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We prove Guerra’s theorem, 4 bounds and Frohlich bounds in the Y, and $34 field 
theories. Among our technical results of interest is a proof that 2 # 0 in &* and that 
the spatially cutoff vacuum in Ye has a charge zero component. The two main inputs are 
Osterwalder-Schrader positivity in the spatial direction as well as in the time direction, 
and a finite renormalization of the “usual” partition function and Hamiltonian so that 
Euclidean and Hamiltonian counterterms match exactly. 

1. INTRODUCTION 

Our goal in this paper is the extension of the results proven for P(rj)z in Guerra, 
Rosen, and Simon [28] (including results obtained earlier by Glimm-Jaffe [20] 
and Guerra [27]) to the more singular Y, and 4%” theories. To explain the technical 
difficulties we must overcome, let us briefly sketch the GRS proof of a special case 
of the 4 bound: 

i 
112 - --1,2 4(x> dx G (K - Ed + C. (1) 

By a remark of Glimm-Jaffe [20], one easily reduces the operator estimate (1) to 
proving 

--Et’ < --El + c, (2) 
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where E,’ is the infimum of the spectrum of Hi f Ji$, 4(x) dx E Hl’. Now 

-EL’ = v-2 (I/t) In@, , exp(--H,‘) Q,) (3) 

and by Nelson’s symmetry: 

(%, ew--tH,‘) J&l = 64, exp(--Cl - 1)/2Hd exp(-A,) exp(-(Z - 1)/2H,) 0,) 

G W, , exp(-Cl - 1) HJ Q,> II exp(-fit)11 

= 64 , ev(--tHg-A -Qd II eM--fh~li, 

where I?, = Ht + J!$ d(x) d x, and we have used I<#, A#)l < II $11 II 4 II II A Il. 
The linear lower bound for I?, [19] then leads to --El’ < ---El + C, from which 
one can prove (2) by showing -EL-, < -E& + C, . 

This argument breaks down in three places when one tries to extend it directly 
to Y,: 

(I) Nelson’s symmetry is not true for the Hamiltonian in Y? as conven- 
tionally defined [15, 17, 211. 

(II) It is not clear how to define an operator A so that I($, A$)1 < 
I/ A /j II $11 Jl Yll can be used, becaues the Markov property is not known for this 
theory. 

(III) The formula (3) cannot be proven as in P(4)2 (or at least not with the 
present technology); that is the P(4), proof that the vacuum for H,’ is non- 
orthogonal to Q, does not extend. 

Let us expand briefly on each of these points explaining how we will overcome 
them. 

(I) Failure of Nelson’s Symmetry 

At first sight this seems surprising. To explain its origins, let us suppose that we 
choose to make second-order mass and energy renormalizations in P(& analogous 
to those made in Y, (except that they are finite). Thus we renormalize Hl by 

H pn = Hz - SE,(E) + Smp2 I::“, :p(x): d’x, 

where Sm, is an l-independent constant and SE,(I) = -( V,H$V,). Similarly, 
we renormalize Zl,i by: 

Z ren 
z,t = -Get exp(-SP,V, r>), 



472 SEILER AND SIMON 

@,(L 0 = 4 j [ j;;t dx j;;;2 ds :P($(x, s,,:]” dp,, . 

2,,, is certainly still symmetric in I and t but 

because 

(DO , expt--tHZen) Q,> # (1;2, , exp(--IH:e4 Sz,) 

Zt,Y # (Q, , exp(--tHy”) L2,). 

For, this would require that SP,(I, t) = -&F,(l), and one computes 

t 
rzz 

s s 
ds * du < VtQ, , exp(- uH,) v&,) 

0 0 

= +t<VtQ0 , KIV@O) - < VlsZo , @(l - exp(--tH)) H;lV,.Qo). 

Put differently, for Nelson’s symmetry to hold, we need to choose the constant 
counterterm SE,(l) linear in 1. 

Because of the above computation, Nelson’s symmetry holds for the 
usually defined Y, Hamiltonian only if an extra correction term (H;lV,Oo, 
(1 - exp( - tHo) Hi1 VzQo)/(H;l V&2, , (1 - exp( --IH,)) Hi1 V&,> is included. 
Our first proof of Guerra’s theorem carried this correction term along in much 
the way the correction term in Nelson’s symmetry for P($)z with periodic boundary 
conditions is carried along [31]. McBryan [38] in proving a lower bound on the 
pressure in Y2 followed a similar strategy. 

Nevertheless, it is an attractive idea that if we choose a different second-order 
energy counterterm, we might obtain a Hamiltonian for which Nelson’s symmetry 
is exact. Obviously, we seek a counterterm SE,(Z) linear in I, or what is the same 
thing, a counter-term SP,(Z, t) proportional to It. For Y, such a choice will be 
possible. For ($4)Q such a choice is not possible, if we wish to make the theory 
finite, but what we will see is that we can make the choice symmetric in II , I, , and 
t so that SP,(Z, , Z2, t) = c,(l, , I& + c,(l, , Z2). Such a choice leads to a modified 
Nelson’s symmetry and also allows a purely Euclidean construction of a 
Hamiltonian. 
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(II) Absence of a Markov Property 

It is an open question whether one can develop a Euclidean fermion theory for 
the interacting Y, theory so that the Markov property holds although it is known 
that many “reasonable” approaches fail [13J. For (c#*)~ with space-time cutoff or 
with only spatial cutoff, we expect that the usual Markov property will hold but its 
verification may be as difficult as for the infinite volume Pi theory where it is 
still an open question! As explained in [50], many of the arguments in [28] are 
essentially consequences of the Markov property in spatial directions, so we cannot 
directly mimic the methods of [28]. 

The way out of this impasse will be to systematically exploit Osterwalder- 
Schrader [41] positivity especially, but not exclusively, in the spatial direction. 
We will do this not only in proving Guerra’s theorem and $ and Friihlich bounds, 
but in giving a purely Euclidean construction of the ($“), Hamiltonian. This 
construction is very close to that of Guerra, Rosen, and Simon [30] for P($)2 but 
differs in that OS positivity replaces the Markov property. Just as the GRS 
construction is modeled on Nelson’s reconstruction theorem, ours is modeