) be the unitary operator, 

[U(h) f](x) = wj(X’k), 

(11.4) 

(11.5) 

then U(h) leaves D(x”) and D(p”) invariant and 

and 

U(h) x”U(h)-1 = W2x” 

(i(h) p’“U(h)-1 = A-wpp”. 

Thus, U(A)-‘(p2 + axe + P.v”) C’(h) = h(p2 + arX-2x2 + pX-3x4), which proves 
(11.4). Q.E.D. 

Remarks. (1) By an analytic continuation argument (11.4) will hold for all 
complex 01, /?, X if E,(a, p) is defined for complex a: and /? by analytic continuation. 
Since E, is many-sheeted, when dealing with h complex, some care must be taken. 

(2) (11.4) tells us that EJol, /3) is really essentially a function of only one complex 
variable. As a result holomorphy envelope techniques, which might appear 
attractive at first glance, are not useful-any result obtainable by these techniques 
must be obtainable from (11.4). 

I2 When a is real, H(a, /?) is self-adjoint so nondegeneracy is equivalent to uniqueness of solu- 
tions of (H - E)$ = 0. If  LI is complex, geometric multiplicity I (uniqueness of (H - E) t,b = 0) 
is not equivalent to nondegeneracy, see.‘O 

I3 K. Symanzik (private communication via A. S. Wightman) first emphasized to us the im- 
portance of the scaling laws; in particular, he pointed out (H-5) to us. It is a pleasure to thank 
him for adding this essential tool to our arsenal. 
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(3) There is a proof of (11.5) that does not explicitly use scaling. For IX, ,L3 
physical, the virial theorem tells us that 

E?d% p) = <n I 2c& + 3/3x4 I n>, 

and the Feynman-Hellman theorem tells us: 

01 I x2 I n> = ww 44% B), (fl I x4 I 11) = wm En(% is>. 

Thus, E, obeys the differential equation 

which implies E is of the form /31’3f(~j!-2/3). Since the virial theorem is really a 
consequence of scaling,14 this argument is closely related to our original proof. 

As an immediate application of this scaling argument of Symanzik (and the 
continuity of En(ol, 1) at 01 = 0): 

COROLLARY 11.2.2. 

1~~ En(ol, /3) = ,W3En(0, 1). 

The 01 = 0 limit is of particular interest since it corresponds to the mass 0 limit 
in field theoretic models. We will see that for 01~ > 0, En(cq,, ,8) as an analytic 
function of fi has an infinite number of branch points near /3 = 0. What the 
corollary tells us is that as 014 0, these singularities move in towards the origin 
and at 01 = 0 they are swallowed up. 

Another consequence of these two facts is: 

COROLLARY 11.2.3. E,(l, /3) I zas a convergent (strong-coupling) expansion in 
/F213 convergent for large /3.15 

The essential use of (11.5) is that it lets us shift the study of the analytic properties 
of E(1, fi) at /l = 0 to those of E(cr, 1) at 01 = co. By the discussion in the previous 
section, the Hamiltonian p2 + ax2 + x4 in this subdominant case, makes sense 
as a Hilbert space operator for complex 01, and, thus, we can hope to use Hilbert 
space methods to study it. 

Armed with Theorem 11.2.1, we can understand why Bender and Wu [4, 51 were 
able to study E(l, ,8) by looking for functions which went to zero asymptotically 

I4 The x(d/dx) in the proof of the Virial theorem is the infinitesimal generator of scaling trans- 
formations. 

r5 Such a strong coupling expansion has been conjectured by Frank [13], who did not guess the 
2/3 explicitly. Frank also makes the reasonable conjecture that this converges for all I fi-‘j3 I < ~0. 
As we shall see, this latter conjecture is false. 



ANALYTICITY AND THE ANHARMONiC OSClLLATOR 87 

in the region / arg(fx) + Q(arg /3)1 < 46. To obtain (11.5) we used the scaling 
transformation x + fl-lPx. As a result studying E(1, /3) with their boundary 
condition is equivalent to studying E(Lx, 1) with the boundary condition of vanishing 
for 1 arg(fx)l < 7r/6. Since E(oc, 1) is a Hilbert space eigenvalue, this is the correct 
condition for its study and so their rotating sector condition works. 

II.3. Continuation in the Subdonhant Case 

The primary purpose of this subsection is to show that any analytic continuation 
of &(ol, 1) is an eigenvalue of p” + OIX~ + x4. There is a general folk theorem 
about such behavior for any sort of Hamiltonian. This folk theorem is based in 
turn on a second folk theorem to the effect that any place where perturbation theory 
converges, its value is “physically meaningful.“16 Before discussing the specific 
problem at hand, we will demonstrate the falsity of the folk theorem in general 
by presenting simple counter examples: 

EXAMPLE 1. p2 + Ax” = H(X). 
As we have seen, E,(h) = c,N3 for h > 0. This function has an analytic 

continuation to a three-sheeted punctured plane. When we return to h > 0 the 
first time, E, is not real and, thus, fails to be an eigenvalue. We remark that this 
example is a little artificial in that H(X) is not a well-defined operator for all X along 
the path of analytic continuation. 

EXAMPLE 2. H(h) = p2 - i--l + h-l (in three dimensions). 
For X real and h < 1, the eigenvalues are, of course,l’ 

E,JX - I)2 = -E&l2 - 2h + 1). 

Thus, the Rayleigh-Schrbdinger series is an entire function. For h > 1, H(h) has 
no eigenvalues: thus, the perturbation series converges in places where there is no 
direct physical interpretation for the limit. We remark first that H(X) is a self-adjoint 
operator on D(p2) for all h, so that the criticism of the first example is not relevant. 
We also note that there is an indirect physical interpretation of the values E,(h - 1)” 
for h > 1. They are the energy of antibound states, i.e., the position of poles on the 
unphysical sheet of the scattering amplitude. Since this latter phenomena of anti- 
bound states is common, the phenomena of bogus convergence of the perturbation 
series is also going to be quite common. 

I6 Such a folk theorem is behind Dyson’s celebrated argument [14] for the divergence of per- 
turbation theory for Q.E.D. Our remarks may be construed as a criticism of that argument. 

I7 The identification of the exact answer with the perturbation series yields an infinite set of 
sum rules which we discuss in Appendix III. 
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This second example makes us expect the phenomena of bogus convergence is 
associated with continuous spectra and so it is: 

THEOREM 11.3.1. Let H(a) be a holomorphic family of operators with compact 
resolvents. Let f (cz) be an analytic function in some connected domain D, which 
agrees with an eigenvalue of H(N) in a small neighborhood of q, . Then f(a) is an 
eigenvalue of H(a) throughout D. 

Proof. Let S = {a E D I f(a) is an eigenvalue in a neighborhood of a>. Since 
01~ ES, S is not empty and by definition S is open. If we can show S is closed, 
by the connectivity of D, we would have S = D. Let cu, ,..., LY, ,..., E S; or, --f 8. 
Pick z # spec H(Z), and let C(B) = [H(a) - z]-’ for 01 = 8, iyN, OI~+~ ,..., where N 
is chosen so that C(cyJ exists for i 3 N. Let g(a) = (f(a) - z)-I, so that f(a) is 
an eigenvalue of H(a) if, and only if, g(a) is an eigenvalue of C(a). Since C(Z) is 
compact, we can pick a finite rank operator F so that 

II C(E) - Fll < a SUP I g(dl. 

Let D(a) = C(a) - F. Then [D(ol,J - g(or,)]-’ exists for n sufficiently large (by 
the above condition). Thus C(a)+ = g(a)+ (a = CY~ ,...; &) has a solution if, and 
only if, Fk(or) - D(a)]--‘+ = $ h as a solution. Since F[g(ol) - D(a)]-’ is a finite 
rank operator, this occurs when a certain determinant vanishes. This determinant 
vanishes for 01 = o”~, CX~+~ ,..., and is continuous in a. Thus, it vanishes for oi = 6~ 
and so f(Z) is an eigenvalue for H(E). Since the resolvent is compact, f(Z) has finite 
multiplicity and so the eigenvalues of H(a) nearf(E) for 01 near Z are branches of 
one (or several) function(s) with at worst algebraic singularities at Z. Since this 
function (or one of its branches) agrees with f (cr,) for n large, f is an eigenvalue 
in an entire neighborhood of 5. Thus, Z ES and S is closed. Q.E.D. 

COROLLARY 11.3.2. Every analytic continuation of E,Jol, 1) is real on the real 
axis, and on every sheet Im E, > 0 for Im 01 > 0. 

Proof. We need only show the last result for eigenvalues. If (H(a) - E)# = 0, 
then 

0 = Im(#, [H(a) - E]I/) = Im a 1 dx x2 1 #(x)l” - Im Es 1 $(x)1” dx 

soImcu=CImEwithC>O. Q.E.D. 
Corollary 11.3.2 will play a crucial role in our study of the analytic properties.18 

I8 A. Martin, J. Loeffel, and H. Epstein (private communication via A. S. Wightman) first em- 
phasized to us the wonderous properties of functions obeying Corollary II.3.2. We are indebted 
to them (and particularly to Prof. Martin) for this input to our attack. 
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11.4. Divergence of Perturbation Theory 

As an application of the techniques we have developed, we show: 

THEOREM 11.4.1. &(I, /l) is not analytic near /I = 0. 

Proof. The basic idea behind the proof is the fact that (11.5) indicates E,, can 
have at best a third-order branch point. We define 

.A@) = ~z&(~2, 1) 
= h3E,( I, k3) (by 11.5). 

By general principles,f,(X) is analytic near the real axis. If &(l, ,8) is analytic near 
/3 = 0, then.f,(X) is also analytic near h = cc, andfn(hesnii3) = fn(A) for h near cc. 
Consider continuingf, analytically along the path shown in Fig. 1, i.e., go out the 
real axis, C, , and up along an arc C, out sufficiently far to be in the neighborhood 
of infinity for which fn(Xe2ni13 ) = fn(X). Finally, continue in along C, ; this can be 
accomplished by preserving the relation fn(Xe2”i/3) = fn(X). When we get back to 
h = 0, by our principle of analytic continuation, we must havef,(h) for some m 
(m may not be n). Thus, near X = 0, 

fm(h) = fn(Xe2”i/3). 

Identifying lowest powers: 

E,(O, 1) = e4ni/3En(0, 1). 

Since E, and E,, are real and nonzero, this is impossible. Thus, our assumption 
that E,( 1, p) is analytic near /3 = 0 is incorrect. Q.E.D. 

REGION 
OF ANALYTICITY7 

FIG. 1. A path of continuation used in proving Theorem 11.4.1. 
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The fact established by Theorem 11.4.1, that &(I, p) is not analytic at /3 = 0, 
of course, implies that E,,(l, p) cannot have a convergent Taylor series, which 
represents it in any neighborhood of p = 0. That does not prevent the Taylor 
coefficients from existing, for example as right-hand derivatives. (It is a standard 
bit of folklore that the Rayleigh-SchrGdinger perturbation theory provides these 
Taylor coefficients. A proof of this assumption will be provided later). Theorem 
11.4.1 also does not eliminate the possibility that the formal Taylor series con- 
verges but not to the function [f(z) = exp(-z-l) has such a Taylor series]. 
Such behavior would fit in with the phenomena seen in 11.3. That the perturbation 
series does in fact diverge follows from a considerably longer and more detailed 
analysis of the coefficients made by Bender and Wu [5]. 

11.5. Global Analytic Structure 

In this section, we study several questions involving the function E,(J, p) in the 
large and at singularities away from /3 = 0 (or 01 = co). For clarity, we divide 
this study into smaller subsections. 

A, Nonisolated Singularities of E,(ol, 1) 

We may as well begin by admitting that this question represents the most 
unsatisfactory element in our argument. While we believe that E,(a, 1) can only 
have isolated singularities (in the finite a plane), we are not able to prove it at this 
time. However, Loeffel et al. [38] have shown this is true for I arg iy I < 2~/3. 

One can put this question of global analytic structure and isolated singularities 
into perspective by considering the completed Riemann surface of En(oc, 1). Let 
us consider in C?[={(ol, E)}] the graph, r, of E(ol, 1), i.e. all pairs (n, E) for which E 
is an eigenvalue of p2 + ax2 + x4. Our discussion in Section 11.1 (i.e., the Kato- 
Rellich theory) can be considered as a local statement, explicitly given a point 

(43 ? EO) E r, there is a product neighborhood, D x Q, of (0~~) E,,) in C2 so that 
r n (D x Sz) is the Riemann surface of a function defined on D with only isolated 
algebraic singularities. The problem of global structure is the classic analytic 
continuation question. One has a curve y: [0, 1] + C and a point (y(O), E,) E r 
and one would like to lift y up to r, i.e., find 7: [0, 1] + r, p(t) = [ye(t), yl(t)] so 
that y,, = y and ~~(0) = E, . In Theorem 11.5.1, we will show that the only thing 
that can prevent us from lifting y is the lifted curve running to co in the E direction. 
This follows essentially from the local lifting allowable by our local regularity and 
the fact that r is closed. In the remainder of the section, we eliminate some of the 
more usual possibilities of infinities (such as poles). We are unable to eliminate 
some of the more bizarre types (like natural boundaries). We do not expect such 
pathologies to occur and so we will make the working assumptior~ that any curve 
can be lifted to I’, i.e.. analytic continuation is possible along any path except that 
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one may run into algebraic singularities (which will make the lifting non unique). 
We remark that our lifting assumption does not preclude the possibility that 

the set of a: at which level crossing takes place is dense on some line, curve or even 
the whole plane. For our analysis in 11.1 tells us that if crossing takes place at 
(a!,, , E,,), there is no other crossing nearby. But there can be crossing at (ol, E) with 
CK near a, without anything particularly pathological taking place (if E is not 
near E,). 

THEOREM 11.5.1. Let y: [0, l] + C be a curve in the a: plane. Let E,(a, 1) have 
an analytic continuation along y into the interval [0, 1). If the values E,(y(t), 1) 
have ajinite limit point as t ---f 1, then &(u, 1) has an isolated singularity at c+, = y( 1). 

Remark. This statement tells us that if we have a nonisolated singularity, 
whenever we can approach it in some direction, the values of EJcy, 1) must 
approach infinity. 

Proof. Let E&t& l] + h, for a sequence tj -+ 1. Thus, as in the proof if 
Theorem 11.3.1, h, is an eigenvalue of p2 + oc,,.‘c2 $- x4. Since this operator has a 
compact resolvent, the eigenvalues which are near X, for 01 near 01~ are branches of 
some analytic function with at worst a branch point at 01~ . This completes the proof. 

Any nonisolated singularity is either 

(a) A limit point of isolated singularities. Since we will see isolated singularities 
occur only when eigenvalues cross, 01~ can only be a limit point of singularities of 
one level E,Jol, 1) goes to infinity as LX+ a0 crossing infinity many levels along the 
way. 

(b) A limit point of nonisolated singularities is a part of a natural boundary. 
In this case EJN, 1) would blow up along an entire curve or some nonisolated 
subset of a curve such as a Cantor set on a curve. 

Both of these possibilities seem very bizarre and so we cannot really conceive of 
their occurring. Two genera1 sorts of approach seem possible for a successful proof 
of their non occurrence. 

(i) Complex analytic approach. As we will show in Section 11.7, the eigen- 
values of p3 + 012 + x4 are the implicit solutions of an equation #(IX, E) = 0, 
where 16 is an entire function of 111 and E. There is probably a general theorem that 
functions defined in such a manner cannot have natural boundaries.ls However, 
such a theorem does not seem to have been proven in the complex analysis 
literature (and no explicit counter-example seems to be known). 

I9 Complex analysis arguments cannot eliminate limits of branch points; the examples mentioned, 
in (ii) provide entire +(E, E) so that the implicit function E(u) has singularities of type (a); i.e., 
#(a, E) = E-II2 sin E’/2 + OL cos IY will exhibit type (a) behavior. 
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(ii) Hilbert space approach. There are very pathelogical examples of 
holomorphic families of operators with compact resolvent (see Kato [l], 
p. 371-372), examples which exhibit singularities of type (a) above. Thus, we cannot 
eliminate nonisolated singularities on the basis of general arguments alone; 
however, a detailed argument using special properties may be possible. 

In any event, Ive will ignore the possibility of nonisolated singularities. Technically, 
all our theorem should be modiJied to take into account this possibility.2o Thus, e.g., 
our statement that E,(l, /3) has a limit of branch points at /I = 0, should be replaced 
by a statement that E,(l, 6) has a limit of branch points or a limit point of natural 
boundaries (or both). 

B. Isolated Singularities 

THEOREM 11.5.2. EJol, 1) has no poles or essential singularities. Algebraic branch 
points have no negative powers in their Puiseux series. 

Proof. Since E,((Y, 1) is analytic for 01 real there are no singularities on the 
real axis. If E(cll, 1) had a pole near a: = a0 in the upper half-plane, then E(or, 1) 
would have a negative imaginary part for suitable 01 near a0 . This contradicts 
Corollary 11.3.2. Similarly, we can eliminate the other singularities. 

As with natural boundaries we cannot eliminate logarithmic branch points at 
this time; as in that case, there is an example in Kato’s book [l] which tells us a 
general Hilbert space argument can’t work. There may be an argument extending 
Theorem AX.3 to allow us to use complex analysis to eliminate those beasts. 
In any erent, we suppose logarithmic branch points (which correspond to infinitely 
many levels going to infinity at once) do not occur. Again, all our theorems should 
be suitably modified. 

Before leaving the subject of branch points, we note that Loeffel and Martin [37] 
have proven that there are no branch points in the region 1 arg oi 1 < 2~13 (equiv- 
alently, / arg p / < n). 

C. Global Nature of the 01 = cc (/3 = 0) Singularity 

Since /3 = 0 is not an isolated singularity (as we shall prove) it doesn’t make 
technical sense to say it is a third-order branch point. However, it does have such a 
branch point in a suitable sense as we shall now see. 

LEMMA 11.5.4. Let y: [0, I] -+ C be path in the 01 plane with the following 
properties 

(a) y(0) = y(l) is real. 

po We will however indicate which major results would be changed if such pathologies occurred. 



ANALYTICITY AND THE ANHARMONIC OSCILLATOR 93 

(b) y is symmetric under complex conjugation, i.e., y(t) = ~(1 - t). 

(c) EJol, 1) can be continued along y. Then E,[y(l), I] = E,[y(O), I], 

i.e., continuation along y brings us back to where ,ve started. 

Remark. 1. (b) essentially tells us that y circles around complex conjugate 
branch points in complex conjugate ways. 

2. This theorem tells us that if we draw branch cuts between complex 
conjugate points, we get a single-valued function on each sheet. 

Proof. y(t) is real and &(a, 1) is real for 01 real near ~(4.). Thus, E,(y(t), 1) = 
E,[y(l - t), I], by the Schwartz reflection principle. Since E&(O), l] is real, 
we are done. 

THEOREM 11.5.5. Let y[O, l] + C be a path in the /3 plane obeying (a) and (b) of 
Lemma 11.5.4. Moreover, suppose y winds about /3 =z 0 three times and that E,(l, /3) 
is continuable along y. Then &(I, y(O)) = f$( 1, y( 1)). IJ‘ Ire continue along a 
circular path winding around three times, avoiding branch points in symmetric ways 
then 

(i) &(I, /3e3ni) = -E,(l, 8); 
(ii) We never return to E,(l) 8) after winding only once or tn*ice around /? = 0. 

Proof. Since E( 1, /3) = /31/3E(P-2I3, I), the general continuation claim follows 
from Lemma 11.5.4 since y can be lifted back to the cy plane. 

(i) follows from the (/3-1/3)2 in the scaling argument. If (ii) were false, we could 
derive a contradiction by an argument identical to the one we used to show non- 
analyticity at /? = 0 (Theorem 11.4.1.). 

Remarks. 1. This theorem is precisely what we meant when we said E,(l, /3) 
had a global third-order branch point. 

2. A branch cut statement analogous to Remark 2 of Lemma 11.5.4 is true. 
3. The symmetry (i), remark 2 above and the general three-sheetedness are 

all results found by Bender and Wu. 

11.6. The Singularity at a: = 03 (p = 0) 

This section contains the most crucial arguments in our discussion of the one- 
dimensional problem. Since we have not yet shown that the strong coupling 
expansion fails to be convergent for all fl-l13, let us prove 
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THEOREM 11.6.1. (Martin).31 E&X, 1) is itot entire. 

Proof. Since &,(a, 1) is Herglotz, if it is entire, &(ol, 1) = E,, + ab (by Theorem 
A.I.1). By ordinary perturbative analysis, b = <O 1 x2 1 O), where j 0) is the ground 
state for p2 + x4. Then 

io lp” + &X2 + x4 IO) = Eo(a, I), 

the ground state energy, so / 0) is also the perturbed ground state. Since this 
would imply 1 0) is an eigenfunction of x2, this is impossible. 

The crux of the argument is 

THEOREM 11.6.2. E,(z, 1) cannot hatle an isolated singularity at a: = co, i.e., 
co is a limit point of singularities. 

Proof. Suppose a: = co is isolated. By Theorem 11.54, E,(ol, 1) cannot have a 
branch point at 01 = co. By Theorem A.II.2, &(iu, 1) has an expansion near co 
of the form, 

En(a, 1) = i a,c?, 
m=-m 

since E(cy, 1) is Herglotz. Thus, near h = 0, E,(l, h3) has an expansion 

i.e., E,(l, X3) is meromorphic at h = 0. But, by the asymptotic nature of perturba- 
tion theory (Kato [15], and Appendix II) E,(l, h3) - CT=‘=, b,h3’c as X 4 0. Since E 
is meromorphic, this can only happen if the asymptotic series is convergent to E, , 
in which case &( 1, p) is analytic near /!I = 0. Since this contradicts Theorem 11.4. I, 
LY. = co is not isolated. 

COROLLARY 11.6.3. E,(l) /2) has a global cubic branch point at /3 = 0, which is a 
limit point of algebraic branch points (or logarithmic branch points or natural 
boundaries). 

This is of course, the major result of Bender and Wu; here rigorously proven. 

11.7. Conditions,for Crossing 

We have found that the general qualitative behavior of E,(l, p) on each sheet 
agrees precisely with that obtained by Bender and Wu with their vaguely suspicious 

21 A. Martin, unpublished. I should like to thank Dr. Martin for permission to include it here. 
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methods. It is also of great interest to verify their results on how the various sheets 
fit together,22 particularly since they have studied only the first few sheets in detail. 
The obvious starting point for such a study (which we do not bring to fruition here) 
is to formulate a condition for crossing of levels, since Corollary X1.3 assures us 
of analyticity at nondegenerate points. In this section, we will obtain a condition 
for crossing which is identical to the Bender and Wu condition [4, 51 modulo a 
scaling transformation (which has the effect of making all domains of integration 
the real axis). We will show that this condition is both necessary and sufficient 
for crossing to occur. In the next section, we prove that the eigenvalues are non- 
analytic at each of these crossing points.z3 

To understand better the significance of the conditions we will derive, let us first 
consider crossing in a two-dimensional matrix problem. Let 

,- 
for which the eigenvalues are f ti 1 + X2. This family which is Hermitean analytic 
[T(h)+ = T(x)] has the typical behavior of branch points at values of h (A = *i) 
where crossing occurs. There are two other features at A = +i to note particularly: 

(a) While the only eigenvalue of T(fi) is 0, T( +i) f 0. In terms of a basis- 
(:i), (i). T(&i) has the typical Jordan anomalouP form (i i), i.e. there is only one 
eigenvector for T, but two for T’. 

(b) In terms of the inner product, 

which is not positive definite (because of the appearance of 3 and ,!3, instead of 
ai and p), the eigenvectors (ii) at crossing have 0 length. This is no coincidence! With 
respect to the inner product ( , )R, T(X) is symmetric and so its eigenvectors are 

rfi On the basis of an examination of the first few sheets Bender and Wu conclude that E, 

has infinitely many branch points coupling it to E,,, and &.., , where E,, is the n th Eden (or odd) 
parity level. By E,t coupling to E,,, , we mean continuation of E, by a path circling only one 
branch point leads us to E,,, In particular, all the Es’s lie on one coupling constant trajectory. 

23 Bender and Wu [5] prove that their condition is necessary for nonanalyticity and that it is 
sufficient if a certain integral does not vanish. We prove that such vanishing does not take place 
in Section 11.8. 

24 By Jordan anomalous form we mean that there are ones above the diagonal when the matrix 
is put into Jordan form. Alternately, we mean that the matrix cannot be put into a purely diagonal 
form. Equivalently the geometric and algebraic multiplicities are unequal (see footnote 9). 
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<,)R, orthogonal. As h --f ii both eigenvectors must approach the single 
eigenvector and so the single eigenvector is R-orthogonal to itself. 

Now let us return to the Hamiltonian p2 + ~9 + x4. We first note 

LEMMA 11.7.1. There is a unique (up to a corwtatzt factor) sohttioll of the 
differential equation, 

-l&(x, II!, E) + (cd -!- x4 - E) $&x. aE) = 0, (II.6a) 

satisfying the condition,25 

in the sector 1 arg x I < 7116. 
Moreover, 

VL - exp(-3x3), (IL6b) 

(1) &(x, 01, E) is an entire function of x, 01 and E; 

(2) #m’(x, 01, E) - (POSY in x) exp(-+) in the sector; 
(3) &,b,/aE and a+,/& are in L2(0, 03). 

Proof. This result has been proven by Hsieh and Sibuya [16]. Their paper may 
be consulted for the exact asymptotic series. In Appendix IV, a simple proof of a 
weakened form of 11.7.1 sufficient for our purposes is presented by A. Dicke. 
J. Loeffe126 has independently proven a more general result valid for polynomial 
potentials of even degree. 

THEOREM 11.7.2. E is an even (odd) parity eigenvalue of p2 + 01x2 + 19x4 if, and 
only if, 

&o’(O, 01, E) = 0 [QUO, 01, E) = 01. 

Proof. *a , which behaves nicely at x + 00, will be square integrable if, and 
only if, it is nicely behaved as x -+ -co. This can only happen if #, is odd or 
even (and will happen in that case). (11.7) is precisely an expression of the evenness 
(oddness) of 4, . 

Remarks. 1. This proof is equivalent to (and was suggested by) the Wronskian 
approach used by Titchmarsh [l l] who notes #, is an eigenvalue essentially if 

26 We do not write N to mean &,/exp(-1/3x5) -+ 1, but only that &/exp[(-l/3 + 6)x”] -+ 0 
and #,/exp[(-l/3 - ‘)x3] --f ~0. In fact &..,/exp(-l/32 - l/2 LW - logx) + 1. 

aa J. Loeffel, unpublished. 
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W$m , #-cm> = 0 h w ere W is the Wronskian and q!-, is the nice solution at - XJ; 

in our case #-ou(x, N, E) = #%(-x, N, E) and 

2. Theorem 11.7.2 immediately provides an alternate proof that the analytic 
continuations of E,(a) are eigenvalues. 

For simplicity of notation, let us work with the odd parity case henceforth. 
The odd parity eigenvalues are defined by the implicit functional relationship 
&JO, a, E) = 0. Th e implicit function theorem immediately tells us: 

LEMMA 11.7.3. If &(O, CQ , E,,) = 0, (Z&/aE)(O, 01,, , E,,) f 0, then there is a 
unique solution of &(O, iy, E) = 0 with E near E, when 01 is near 01~ . 

Thus, we see (+,/aE)(O. OL,, , E,) = 0 for an eigenvalue E, of H(E,) is a necessary 
condition for crossing to take place. We also conclude, independent of the Kato- 
Rellich theory of analytic perturbations that the eigenvalues are analytic where no 
crossing occurs (i.e., we find an independent proof of Corollary 11.1.3). 

To show 8yGm/aE = 0 is also sufficient for crossing, we find the property analo- 
gous to condition (a) that T(X) obeyed: i.e., we examine the Jordan anomalous 
behavior of H - E: 

LEMMA 11.7.4. Let E, be an oddparity eigemalue of H(cu,); then 

[-(d2/dx”) + m,,x3 + x4 - E,] #I = I&,(X, N,, , E,,) (11.8) 

has an L2 solution $ if, and onIy if, a$,jaE (0, x0, E,) = 0. Moreover, in such a case, 
every such 4 is of the form, 

q44 = P,UWx-, 010, Eo) + 4,(x, ao, Eo>s 

Proof. Differentiating (11.6a) with respect to E, we see that (+!~,/8E)(x, CX~, E,) 
is a solution of (II@, and this solution is L2 at .Y = + co . If $ is an L2 solution 
of (IIA), then 4 - a#,/aE is a solution of (11.6) is L2 at +cc and thus 4 = 
&LW) + a#, . A s a result (11.8) has an L2 solution if, and only if, az/,/aE is an 
L2 solution. -@+WE)(--x, 010. E,) is a solution of (11.8). If (a&/ZE) 
(0, a0 3 E,) = 0, then these two solutions are identical so that a&/i3E is an L” 
solution. Conversely, if &,/aE is an L2 solution, so is -(&/aE)(-x, IX, E) so that 

since the left side is an L2 solution of (11.6a). Putting x = 0, we see (a#,/ilE) 
(0, 01, E) = 0 in this case. 
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Thus, we see az,b,jaE = 0 is equivalent to the occurrence of Jordan anomalous 
behavior of H. Not surprizingly, this is equivalent to crossing of levels: 

THEOREM 11.7.5. There is level crossing of odd parity lerels at CX,, , E,, if, and only 
if, one of the following equivalent conditions holds: 

(4 vL(O, a0 , 4) = 0 = (qJmlW(O, ql , Eo) 
(b) (11.8) has an L2 solution. 

Proof. Suppose first level crossing takes place. If 

P=-&J‘ 
dA 

77 c H(ct,) - Ji ’ 

where C is a small circle about E, [enclosing no other eigenvalues of H(oL~)], then 
elementary arguments show that P is a (not necessarily orthogonal) projection 
which commutes with H(ol,) and that spec[Ef(oc,) [ Ran P] = {E,> (see Kato El]). If 
we define 

P(a) = -(2+-l j [H(a) - X1-l dA, 
e 

Tr P(z) 3 2 for o( near 01~ , since there are two (or more) eigenvalues near E, for 01 
near 01~ . Thus, Tr P 3 2 by continuity. Since dim[Ran P] < CD, P[H(o(,) - E,]” = 0, 
for some n. By theorem 11.1.5, [H(cr,) - E,] # = 0 has a unique solution, so that 
the smallest such IZ is at least 2. As a result some 4 exists for which 

[II? - E,]“l$ = 0 

but [H(ol,) - E,]$ f 0 from which it follows that (11.8) has a solution. 
Conversely, let (II.8) have a solution. Then P as above has Tr P 3 2 so 

Tr P(m,) 2 2 for M near 01~ . Then either there are two distinct levels near E, for 
01 near iyo, or there is a single level near E, , say E(‘x) which has multiplicity 32, 
i.e., cY&JcYE[O, o(, E(a)] = 0. If we analytically continue E(a) to the real axis,27 
we would have Jordan anomalous behavior for a Hermitean operator. Since this 
cannot occur, we conclude that the degeneracy at LY” splits, i.e., there is crossing 
at (II = a0 . 

We can also recover the condition for crossing obtained by Bender and Wu [5]. 

COROLLARY X7.6. +L,/aE(O, CY, E) = 0 at a point ,for which #JO, 01, E) = 0, 
if and on1.v if, 

s 
; I&,(X, a, E)2 dx = f Ill, 1,4,(x, CX, E)2 dx = 0. 

e7 We are supposing here natural boundaries do not occur! 
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Proof We have 

Under condition that &JO, 01, E) = 0, (so that &‘(O, LX, E) f 0) we have the 
stated equivalence. 

Remarks. 1. This is analogous to property (b) of our example T(X), since 
H(a) is symmetric with respect to the inner product (f, g), = JTmf(x) g(x) dx. 
In fact, this symmetry was explicitly used above. 

2. It would be an amusing (but presumably tedious) exercise to use W.K.B. 
techniques to analyze the a#,/aE = 0 condition as opposed to the f Q.&,~ dx = 0 
condition as used by Bender and Wu. Since the methods are not identical (we use 
the differential equation which is not obyed by the W.K.B. solution to prove the 
conditions are equivalent for the exact solution), their comparison might give one 
an idea of the errors involved. 

3. If we have a triple level crossing we find that 

dx = 0 

and 

jym [&j2 - i,hc,. (f&j dx = 0. 

In their discussion of level crossing, Bender and Wu found the first of these 
conditions (and then presented the argument that triple crossing wouldn’t occur 
because it is unlikely that this first integral vanishes). 
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11.8. Non-Analyticitv at Crossing Points 

In the previous section, we have shown that crossing occurs if, and only if, 
stix +L2 = 0. We next turn to the question of showing that the eigenvalues are 
nonanalytic at the crossing point.z8 We first note 

THEOREM 11.8.1. A suficient condition for nonanaiyticity at a crossing point is 

s 72 
--m x2t+L2(x, a, E) dx f 0. (II.9) 

Proof. Introduce the real inner product ( , ), defined by 

( f, g>, = jm f(x) g(x) dx. -al 
Then at a noncrossing point: 

W(4 - a41 &A-G 01, EC41 = 0; 

SO, 

Taking the ( , )r scalar product with &,, and using the R symmetry of H, we find 

dE %’ _ j-, sLrn2 dx = j:, x2 ‘bm2 dx* 
dol 

(11.10) 

Thus, (11.9) and s #m2 dx = 0 at a crossing point imply dE/dol -+ cc at a crossing 
point obeying (11.9). 

Remarks. 1. Bender and Wu [5], obtain a result analogous to (11.9) but in 
terms of x4 moments. Since a virial theorem argument (see also below) implies 

jm (3x4 + 2x2) #m2(x) dx = E(2) TO‘ #m”(x) dx, 
-a? co 

the x2 and x4 moments vanish together. 

2. An alternate proof of this last result in the multiplicity two case illumi- 
nates it and shows that (11.9) might not, in general, be a necessary condition. In 

88 (i -f) is an example of a matrix with analyticity of the eigenvalues at crossing (A = 0) in 
spite of the Jordan anomaly at X = 0. Notice, however that the eigenprojertions are nonanalytic 
at h = 0. 
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terms of the projections P(E) of the last section, the eigenvalues near 01 = cyO are 
those of the two-dimensional matrix (see Kato [l]), 

U(N) fY4 m4 we, 

where the (I(E) are unitary operator valued functions analytic in 01 with 

U(a) P(a) U(a)-’ = P(aJ. 

This two-dimensional matrix will have the form, 

where ~(a,) = c(aJ = d(cll,) = 0; b(~i,) = 1 when we use the basis 

The eigenvalues for this matrix are a sum of a term linear in a + d and a term 
proportional to z/[u(c~) + d(c11)12 + 4b(ol) c(a). The [a(a) + d(or)12 has a second- 
order zero at 01 = c+, and thus the square root will cause nonanalyticity if c(a) has 
a first-order zero at 01 = CX,, . It is easy to see that c’(c+,) is proportional to Jx”&.,* 
so (11.9) is sufficient. (11.9) is not necessary, since the square root can be non- 
analytic even if ~‘(a,) = 0. 

We now turn to showing that (KS) always holds for the case at hand.2s The 
crucial technique is to use a differential equation due to Grodnik and Sharp [17].30 
This equation is one for the quantity, 

L(h) = Ix &,2(x) eiAp dx. 
-cc 

We use Dirac notation for the ( , ), inner product. We also suppose the potentials 
V below are nice enough to justify all commutation relations. 

LEMMA 11.8.2. Let qh be an eigerzfunction of p2 -t V (V may be complex). Then 

(11.11) 

28 Bender and Wu do not consider the possibility that (11.9) might fail. 

3o These authors also obtain analogous formal differential equations in the field theoretic case. 
Their proofs however differ from the one we present. It is a pleasure to thank Dr. Sharp for 
communicating this technique to me before its publication. 
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Pro05 Since(#/H=E(#j;HI$)=El#) 

0 = <# I W, @I I ti) = <# I Ip2, eiA51 I 9) 

But 
[p”, &AZ] = &“A L zp + X2&lx 

, 

so the result is proven. 

(11.12) 

THEOREM 11.8.3. Let # be an eigenfunction ofp2 + V of eigenvalue E. Then 

E(# 1 eiA” I #> = <4 I (11.13) 

Proof. [@,p” + V] = V’ so that 

(I/ 1 eiA”V’ ( $) = (4 1 eiAxipE ( #) - (# ( einZHz$ ( 4) 

= (4 I W, @I 4~ I #> = <# I [P”, @‘I ip I 4) 
= 2A(# / eiAxip2 1 #) + X”(a) 1 einZ@ 1 $) (by II. 12) 

= 2iA(# I eiA”(E - V) ] #) - $ (z,4 I eiAs j #). 

This proves (II. 13). 

Remark. The term linear in h above yields the virial theorem. Thus, 11.8.3 is a 
generalized viral theorem. 

COROLLARY 11.8.4. Let L(h) = $Tm tim2(x) eine dx, where #cc is the eigenfunction 
at a fixed eigenvalue E(cw, 1). Then 

[($r + f (&,” - 01 (-$,” - ; ($) + $1 L(h) = EL(X). (11.14) 

ProoJ This is just (11.13) using 

+ ($)” L(h) = (* I x”eiA” 1 z/). 

COROLLARY 11.8.5. If E is an eigenvalue for coupling constant a, 

s 
Ia #m2(x, a, E) dx = 0 

implies 

s * x2t,L2(x, 01, E) dx f 0. 
--o 
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Proof. Since & falls rapidly to zero as x -+ co, a power series expansion of 
eiAx in L(h) is justified. Plugging such a power series in (11.3) yields all the moments 
Jx2n&,2 dx in terms of the zeroth and second moments. If these both vanish, 
L(h) = 0 so that &“(x, o(, E) E 0. Since this is impossible, the corollary is proven. 

We thus conclude: 

THEOREM 11.8.6. E(a) has a brunch point wherzetler J t+L2[x, a, E(a)] Ax = 0 or, 
equivalently 

and 

g [O, a, E(a)] = 0, odd parity levels, 

g$ [O, CY, E(a)] = 0, even parity levels. 

At such a point aE/& + co, e.g., in the multiplicity two case the Puiseux series 

E(a, 1) = a, + a,,s(~ - Q/2 + ... 

has alI2 rf 0. 

11.9. More Hilbert Space Preliminaries 

Our analysis thus far has been based on varying the subdominant coupling 
constant 01, keeping /3 real. We next considerp2 + x2 + fix” andp2 + yx2 where /3 
and y are allowed to wander off the real axis. 

Considerp2 + x2 + ,Bx”. If ,i3 is a negative real, the classical force 2x - 4 / p j 9 
is sufficiently large to send a particle to fw in only a finite amount of time. 
This is reflected in the quantum mechanics: the Hamiltonian is not self-adjoint 
unless one adds boundary conditions at w (the deficiency indices are (+2, f2)). 
This might lead one to suspect one can only define H(1, ,8) naturally for Re ,l3 > 0. 
Actually, we will be able to define it for ,6 in the entire complex plane cut along 
the negative real axis. There are two simple reasons for expecting this. Firstly, 
for /3 not a negative real, H( 1, ,f!) defines a quadratic form whose expectation values 
lie in a sector of opening angle strictly less than n. Such objects are notoriously 
well-behaved31 (See Kato [I]). Alternately, we have seen that 

(-(d3/ddx2) + /L-“~“x + .x4)$ = E# 

has solutions #(z) which go to zero (as e-z3/3) for 1 arg z 1 < 7r/6. If we make a 
scaling transformation z + /31j6z which makes sense on entire functions but is not 
implementable in L2, we see that [-(d2/dx2) + x2 + /3x”] 4 = E’c/J has solutions 
going to zero for I arg fl-lj6z I < ~r/6. In particular, if I arg fl I < 7rTT, these solutions 

31 One can show directly using this nice behavior that ,!-*/2 H(1, /3) is a holomorphic family 
of type (b) in the sense of Kato. 
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go to zero on the real axis and so p2 + x3 + /3x4 has a large supply of candidates 
for eigenfunctions-it should thus make sense as nice operator. 

We first establish a quadratic estimate of a form very similar to those used 
recently by Jaffe and Glimm in their treatment [18] of ($4)2 field theories: 

LEMMA 11.9.1. Let /3 be complex with Im jI # 0. Then for a with 

a<l-l/WIReBI, 

there is a b so that 

aW + x2)$ II2 + I B I2 II x4+ Ii”1 -c II(p2 + x3 + BP)+ /I2 + bll $ II2 

for all # E D(p2) f~ D(x4). 

Proof. By a closure argument, we need only consider #, C” of compact support. 
Thus, we need only show 

(p2 + x2 + pxl)+(p” + x2 + /3x4) 3 a[(p” + x2)2 + / ,3 12x8] - b (11.15) 

on Corn, where all formal manipulations with commutators are legitimate. The left 
side of (11.15) can be written as 

(p2 + x2)2 + I ,6 12xs + 2 Re /3[(p2 + x”) x4 + x4(p2 + x2)] + 2i Im ,6[p2, x’] 

= !+$J [p” + x2 + / /3 / x412 + (1 - W) [(p” + x2)2 

+ I B 12xsl ii 2 I Im B I [P”, ~“1 
2 (a + R)[(p2 + x2)2 + I /3 12xs] rt 8 I Im j3 j (px3 + x3p) [for some R > 0] 

=(a+R)[(p2+~2)2+I~l2~8l-~lI~~l(p2+x6)+8lI~~I(pix3~2 

> a[(p” + x2)2 + I B 12xsl - b + [R(p2 + x2)2 - 8 / Im P I p2 + $bl 

+ [R I /3 j2x8 - 8 I Im /3 I x6 + $b]. 

By suitable choice of 6 we can make the last two terms positive. Q.E.D. 

THEOREM 11.9.2. Let H(l, /3) = p” + x2 + /?x” be defined with domain 
D(p2) n D(x4) for j3 in the complex plane cut along the negative real axis. H( 1, 18) is a 
holomorphic family of type (A) with compact resolvents. 

Proof. A direct consequence of (11.15) which implies that H(l, /I) is closed 
and that x4 is a small perturbation of H(1, fl) in the technical sense of Kato [l]. 

Q.E.D. 
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COROLLARY 11.9.3. &(I, p) continued from positive real /l into the cut plane has 
ImE,(l,/3) >O ifIm/3>0. 

Proof. By theorems 11.9.2 and 11.3.1 f&(1, p) is an eigenvalue of H(1, p). If 4 
is the eigenvector, then 

Um &J = II 4 IIt2 (rm 8)llx”d II2 > 0. Q.E.D. 

An operator similar to H(1, /3) which will play a crucial role isp” + ye” = H(y, 0). 
By a technique identical to that used in Lemma 11.9.1 and Theorem X9.2.: 

THEOREM 11.9.4. Let y be the cut plane. Then p2 + yx2 defines a closed operator 
with domain D(p2) n D(x2). Its eigenvalues are (2n + l)y1j2; n = 0, I,... . For any 
compact subset J2 in the cut plane, there exists a and b so that 

II x2$ II < a ll(p2 + yx2)# II + b II # II (II. 16) 

all # E D(p2) n D(x2); y E Q. 

THEOREM 11.9.5. Let y be in the cutplane. Then for any / fi j > 0,pz+yx2+ / p / x4 
defines a closed operator on D(p2) n D(x4). For any compact Q in the cut plane, 
there exists a and b so that 

/I x2+ II G Np2 + yx2 + I B b4)# !I + b II # !I (11.17) 

aZZ # E D(p2) n D(x4); y E Q; 0 < I P I G 1. 

11.10. The Asymptotic Nature of the Singularities 

We next turn to investigate the position of the infinite number of singularities 
in the three-sheeted /3 plane; singularities whose existence we proved in 11.6. We will 
show using the techniques of II.9 that these singularities that approach /3 = 0 
do so by spiraling in at arg /3 = 270” (and 810” := -270”), i.e., the asymptotic 
phase of the branch points approach 270”. By a scaling of the phase of /3 we can 
study p2 + x2 + ,6x4 by looking instead at p2 + yx2 + / /3 I x4 (where / y 1 = 1, 
y = exp(-$i arg /3). As j j3 I 4 0, we expect H(y, 1 p I) to approach H(y, 0) 
when y is fixed I y ) = 1, y f 1. For negative /3, H(y, /3) is not a nice operator 
so H(y, j /3 I) cannot have a convergent power series about I p I = 0; the best we 
can hope for is that it have an asymptotic expansion. General folklore (see Kato [l], 
Chapter VIII) says that asymptotic perturbations are related to strong convergence 
of the resolvents while analytic perturbations are related to norm convergence 
of resolvents. Nevertheless, we have 
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LEMMA 11.10.1. Fix y, y tlot a negative real number. Let 

&(I 13 I9 E) = (WY, I P I) - E) l 

Then 

II &(I B 1, El - 4@, W- 0 as IBIJO 

The convergence is uniform on compact subsets in y. 

Proof. Since &(I fl /, E) = R,(I /3 j, E,)[l + (E,, - E) R, (1 p I, EJ]-l, it is suf- 
ficient to prove the result for one E0 . Given a compact subset l-’ in the cut plane, 
the union, U, of the numerical ranges (i.e., {(A A+)1 /I #J II = I}) for the H(y, 1 fl I) 
over all y E r is not all of C, so we can choose E0 with dist(E, , U) = C-l > 0. 
Then II &(I B I, MI G C ( see Kato, [I], p. 267-268). We have 

44 P 1, J%) - fW4 KJ = -I P I[&@~ &)x~I[x~R~(I 6’ I, G)l. 

By Theorems 11.9.4 and 11.9.5, we can find a, b so that 

II -x2$ II < a Il[Hh I 6’ I> - &I # II + (b + a I G l)ll # II 

for all y E r I 3 I /3 / 2 0. Thus, 

II x2MI B I, Eo)ll G a + C(b + a I J% I) 

and 

II R,(O, Ed x2 II < a + C(b + a I E, I); 

I/ W P I, -5,) - R,(O, -4 G C’ I B I -+O as IBliO. Q.E.D. 

THEOREM X10.2. Let n be given aud let r, a subset of the cut plane, be given. 
Then, there is a B so that for I ,8 I < B and y E r, H(y, I /3 I) has exactly one 
eigenvalue E,(y, I j3 I) near (2n + 1)~~‘~. As / /3 I 4 0, E,(y, I /3 I) - y1j2(2n + 1) - 0 
uniformly for y E r. 

Proof. This is a direct consequence of the last lemma. Consider the projection 
P,, onto the eigenvector of H(y, 0) with energy (2n + l)~-l/~. Let 

WI p I) = & j- &(I fi I, E)dE, 
0 

where C is a curve around (2n + l)y- l/2 enclosing no other eigenvalues of H(y, 0). 
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Then P,(O) = P, and P,(I fi I) -+ P,(O) in norm. Since P,,(O) is one-dimensional so is 
PA P I> for I B I small. Thus, H(y, I /3 I) has one eigenvalue inside C for ] /3 I small 
and this eigenvalue converges to (2~2 + 1)~ rjz. The uniformity in r can be proven 
easily. Q.E.D. 

Remark. Thus, all the eigenvalues of H(y, 0) are stable in the sense of Kato ([ I], 
p. 437-438). 

THEOREM 11.10.3. Let n be given and 6 < 31~12. Then, there is a B so that 
E,( 1, /?) is analytic in {p on the three-sheeted surface 1 0 < I /3 I < B, 1 arg j3 1 < 61. 

Proof. We need only scale out arg p and apply the last theorem. Q.E.D. 

Remark. These results are independent of the occurrence or nonoccurrence of 
natural boundaries, etc. 

COROLLARY JI.10.4. The singularities of E, at /3 = 0 have an asymptotic phase 
of 270”. 

Remarks. 
property. 

1. The approximate branch points of Bender and Wu have this 

2. Since there can’t be any branch points with phase 270” (arg /3 = 270” 
corresponds to 01 real under scaling), we should think of the branch points as 
spiraling into arg /3 = 270”. 

These theorems allow us to develop an interesting picture of what produces the 
the singularities. Consider a fixed n. In Fig. 2, we draw a schematic picture of 
E,(y, 1 t!! 1) for I /3 / fixed letting y vary with I y I = 1,O < arg < n. When g = 0. 
we obtain a circular arc whose end is anchored at i(2n + 1). For any 1 /3 I f 0, 
E,( - 1, 1 p I) is real, so all these curves have their ends anchored on the real axis. 
Thus, as I p j J 0, the end of the curve shown gets stretched more and more. 

E -plane 
orgy= constant 

I 

E=O 

FIG. 2. A schematic picture of the behavior of E,(r, 1 j3 1) for / y  / = 1 ; 0 < arg y  < n, 
discussed in Section 11.10. 
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Superimposed on this picture is the fact that the curves for different II must tangle 
with each other. 

II. 11. The Asymptotic Expansion for E,( 1, ,B), Rekited 

In Appendix II, we show that E-(1, ,6) has an asymptotic expansion valid as 
p 4 0 along the positive real axis. In this section, we wish to show that this expansion 
is valid as /3 4 0 in any sector j arg p j < 0 with 0 < 37~12. We will first show that 
the eigenvalues and eigenvectors of H(y, / /3 I) h ave an asymptotic expansion for 
fixed y. As preparation for this, we note: 

LEMMA II.1 1.1. Let P be a compact set in ((y, E) 1 (H(y, 0) - E)-l exists, 
y E cut plane}. Then (H(y, 0) - E)-l is a continuous map of Y + Y for any 
(y, E) E P, with the bounds uniform on P. 

Proof: The topology on Y is generated by C$ + II(p” + x~)~$ jj n = 0, 1, 2,... . 
Thus, we need only establish inequalities of the form, 

MP” + x2)n(p2 + yx” - E)-l# II d i a?) ll(p2 + x”)j# II 
j=O 

(11.18) 

with the acjn’ independent of (y, E) E P. We proceed inductively. For n = 0, 
(11.18) follows from the continuity of (p” + yx2 - E)-l on P as a map from 
L2 to L2. By Theorem 11.9.4 we can find a and b so that 

ll(p2 + x”>9 II G a ll(p2 + yx2 - Q#J II + b II 4 II, 

for all 4 E D(p") n @x2) and all (y, E) E P. Thus, 

IICP’ + x2)“(p2 + yx2 - E)-l# II 

< a HP” + yx2 - E)(p2 + x2)+l(p2 + 3/.x2 - E)-%,b )/ 

+ b II(p” + x2>“-l(p” + yx2 - E)-+~J 11. (11.19) 

By the induction hypothesis, the second term is of form (11.18). To treat the first, 
we write 

(p” -I- yx2 - E)(p2 + 2Y1 = (p” + x2)‘-l(p2 + yx2 - E) + Q(a#), (11.20) 

where Q(a#) is a polynomial in a and a+ of degree 2n - 2, with coefficients bounded 
for (y, E) E P. Using (11.20) and 

ll(a#)29 II d (2mYW2 + x2 + lP$ II, 
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we can bound the first term on the right side of (11.19) by a sum of the form 
ll(p2 + x~)~‘(P~ -I- yx2 - E)-l# Il(m < n - 1) plus a ll(p2 + x~)~~-~# 11. By the 
induction hypothesis (II. 18) holds. 

LEMMA 11.11.2. Let R,,(j /3 1, E) = (p2 + yx2 $- / ,B /x4 - E)-’ be viewed us a 
map of 9 ---) L”. For any N, R has an e,xpansion 

where 

(a) The A,,, are independent of N and 1 ,R / and are continuous maps of Y -+ L2, 

(b) -Go(E) = &(O, El, and 
(c) 99n-tl,v(l B 1, E) is bounded as a map of Y j L’ nith the bounds un[form 

forO<l/I <1 on any compact P of the form considered in Lemma II. 11.1. 

Proof. Consider the formal expansion 

(A + B)-1 = f (- l)“(A-lB)” + (-l)n+l(A + B)-‘(BA-‘)N+‘, (11.21) 
7i=O 

where A = p2 + yx2 - E, B = / p 19. As a map of L” ---f L?, BA-l is not bounded 
or everywhere defined so that this expansion is not meaningful in an L’ --f L” 
sense. But A-’ and B are bounded maps of Y + .Y’ and so (11.21) can be verified 
if B, A-l are viewed as maps of .Y --j Y and (A + B)-l as a map of 9 + L”. 
(a) and (b) follow immediately and (c) follows from Lemma II.1 1.1. 

Remark. Using results of Jaffe [lo], one can actually show (A f B)-’ is a 
bounded map of Y + Y so that this last lemma can be strengthened to allow 
us to view everything as maps of 9’ + Y. 

THEOREM IL1 1.3. Let E,(y, I /3 1) be the unique eigenvafue of H(y, I p 1) near 
(2m + l)y1j2, and let #m(y, I /3 I) = P,(j /3 I) ~&(y, 0) be the corresponding eigen- 
vector. Then E,, and #, have asymptotic expansions 

MY, I P I) - c a,(r) I B 1% (11.22) 

hn(Y9 I P I) - 1 ddr> ~ P In (11.23) 

validfor any yjixed with remainder terms uniformly bounded as y varies over compact 
subsets of the cut y plane. 
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Remarks. 1. By remainder terms we mean 

I B lY1 b&, I B I) - 2 a,(r) I B Yj . 
91 =a 

2. Using Jaffe’s results, we can show that the asymptotic expansion of & 
has remainder terms bounded as an element of 9. 

Proof. P,(j j3 1) = (2ni)-l SC R,(I /3 1, E) dE so that P,(j p 1) has an asymptotic 
expansion of the same type as Lemma II. 11.2. Since the unperturbed eigenfunctions 
$&, 0) are in Y, (11.23) follows. Using 

&(Y, I B i> 
= KbdY, 01, PA P 1) bn(Y, wl-l[(!hL(Y, (9, ff(Y, I B I> PA B I> hn(% WI, 

we obtain (11.22). 

THEOREM II. 11.4. The asymptotic expansion, 

End 1, If> - 1 a,!?% (11.24) 

proven in Appendix II for realpositive fi is valid uniformly in any sector / arg fi / < 6 
with 0 ( 37~12. 

Proof. Since E,,(l, /3) = ~-l/~E,(y, / j3 1) with y given by /3 = / fl I yM3j2 it is 
sufficient to show that the asymptotic series for E&y, I /3 1) is of the form, 

E&y, I /I I) - c aAm)y(1-3”)‘2 I p In. (11.25) 

We establish this inductively. Since E,(y, / /I 1) + E,(y, 0) = y1/2E,(1, 0), the 
asymptotic coefficients in (11.22) agrees with the form (11.25) in zeroth order. 
Suppose we have established this agreement to order N so that we know that 

f&4 = [E,(Y, I B I> - $ a?)y(1-3n)‘2 I B In]/1 P IN+’ 

is bounded uniformly in /? on compact subsets of the cut y plane. By the validity 
of (11.24) for real j?, f ID,(y) + ae)y(1-3N)/2 pointwise on the real axis. Thus, by the 
Vitali convergence theorem ([19], p. 168) flsi(y) + aF)y’1-3N)/2 uniformly on 
compact subsets of the y plane. Therefore, (11.25) is correct to order N + 1 and 
the proof is complete. 

COROLLARY II. 11.5. Consider E,( 1, fi) as a function in a small circle about 
/3 = 0 cut along the negative real axis. Then the discontinuity across the cut 
[=2i Im &(I, -fl + ic)] goes to zero faster than any power of 1 /3 I. 
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II. 12. Dispersion Relations in Coupling Comtant 

Let us summarize the situation with regard to functions E,(l, /3) in a ,&plane cut 
along the negative real axis. We have shown that E,(l, /3) has continuation from a 
neighborhood of the real axis into the complement of a cut annulus, i.e., a region 
as shown in Fig. 3. 

FIG. 3. The region of analyticity for E,(l, p) rigorously established in Section II. 

Using results of Loeffel and Martin [37] and of Section [IS, Loeffel et a/. [38] 
have proven analyticity in the entire cut plane.= 

THEOREM II. 12.1. On 1Jrejr.G 19 sheet, l&(1, j3) has a representation, 

where p,,(y) = lim,,, (+ny + k)-l Im l&(1, --y + k) has the properties. 

C-4 fn(d ,,ym O(Y--~/~), 

(b) P,(Y) u~o WY all N and 

(cl &7(Y) 2 0. 

ProoJ Since E,(l, B) = O(p1/3) at co, a once subtracted dispersion relation 
holds. 

32 Bender and Wu also attribute a rigorous proof of the nonoccurrence of branch points for 
I arg /3 [ -C n to Jaffe. Such a proof is nonexistent. Jaffe has only shown analyticity of the resolvent, 
not of the eigenvalues. 
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111. THE EICENVALUES IN MORE COMPLEX CASES 

Ill. 1. Other One degree of Freedom Cases 

Our results carry over without any significant change to x2171 perturbations.33 

THEOREM Ill. I. The eigenvaIues of the operator p” + (2x2 f /3x2”’ for p > 0, 
01 real with domain D(p2) n D(x~~~) obey a scaling law, 

&(a, /!3) = hEn(a!k2, px-‘~L-l>. (Ill. 1) 

In particular, 

E,(l) 8) = /!P/m+lE&Fjn~+l, I), (111.2) 

E,(l) j3) has an analytic continuation with a global (m + I)-st order branch point 
at p = 0. In addition, /3 = 0 is a limit point of singularities. It is Herglotz in 

IargBl <n.G(LB)h as an extension to a sectorial neighborhood of 0 of the form 
I p I < R, j arg /3 1 < 0 for any B < &(m + 1) rr. In any such sector, the Rayleigh- 
Schrtidinger series is asymptotic uniformly in angle. 

The only part of the argument in Section II that fails to go through involves the 
discussion in 11.8; for the Sharp differential equation is 2m-th order and we only 
have IH + 2 null initial conditions when Jx~&,,~ dx = J $m2 = 0 (all the odd 
moments vanish !) 

There is another part of the argument of II which requires modification. In 11.9, 
we showed that (p’ + yx2 + 1 j3 I x~-E)-~-(~~+~x~-E)-+O as p-0; 
actually we showed it was O(l fl I). In the general case, the proof there needs modi- 
fication. We can show however that 

A = (p2 + ys2 + 1 p 1 x2*& - q-1 - (p” + yx2 - E)-1 = O(/ p I”“) 

for 

A = [-(p” + yx2 - E)-lX2][ I /3 1 x2(-l’(p2 + yx2 + j /3 1 x2m - E)-11. 

The first term is bounded. Since I/ / /? j x2m# 11 < a II(p” + yx2 + I/3 / xzm)$ // + b II 4 1) 
and I B j(nz-1)/n~~2(m-1) < 1 /3 1 x2m + I, we have I j3 l(m-1)/m~2(m-1)(p2 + yx2 + 
I/3 I x2n - Q-l bounded. Thus, A = O(l /3 Il’“). 

We note also that the results of Loeffel and Martin on the absence of first sheet 
branch points [37] and of Loeffel et al. on the absence of natural boundaries on 
the first sheet [38] carry over to the x2m case. 

33 W. K. B. techniques also extend to this case [6]. 



ANALYTICITY AND THE ANHARMONIC OSCILLATOR 113 

Without any change we can treat a general polynomial problem in which both 
the unperturbed and perturbed potentials have even degree with positive leading 
coefficient. If we denote the n-th eigenvalue of p” + a,x + a2x2 + e.0 + u2m~2m 
by &(a, ,..., a2& a Symanzik scaling argument tells us that 

&(a, >..., u2,J = A2En(a,h-3, . ..‘...) a .A-‘-2 )...) a2mh-2w+2) 3 

for any h. Thus, 

If 
-&,(a1 ,..., uom) = (a2m)11m+1E,(ala~~‘2”+2,..., uja;A-2’2m+2,..., 1) 

and 

we have 

v. = a,x + ... + a2mx2’” 

V pert = b,x + 1.. + bl,s2k, k > m, 

where 

&v&l + vo + PVperd = B1’k+lE;I(cl ,..., CZk), 

PjB- cj = lbjp(2~~~,)~~~;~ + bjP(2k-j)f2k+2 j < 2m 
j > 2m. 

Again, with the exception of the discussion in 11.8, our entire argument goes 
through. In particular, for this problem, the perturbation series diverges; E, has 
a global branch point of order nz + 1, and an infinite number of singularities. 

After scaling out a2,,, from E,(q), we have a function of 2m - 1 variables, 
so the branch points are actually branch varieties of codimension one. Very little 
is known about the structure of these varieties; an amusing structure could be 
produced since multidimensional complex varieties present many possibilities. 
For example, the branch points in E,(O, 1, 0, /3) where E, and E, cross, may be 
continuable into one another by continuing in a, and a3 . 

Finally, we remark that our methods will not handle potentials which misbehave 
at 03 and which are not polynomials.34 

111.2. Finite Number of Degrees of Freedom 

It is only after the one degree of freedom problem is left behind that the 
advantage of abstract arguments over a W.K.B. method becomes apparent. While 

34 We note that the potential V = cos x mentioned by Bender-Wu [5] is not a singular potential. 
It is bounded (in x) and thus a bounded operator. For such an operator, the perturbation series 
converges by the Kate-Rellich theory. 

595/.58/I-8 
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it might be possible to use the multidimensional W.K.B. methods of Maslov [20] 
to treat the many dimensional problem, the details would clearly be formidable. 
However, since our arguments of Sections II.1 through II.6 didn’t depend on 
being in one dimension, it is immediately clear that 

THEOREM 111.2.1. Let 

Ho = f pn” + w,2qn2 
n=1 

and 

v= i: %k14i4i4k41 
i.j,k,l=l 

be potentials that are positive and that go to injinity as q--f CD. Then the eigenvalues oj 
H, + ,8V have a global third-order branch point at /3 = 0 and /3 = 0 is a limit point 
of singularities. In any sector j arg /3 I < t?, 0 < 3rr/2, E,(l, /3) is analytic for p 
small and the Rayleigh-Schriidinger series is asymptotic in the sector. 

Let us make one more detailed remark about the arguments leading up to 
Theorem 11.2.1. An over-all scaling qn + pW6qn (all n) is crucial in the proof. 
One can, however, consider the whole affine group, as generating a set of scaling 
transformations, 

qn - (4), + a, 

and 
Pn - w-‘P>?l 7 

which relates various Hamiltonians and provides nontrivial symmetry groups for 
some of them [2]. 

The real distinction between the one and many degree problems is in the lack 
of a solution of the differential equation when E is not an eigenvalue which yields 
E(cY) implicitly. While we did not use this implicit function explicitly, we think 
that the best hope for proving natural boundaries don’t occur is through an 
implicit function argument. It is thus of interest to note we can obtain the eigen- 
values in this case by an implicit definition. We will show that the eigenvalues are 
also eigenvalues of a Hilbert-Schmidt integral equation and thus given implicitly 
as zeros of a Fredholm determinant. 

LEMMA 111.2.2. Let V be as in Theorem 111.2.1. Let 

Rl= 2 pnz + v 
( 1 iI=1 
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and 
N 

P = c w,2q,2. 
72=1 

Then for any R, there is an E so that (gO f ap + E)-l is Hilbert-Schmidt for 
loll <R. 

Proof. We first note that the eigenvalues of a,, obey Cz=‘=, Ei2 < co. This 
follows from the fact that V > a(Cz=, qn2) - c so that E, > EA”‘) - c where 
E@‘) is the II eigenvalue of N harmonic oscillators. Thus, ?L 

z. Ei2 < co if i. Ef”)-’ < co 

and this later is true. Thus, for any negative energy, E, , (B. - E,)-l is a Hilbert- 
Schmidt operator. Since v is Kato tiny relative to go, given R, we can find E so 
that 

I p(ifo - E)-l 1 < A- . 

Then the Neumann series for [(no - E) + a@* converges for j 01 1 < R and 

[(Go - E) + o~GI1-l = (E î, - E)-l[l + CX~((E?~ - E)-l]-l 

so that the lemma is proven. 

THEOREM 111.2.3. Let E?, , p be as above. Then for any R, there is a finctiort 
d(o1, X) entire in h and analyticfor 1 c1 j < R anda number E, so that E. is an eigenvalue 
of fio + x08 with j 01 1 < R if, and only z! d(cx, , A,) = 0, where A, = (E, + E)-l. 

Proof. Pick E (as in Lemma 111.2.2) so that (go + crP + E)-l is Hilbert- 
Schmidt for j 01 I < R. It is analytic, so its (modified) Fredholm determinant [21] 
d(ol, A) is analytic for 1 cx j < R. E. is an eigenvalue of fro + aV if, and only if, 
d(o1, A) = 0. 

Thus, if an implicit argument eliminating natural boundaries exists, it will 
work in the many variable case. 

We note that the Loeffel-Martin argument [37] on the absence of branch points 
on the first sheet does not carry over the several-dimensional case because it 
depends heavily on keeping track of the zeros of the wavefunction; these are a 
complicated affair in several variables. Since the Loeffel-Martin argument is used 
in the no-natural-boundaries proof of Loeffel et al. [38], this result is also unproven 
in the multivariable case. 
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IV. THE PADS APPROXIMANTS 

IV. 1. Introduction 

As we explained in Section I, a prime reason for studying the problem of analyt- 
ically continuing E,( 1, /I) is the connection between analyticity and summability 
methods. We have already seen that E,(l, ,@ has a perturbation series which 
diverges (11.4) but which is asymptotic uniformly in / arg /3 / < 0, any 0 < 3rr/2 
(11.11). This suggests one use an improper summability method on the Rayleigh- 
Schriidinger series. The recent work of Bessis et al. [7, 81 and of Copley-Masson 
[39] suggests that one try PadC approximants. 

Given a formal power seriesf = C anxn, the PadC table is defined by 

(a) ftN,Ml(~) = PtN~“l(~)/QtN~Ml(~), 

where P is a polynomial in x of degree M and Q is a polynomial in x of degree N. 

N+M 

(b) ftNsM1(x) - 1 a,xn = O(X~+~+‘). 

These conditions uniquely determine f tNrMI and determine P, Q up to one normal- 
ization constant (for each [iV, Ml). Thus, f [ OJJ] yields the usual Taylor approxi- 
mants. The folklore tells us that the diagonal approximants ftN*N+il converge 
better than the Taylor series. Bessis et al. considered these diagonal sequences 
(for j = 0, N = 1, 2) where the a,l are given as the partial wave projections of 
various Feynman series. They use the position of one resonance to determine a 
phenomenological coupling constant and then determine other resonances with 
rather spectacular results ! 

There is an explicit formula for f [N*Ml [22]: 

aM-N+l 

aM 

aMeNf2 “’ ahf+l 

a.+f+l 
. . . 

aM+N 

fW-fl(X) = 

jgN aj-Nxi jz$p, aj-N+lxi ‘.. T g  a& 

aM-N+l aM-N+2 .‘. aM+l 
(IV. 1) 

aM aM+l *** aM+N 

XN 
XN-l . . . 1 

We will show in Section IV.2 that the results of Loeffel et al. [37, 381 imply that 
any diagonal Pad& sequence f [N.N+j@) formed from the Rayleigh-Schriidinger series 

for E,, converges to E,(l, /3) uniformly on compact subsets of the cut plane. 
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In Section IV.4, we will study numerically the convergence of the Pad6 approxi- 
mants to the ground state when /? is small. 

The result of these Pad6 arguments is to soften the effect of the Bender-Wu 
singularities. These later destroy the convergence of the strong coupling expansion, 
but since they stay in ] arg /I 1 > rr, they do not prevent the recovery of E(1, ,8) from 
the perturbation series. 

The convergence of these diagonal Pad6 approximants also suggests rather 
exciting possibilities for the Feynman series of a relativistic field theory. If we wish 
to be ultraconservative, one can merely conjecture convergence of the diagonal 
Padt approximants to the ground state energy density (=sum of connected 
vacuum graphs) in a two-dimensional 4” theory (i.e., one-space, one-time dimen- 
sion). If that turned out to hold it would suggest a series of more and more far 
reaching conjectures: The renormalized energy density in an n-dimensional 4” 
theory has convergent PadC’s, the renormalized Feynman amplitudes for the 
S matrix (equivalently, for the Green’s functions) in a p theory have convergent 
PadC’s, the renormalized Feynman amplitudes for any renormalizable theory have 
convergent Pade’s. Such convergence would be particularly interesting since the 
Feynman series is known to diverge in the $* cases (e.g., [3]) and is believed to 
diverge in the others.35 

IV.2. Convergence of the Pad& Approximants 

THEOREM IV.2.1. The negative of the Rayleigh-Schriidinger coeficients, are a 
series of Stieltjes for m > 1, i.e., a, = (- l)m+l sz x”p(x) dx(m > l), for a positive 
measure p(x) d.x. In particular, the Pad& approximants f [N*N+il(x) converges as 
N + co uniformly on compacts if j is fixed. Since C 1 a, l-1/2m+1 = CO, the limits 
of these sequences are equal to each other and to E,(l, ,8). 

Notes. 1. We prove C j a, /-1/2’)Z+1 = cc in Appendix V. 
2. We use the analyticity results of Loeffel et al. [37, 381, that E, is analytic 

in the cut plane. 

Technical Note. We will write p(x) dx and Im E,( I, -1 /3 I) as if they were 
functions. Actually, they might only be measures in general (that Im E(l, -/ fl I) 
exists as a measure is a consequence of a theorem of Herglotz). If there are no 
natural boundaries at the cut, f is continuous at the cut. 

Forj > 0, this theorem is a special case of the more general result: 

LEMMA IV.2.2. Let f(z) b e a uric Ion with the following properties: f t’ 
(a) f(z) is analytic in the complex plane with the cut - 03 < z < 0 and is real 

on the positive real axis. 

35 For asummaryof the statusof convergence resultsforfield theories,see the introduction of [23]. 
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(b) 1 f(z)/ < 1 z iafor all z such that 1 z j > R, . Here 01 < k, k 2 0 is integral, 
and R, is some positive number. 

(c) f(z) has an asymptotic expansionf(z) - x:,“=, a,zn valid uniformly in arg(z). 

(d) Im f has limits above the cut along the negative real axis and Im f > 0 
there. 

Then 

(i) For n > k, -a, has Stieltjes form, i.e., 

I 

co 

a, = (- l)“+l xn d+ n > k, 
0 

for a positive measure d+ with finite moments whet1 n > k 
(ii) For any j > k - 1, the diagonal Pad& approximants f [N*N+jl converge 

uniformly on compact subsets of the cut plane. 

(iii) Moreover, if 

(e) C,“=, a$/‘* = co, then the limit of any of the diagonal sequences of (ii) isf. 
For z real and positive, the even j approximants converge monotonically upward to 
f(z) and the odd j approximants converge monotonically downward to f(z). 

Proof. 

(1) Reduction to k = 0. Given f  and k > 0, define 

f(z) = (-z)-” [f(z) - y anzn] . 
VI=0 

Then j obeys (a)-(d) with k = 0 and obeys (e) if f  obeys (e). Since 

k-l 
f[N.N+jl(z) = 1 a,zn + (-~)kf”[N*N+j--Kl(z) 

?I=0 

for j > k - 1, the theorem need only be proven when k = 0. Henceforth, we thus 
suppose that k = 0. 

(2) Proof of the Stieltjes nature. Consider 

1 
2zc I z-“-If(z) dz = 0, 

where C is the contour shown in Fig. 4, and n is an intger n > 0. Because of (b), 
the integrand on the large circle is bounded by (R)-n-l+u, so the contribution 
of the large circle goes to zero as R + co (a < 0). If we write f(z) = 
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FIG. 4. A contour used in the proof of Lemma lV.2.2. 

[f(z) - Ci=, a,~“] + CL=, a,znf for the integrand over the small circle and use 
the fact that the first term is O(zn+l), we see that the little circle contributes a, as 
Y 4 0. Thus, 

s 

--c 
a, + z-“-%+ Imf(z) dz = 0. 

0 

Letting x = z-l and 

p(x) = (37x)-l Imf(--u-l), (IV.2) 

we see a, = (- l)%+l Jr x”p(x) rlx. 

Note. (IV.2) holds for n > k even if k > 0. 

(3) (ii) and the monotonicity parts of (iii) hold. This is a general property of 
the Pad6 approximants of Stieltjes’ series see, e.g., Baker [22]. 

(4) If (e) holds, then all the Pad& limits are f(z). The Padt approximants of 
fFNJ”+jl(z) converge to functions g,(z), obeying (a)-(d). Thus, 

.r 

m 

a, = (-l)n+l x’Mx) dx, 
0 

where pj(X) = (nx)-l Im gj(-x-l). But, when (e) holds, the moment problem for 
(-l)n+lan has a unique solution by a theorem of Carleman [24]. Thus, 

Im gi(-x-l) = Im f (-x-l) 

all x > 0; this implies f - gj is an entire function with an asymptotic series 
f(z) - gj(z) - 0 at z = 0; i.e., f = gj . Q.E.D. 
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For j < 0, we note that the PadC’s converge because [E&3)]-l obeys the con- 
ditions of the lemma with k = 0 and (f-l)[N,yl = (fIMJI)--1.36 

Many of the formal elements of this Pad6 proof carry over to a large class of 
singular perturbations. Let A and B be positive. Then A + /3B is a closed sectorial 
form for any p in the cut plane, i.e. in the cut plane A + /?B is a holomorphic 
family of type (b). Under additional assumptions one should be able to prove an 
asymptotic series exists. In any event eigenvalues are Herglotz. Thus, if one can 
show analytic continuation of some eigenvalue does not encounter natural 
boundaries or level crossing in the cut plane, one can prove the Pad& approxi- 
mants f[N,N+jl converge for i fixed j > 0 since any function Herglotz in the cut 
plane is bounded by A 1 z / + B. 

IV.3. Information about the Discontinuity 

We wish to collect here some information about the discontinuity. Since 
Im Ed, P) = ~-BWJ(-B-~>, we can relate information about p to Tm E. We 
first recall that we have 

PROPOSITION IV.3.1. Im E,(l, /3),-z C / /? Ill3 where C = E,,(O, 1) v’3/2. 

Proof. As /3 --+ co in any direction, we know E,,(l, j3) - E,(O, l)/31j3 so 
Im E,(l, /3) N E,(O, 1)1 /I Ill3 sin(n/3). 

Note. Schwartz [25] has computed EO(O, 1) by a variational method and found 

E,(O, 1) = 1.0603621... . 
Thus, 

c = .91830051... . 

Bender and Wu [513’ on the basis of a numerical analysis, of the first 75 a, 
conjecture an asymptotic form, 

an ,ym (- l)n+lt7F-3/2(U”+1/2r(n(n + $.), (IV.3) 

This has the integral form, 

1 a, 1 N &7+/2(#)n+lP 1: x”-lPe-~ & 

= &.+I2 1: yne-2YPy-lP dye 

36 We should like to thank Prof. D. Masson for pointing out this simple proof of convergence 
for the j < 0 case. 

37 Our normalization is different from that of Bender and Wu, explicitly ui8 = afw/2+‘. 
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Thus, 

PROPOSITION lV.3.2. If the asymptoticform (IV.3) of Bender-Wu is correct, then 

Thus, solving for E,(l, /3) in a dispersion form is equivalent to interpolating the 
/3- -co and /3 -+ 0- limits correctly. 

IV.4. Numerical Analysis 

Using Section 1V.l and the first 41 coefficients of the Rayleigh-Schriidinger 
series for E,( 1, /3), we have computed the first 20 PadC approximants of form 
flN,Nl. In Table I, we list the f[20,201 for /3 = 0.1, 0.2,..., 1.0 and compare it with 
rigorous upper and lower bounds as computed by variational methods by Bazley- 
Fox [26] and Reid [27]. In every casefl z”~201 fits between the rigorous bounds. 

In Table II, we list various PadC approximants to illustrate the rate of conver- 
gence. For p = 0.1, this rate is phenomenal; fL5s51 is accurate to one part in IO5 
(the figure of merit is ft5*51 - 1 which is the total perturbation) and ft12J2j (which 
is not listed) to one part in loll! We note that the sum of the first 40 terms of the 
perturbation series at ,6 = 0.1 (40 a,‘s are involved in ft20*201) is ~10~~ so that we 
are not merely reproducing the asymptotic nature of the series. [We also note that 
for /3 = 1, the determinants of Section IV. 1 for Jt20~201 are of order 103” (with 
ratio ml!)]. 

To see this more explicitly, we compare, in Table V, the sum of the first N + 1 
terms of the perturbation series with the PadC approximant that uses the same 
input coefficients. The convergence of one sequence and divergence of the other is 
dramatically demonstrated. 

For /3 > 1, the rate of convergence is not as good. SinceftNyNl + C, as /3 + co, 
while E(1, ,!?)/p l/3 - const, this is to be expected. But even for /3 as large as 15, - 
there seems to be a limit approached for N - 20 (see Table III). In Table IV, we 
see that this limit is of the right size to be E(1, p). For as /3 -+ co, 

E(1, ,8)//3”3 --f 1.0603621... 

monotonically from above. 

Notes. 1. The astute reader will notice something awry in Table II. Since a, 
is a Stieltjes series, the f[N~Nl should increase monotonically as N t and this is not 
true off[lsJsl, ft20~201 for p = 0.5; 1 .O. On the basis of further analysis, we attribute 
this to roundoff error in the evaluation of the determinants. 
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2. That f[20~201 (15)/1W3 < 1.0603621 while E(1, /3)//W” > 1.0603621 is not 
serious. For as N T we expect f[N-Nl(/3) f E( 1, fi). Thus, we suspect 

by at least 5 %. 
f[20,201(15) < E(1, 15) 

TABLE 1 
Comparison of Pade with Rigorous Bounds 

B Upper Bound” Lower Bound6 fI20,iOlC 

0.1 1.065286 1.065285 1.065285509543 
0.2 1.118293 1.118292 1.1182926543(57) 
0.3 1.164055 1.164041 1.164047156(234) 
0.4 1.204848 1.204791 1.20481031(0603) 
0.5 1.241957 1.241811 1.2418539(48135) 
0.6 1.276195 1.275909 1.275983(105974) 
0.7 1.308110 1.307324’+’ 1.307747(246301) 
0.8 1.338096 1.337397 1.33754(1726579) 
0.9 1.366442 1.364349’+’ 1.36566(2398911) 
1.0 1.393371 1.392131 1.3923(37481861) 

u. From Bazley-Fox 1261, Table I. A Rayleigh-Ritz method was used on the first five even- 
parity levels. 

* From C. Reid [27], Table III except as noted by (+) which are taken from Bazley-Fox [26]. 
Reid uses the bracket method of Lowdin [31]. Bazley-Fox use the intermediate Hamiltonian 
method of Weinstein [35]. 

c We have thrown out the last 3 digits from a double precision answer assuming them in- 
significant because of roundoff error. The figures in parentheses represent digits that are not 
constant from ftr’,r’l on. 

TABLE 11 
Rate of Convergence of Pad& for p Small” 

N p = 0.1 p = 0.5 /3 = 1.0 

1 1.063829787234 1.2OOOoOOOOOO0 1.272727272727 
2 1.065217852490 1.231983691978 1.348289096707 
3 1.06528068005 1 1.238985856539 1.373799864956 
4 1.065285049128 1.240892502758 1.383756497228 
5 1.065285455329 1.241496450913 1.388075603389 

10 1.065285509535 1.241847634393 1.392102495074 
15 1.065285509543 1.241853789165 1.392325157322 
19 1.065285509543 1.241853988610 1.392341333864 
20 1.065285509543 1.241853948135 1.392337481861 

a We list ftNJ”l with the last three double-precision figures suppressed. 
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TABLE III 

Rate of Convergence for Intermediate fi 

ry f[ 10,30]0 
A (5)’ A (10) A (15) 

1 1.39234 0.0011 0.0006 0.00004 
2 1.6071 0.0454 0.0056 0.00066 

3 1.767 0.0850 0.0201 0.00157 
4 1.897 0.1204 0.0256 0.00379 

5 2.00(5) 0.1512 0.0348 0.00498 

6 2.10(O) 0.1791 0.0473 0.00836 
7 2.18(-2) 0.2034 0.0542 0.00763 
8 2.25(O) 0.2240 0.0640 0.00920 

9 2.31(3) 0.2290 0.0718 0.0107 
16) 2.37(O) 0.2555 0.0803 0.0124 

11 2.4(21) 0.2660 0.0809 0.0134 
12 2.4(68) 0.2779 0.0920 0.0150 
13 2.5(1 I) 0.2886 0.0986 0.0159 

14 2.5(57) 0.2999 0.1073 0.0218 

15 2.5(90) 0.3088 0.1113 0.0220 

a Figures not in ( ) appear to be convergent. 
1’ A($ = ) f [.‘,.rl - f P%W i/(f ~~~1 - 1) measures the rate of convergence relative to the per- 

turbation. 

TABLE IV 

E(0, 1) Test for b Intermediate 

1 0.1392 

2 0.1276 
3 0.1225 

4 0.1195 

5 0.1173 

6 0.1155 

7 0.1140 
8 0.1127 
9 0.1114 

10 0.1102 
11 0.1091 
12 0.1081 
13 0.1071 
14 0.1062 
15 0.1052 
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TABLE V 

Comparison of the Perturbation Series and its PadC Approximants 

1.150000 

1.097500 1.111111 
1.153750 

1.105372 1.117541 
1.176999 
1.049024 1.118183 

1.314970 

0.686006 1.118273 

2.353090 

-2.442698 1.118288 
13.253968 

-42.333586 1.118289 

168.895730 

- 796.466406 1.118289 
3005.179546 

= 1.1182892.v 

APPENDIX I: SOME RESULTS FROM COMPLEX ANALYSIS 

In this appendix we prove two results: 

(a) An entire Herglotz function is linear. 

(b) A Herglotz function analytic in a punctured neighborhood of z = co has 
at worst a first-order pole there. 

The first result is standard (c.f. [28]); we supply an elementary proof for the 
reader’s convenience. While a cursory review of the complex analysis texts has not 
revealed a proof of (b), the result is sufficiently elementary that it is likely that it 
has have been previously discovered. 

DEFINITION. A function f(z), analytic on a domain D, over C is called Herglotz 
if Im z and Imf(z) always have the same sign. 

THEOREM A. 1.1. Iff(z) is Herglotz and entire, then f(z) = az + b. 

Proof. Since f is entire, it has an everywhere convergent expansion f(z) = 
C,“=, a,zn. Since f is Herglotz, it is real for z real and thus all the a, are real. Thus, 
g,(d) = Im f(reie) = EYE0 a,r” sin n8. f is Herglotz also implies that 

grw 3 0 ace-0 
< 0, -?r<e<o. 
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Consider the function sin &/sin 19 (m > 1) defined on the interval (-.rr, n). Since 
it is continuous, its absolute value is bounded by some constant C, . Thus, 

so that 

C,, sin 0 + sin me 2 0 o<e<n 

GO -?r<e<o, 

For this to hold for all r and for both + and -, we must have a,,, = 0 for tn > 1, 
i.e., 

f(z) = a, + a,z. Q.E.D. 

This result can be extended to limit the form of meromorphic Herglotz functions 
(cf. [28]). Wigner has used this extended form to study the R matrix [29]. We next 
extend our result to functions analytic near co. 

THEOREM A.I.2. Zf f (z) is analytic itz a punctured neighborhood of injnity and 
Herglotz, its Laurent series at co is of the form, 

f(z) = C a,zn. 
n=-m 

Proof. If we expand f  in Laurent series near co to obtain f(z) 
and proceed analogously to our proof of Theorem A.I. 1, we see 

0 < C,(a,r - aplr-l) & (a,,,r”’ - a-,,ir-“l), 

for all r very large. This implies am = 0 for m :> 1. Q.E.D. 

APPENDIX II: THE ASYMPTOTIC NATURE OF PERTURBATION THEORY 

In this appendix, we will prove that the ordinary Rayleigh-Schriidinger pertur- 
bation series for the eigenvalues of the Hamiltonian H(p) = p” + x2 + /3x4 is an 
asymptotic series for the actual eigenvalues &(l, p). Results of this sort were first 
derived by Kato [ 151, (see also [l] p. 443-451) under very general conditions. The 
Hamiltonian under consideration obeys Kato’s conditions and so it is for two 
reasons we include this appendix at all: 

(1) Kato’s argument is quite complicated because it considers a very general 
case; for the problem under consideration, we can avoid relying on either spectral 
analysis, or lower bounds on eigenvalues-two advanced tools used by Kato. 
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(2) We wish to sketch a detailed analysis of the errors in the asymptotic 
expansion. We do not however suggest using these methods for practical compu- 
tation. One can do much better with variational upper bounds coupled with 
Temple’s inequality [30]. For truly impressive accuracy, one can use intermediate 
Hamiltonians [26] or bracketing techniques [27, 311. 

We also remark that the question of asymptotic expansions and perturbation 
theory has been treated more recently by Kreiger [32]. He provides a clever proof 
of the asymptotic nature of the series once it is known that the eigenvectors are 
continuous (i.e., once it is known that the series are 0-th order asymptotic). Unfor- 
tunately, he never makes this continuity assumption explicit and thus his basic 
theorem is lacking a condition which would enable one to prove this assumption. 
As we shall see, it is sufficient (modulo some technical domain assumptions) for 
the potential to be bounded below for continuity to hold. 

THEOREM A.II.1. Let rj&‘), E&3) be the n + lst normalized eigenvector and 
eigenvalue, respectively, where the phase of &Q3) is determined by requiring 
<&d~~>, qL(O>> 3 0. Then as P 4 0, -K(B) - E,(O) and &n(B) - &do>, where the 
vector convergerlce is in the norm topology. 

Proof. Let us first consider the case II = 0; since C, E (&,(O), x4&(O)) < co, 
we have 

-G(O) = <w% mo> $Mw 
G <MP>Y m9 40@~3)) (by the variational principle) 

< <#b@>~ WB) 9dB>> = 403 (for ff@) 2 fW9) 

-< <4oK% ffm Mw (by the variation principle) 

< E,,(O) + PC,, . 

Thus, 

As a result E,(fl) -+ E,,(O) and 

But 

so, we must have I <YW)I h4Wl 2 + 1, which implies &(/I) -+ d,(O) when the 
phase condition is taken into account. 
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We next show that E&3) -+ E,(O). Let us adopt the abbreviation Em = E,(O); 
C& = r&(O). Let P, be th e projection onto the subspace [& ,..., &,J. Since 19x4 
is a positive perturbation, we have E&3) 2 E,,, . On the other hand, the min-max 
principle assures us that E,(P) < &,#), w h ere E&3) is the largest eigenvalue of 
the matrix (cz&+~ ,...,,, ( with 

a,j = Ei6ij + p<$f, .X”+j) 

[i.e., aij is the matrix of P(H,, + /3x4)P]. Since &@) + E,,, , we have E&3-f Em . 
Finally, we prove #@) + & under the inductive assumption that +&3) + & 

(i = O,..., II - 1). Let Q = 1 - P,, and define 

n-1 

Then, from the inductive hypothesis and the orthogonality relations 

ckG% hm = 0 (i If 771, 

we have 

1j$ II &p> - +?m = 0. 

Since Q&P> = &dBh we have (by the variational principle) 

En II &n(P)l12 < <~nCB), ~o~n(P>~ G <&@L ff@J $ntP)> 

We will shortly show that 

(AX. 1) 

(A.II.2) 

l,jpm [ff(P) - cl3 B?dP>>> = 0. (A.II.3) 

From (A.II.2-3), we can conclude that (&(p), Ho&@);, + E,, j/ $,(/3)>112. Then 
writing q&(/3) = a(p) c& + +rem with (q$,, , +,J == 0, we obtain &,, + 0 from 
which it follows that &(/3) * r& . Thus, (A.II.1) completes the proof that 
M/3 - +n . 

All that remains is to prove (A.II.3). This follows from a computation 
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This last result along with &J/3) + E, implies (A.II.3) and, thus, our theorem. 
Q.E.D. 

We remark that Theorem AN. I depended on 

(a) V is bounded below; 
(b) The eigenfunctions &n(O) E D(V); 
(c) Discreteness of the spectrum of H(p) (if there are II discrete levels at the 

bottom, we can show that the first n eigenvalues and eigenvectors are continuous). 

THEOREM A.II.2. The Rayleigh-Schriidinger series for the eigentlalues (and 
eigenoectors) are asymptotic. 

Proof. Let us change notation and abbreviate h(O) = 1 n) and let $,(/!I) be 
the multiple of c#J,@) with (&J/3) 1 m) = 1 (this can be done for /3 sufficiently 
small). Let 

a?(B) = <n I +4&W, so 9UP> = C d?‘(B) I n>. 
R 

Let us hold m fixed and suppress it as an index where no confusion will result. 
The basic equation, 

yields 

and 

(A.II.5) 

a,@> &A~) = u,(B) En + ,& I Jf I m> -I- B c <n I V’ I 6 ak@)6). (A-11.6) 

k#m. 

Using (A.II.5) in (A.II.6) yields 

d13) = E f- E [<n I V I m> + 1 (a I V I k) a#) - a,(B><m I V I m> 772 ‘fE kfm 

- 
a,(P) 1 ak@)(m 1 ff I k) 1 . (A.II.7) 

k#m 

We remark that all the sums in (A.II.5-7) are finite since (m I VI k) = 0 if 
I k - m I > 4. The familiar R-S series come from formal iteration of (A.II.7) 
and substitution into (A.II.5). 

By iterating (A.II.7) we obtain 

a,@) = first N terms of the R-S series + pN[RN(p)], (A.II.8) 
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where RN@) is a finite sum of a#) (k f m). Thus, &,@) ---f 0 as /3 4 0 by 
Theorem AX. I. As a result, the R-S series for the a,@) and thus by (A.II.5) for 
E&3) are asymptotic. Q.E.D. 

Finally, let us briefly indicate how one can majorize the error in taking 
the first N terms of the asymptotic series. The method that we sketch is far 
from optimal, and it is clear that with some care it can be improved. For simplicity, 
we only consider the ground-state energy. By (A.ILS), the error in E,@) can be 
majorized if we know the errors Use) to order /P-l@ = 2,4). These, in turn, 
can be found if we know the zeroth order errors in &“(fl) for k < 4N since the 
iteration of (A.ll.7) yields these errors in terms of (ai”)(/3)). But 

This last factor can be majorized by using 

B<O I x4 IO> 2 (E2 - Eo)U - l<MB> I 0)12), 
a result implicit in the proof of Theorem AX.]. 

Note. After the completion of this appendix, we found a recent paper by 
Greenlee [36] containing similar techniques. 

APPENDIX III: SOME SUM RULES 

In this appendix, we present a set of sum rules for the hydrogen (and any other) 
atom. They represent higher-order virial theorems in the following exact sense: 
The virial theorem is a statement about first-order changes under scaling trans- 
formations [the x(d/dx) of the commutator in the derivation of the Virial theorem 
is the generator of scaling transformations]; these sum rules involve higher order 
changes under scaling. Since off-diagonal matrix elements of l/r (or equivalently 
of p2) between dl = 0 states are involved, these sum rules do not appear to be of 
direct interest and are presented mainly as a curiosity. 

Let 

Let En,L(X) be the energy state of H + hk’ with quantum numbers n, 1; and let 
/ n, 1); E,),, be the unperturbed states and energies. Then 

&,d4 = -[W - l)“/n”l, 0 < 1) 

595/58/I-9 
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with C = m(ze2)2/2h2. In terms of a perturbation expansion, 

Thus, we conclude 

($0’ = - c 
n.1 n2 ’ (A.IlI.0) 

($1' - 2c 
n.1 - $ ' (A.TTI.l) 

Q(2) = - c 
n.1 I12 ’ (A.III.2) 

a:,“‘,’ = 0 f t m 3 3). (A.II1.m) 

(A.III.0) is a triviality and (A.III.l) is the virial theorem result. (A.II.m), m > 2 
are the new sum rules. Explicitly, 

(A.III.2) 

(A.I11.3) 

APPENDIX IV: CONSTRUCTION OF THE SUBDOMINANT SOLUTIONS (BY A. DICKE) 

We wish to show the existence of a solution to the differential equation, 

L(a, A)# = -Q + (x” + ax2 - A)# = 0 .YE R; a, h E C, (A.IV.l) 

which falls off fast (together with its derivative) as .Y + co and which is entire in N 
and h for any x. Sibuya and Hsieh [16] have found the behavior of subdominant 
sohrtiom at co for a more general class of equations. The present approach, 
suggested by V. Bargmann,38 provides a simpler route to the result for the present 
case, and more readily displays the analyticity in the parameters. 

38 V. Bargmann, private communication. 
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We rewrite (A.IV.1) in matrix form, 

131 

Y’ = 4% 4 Y; Y = ($,) ; ‘4 = (,4 + O 1 
ax2-- x 1 0 * (A.IV.2) 

An equation, 
)I” = -MN’, 

can be solved by a Neumann series, 

J+J(x) = 1 WNW 
N 

and 

wN(x) = I-‘-= Mw,, dx’; w. 
x 

- 

(A.IV.3) 

(A.IV.4) 

provided the integrals and series converge. This is not the case for (A.IV.2) as it 
stands. However, let us make an x-dependent change of basis choosing (2,) as a 
new basis where (2,) are analytic and linearly independent when the variables and 
parameters are in a domain G. Let 

Then U-l and U’ exist on G and Eq. (A.IV.2) transforms to 

a’ = -Ra, (A.II.5) 

where a = (i;) = U-ly and R = U-‘(U’U-’ - A)U; a and R are analytic in G. 
A suitable choice of C#Q may lead to the convergence of the Neumann series; in this 
case, 

and 
#Cd = a-(x> +-(x1 + a+(x) $+(x1 

#‘(x) = a-(x) yL.‘(x) + a+(x) b+‘(x) 
(A.IV.6) 

is a solution of (A.IV.2). If, in addition 

a-(x) = 1 + o(l) 

a+(x) = O(l 4-i++ I> 
x + co, (A.lV.7) 

then 
SW - ~-W x --+ 00 (A.IV.8) 

This suggests we take for $- a guess for the asymptotic behavior of the small 
solution. Since the exact solutions have R = 0, we take for C#J+ a guess for the 
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asymptotic behavior of the large solution. Letting y = exp[Jg(x) dx], (A.IV.1) 
becomes 

g’ + g2 = x4 + ax2 - A, (A.IV.9) 

which is solved by 

g = &x2 * ta - x-l + 0(x-2). a (A.IV.10) 

Thus, we make the choices 

d&(x) = exp(f+x3 f &XX - log x). (AIV. 11) 

Let G, = {(x, 01, h) I x > m, / (Y I < m, h E C} with m = 1,2 ,.... Straightforward 
calculation show that (& , &‘) are independent on G, and that (on G,): 

/ R-- I < Cr2; I R-+ / < CX-~ exp($x” + Re OLX) 

and 

1 R+- I < CX-~ exp(-$x3 - Re olx); 

where C is larger than 

I R,, I < CX-~, (A.IV. 12) 

g[g I a I2 + I h I + I fx I + 21. 

The integrals (A.IV.4) of the Neumann series will exist if a,,, = 0 (which is needed 
to kill R-+ contributions). In fact, 

I a-,,(x)1 < g(n!)-1(2cx-1)n 

I a+,,(x)1 -c &(2Cx-7” exp(- $x3 - Re (YX). 
(A.IV. 13) 

Thus, 

and 

I u- I < 1 + 0 g, 
(A.W. 14) 

I a, I < 0 ($) exp(- $x3 - Re 01x) = 0 (i) I $-/q5+ 1, 

as desired. 
Thus, for any m = 1, 2 ,..., we have constructed a solution, &,(x, LY, h), of 

(A.IV.l) so that &,(x, a, , X,) = 0 [exp(-&x3 - 4.~ - log x)] (x + co) and which 
is analytic (in 01 and h) on G,, . To extend 4% to all x, N, h, we proceed as follows: 

Let h,Cx, a,3 and htx, 01, X) be the odd and even solutions of (A.IV.l), i.e., 

*m = 0, $b’(O) = 1, 

h(O) = 13 &yO) = 0. 
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An elementary computation shows that the power series solutions for & and & 
converge to functions entire in 01, X and x. Moreover, since I%‘(&, z,Q = I, 

$L = w$L 7 h> *a - w$L 7 #a) *E * (A.IV.15) 

By the analyticity in G, , W[#, , $J~(,,)] is an entire function in N and h (it is 
independent of x!) so I/, is entire in OL, X, x. 

APPENDIX V: UPPER BOUNDS ON THE PERTURBATION SERIES FOR E,(l,b) 

We wish to establish here the following. 

THEOREM A.IV.l. Let f @) be the ground-state energy for p2 + x2 + /3x4. Let 

f <B, = Crzo &B” be the (f ormalj Rayleigh-SchrBdinger series. Then 

I En I < PnQnn, (A.V. 1) 

for some real numbers P and Q. In particular, 

io I En I-1’2n+1 = cc. (A.V.2) 

Remarks. 1. This is an improvement of the bound / E, 1 < CDnr(fn) 
established by Bender and Wu [5],3s which is not good enough to prove (A.V.2). 

2. A numerical analysis of the first 75E,, by Bender and Wu [5] suggest E, is 
asymptotically of the form CD n n n+1/2 [with C, D, explicitly computed]. 

The proof is based on the iterative formulas for E, , namely (A.II.5) and (A.II.7). 
If we expand a,@) = En Paz), we find 

E,= x(01 Vlk)ap-l’; n > 2, (A.V.3) 
k#O 

hi) a, = 1 a(,n-l) <Frl 1 v I k) _ a(n-l) (0 I V I 0) 
k#O Eo-E, m Eo - Em 

n > 2, (A.V.4) 

3s Bender and Wu announced a CPZ’(n) bound [equivalent to (A.V.l)] in their letter [4] but 
their lengthier paper only establishes the I@) result. 
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and 

(0) 
a, = 0; a:’ = [(m / V / O)(E, - I$$‘]. (A.V.5) 

For the case at hand, we notice that 

(mIVjk)=O unless j m - k / = 0,2,4 

and 

(m 1 V ) k)(& - E,)-l < Ck (k f 01, 

for all m. It follows from (A.V.6) and (A.V.4) that 

h) = 0 
ak 3 

if k > 4n. 

We then have 

(A.V.6) 

(A.V.7) 

(A.V.8) 

LEMMA A.V.2. There is a P and an L so that 

1 at’ 1 < LP”n” (all k). (A.V.9) 

ProoJ Pick L so that 1 ai’) 1 < L, k < 4 (and thus for all k). Choose 
P > 20 + D + 2DL where D is chosen so that I(0 / I/ 1 m)(E, - E&l I < D, 
all m, k. Suppose (A.V. 9) has been established for n < N. Then the induction 
hypothesis and (A.V.6-7) imply a:’ = 0, or 

Ix 
k#O 

at-‘)[(m I V I k)(Eo - E&l] / < (K)(m) LP+l(n - 1),-l 

=c (5C)(4n) LP”-‘(n - I)+l < 20LP”-W. 

We have used (A.V.8) to conclude m < 4n. 
We next have that 

at-l){0 I V I O)(E, - E,)-l(LDPn-lnn; 

and finally, that 

n-2 

g1 afi’ z. 
at-l-‘)<0 / V / k)(E, - E&l 

< 2(n - 3) L2Pn-QF1D < 2DL2Pn-In”, 

since we have (n - 3) terms each bounded by 2D(LPjij)[L(n - 1 -j),-l-i]. These 
last three inequalities and (A.V.4) imply 

I at) 1 < LPn-W(20 + D + 2DL) < LPnnn. Q.E.D. 
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Proof of Theorem A.IV.1. By (A.V.3) and Lemma A.V.2, 

E, d ([(0 I V / 2) + (0 I V I 4)] 15) Pnnn. 

To prove (A.V.2) we note that (A.V.l) implies 

, & I-l/Zn+l > p-n/2n+lQ-l/2,+1,-n/2,+1 > $p-l/2,-1/2 
* 

for n sufficiently large. Since C n-llz = co, (A.V.2) is proven. Q.E.D. 

Notes. 1. This proof holds for excited states, as well as the ground states. 
2. For a Hamiltonian$ + x2 + ,6x2”l, this method yields I E, ( < PnQn(m-l)n. 

Thus, we can prove (A.V.2) for x6 perturbations. If the bound analogous to (A.V. 1) 
is “best possible” in this x2m case, then (A.V.2) is false for x8, xlO,..., perturbations 
and the proof of uniqueness of the Pad6 approximants breaks down in these cases. 

Notes added in proof 1. The author should like to thank J. Loeffel for pointing out an error 
in the original manuscript. 

2. Computations (but no proofs!) similar to those made in Section IV.4 (although to lower 
order in N) have appeared in the chemical physics literature: C. REID, In?. J. Quan. Chem. 1(1967), 
521; C. ROUSSEAU, Bull. A. P. S. 13 (1968), 25. 
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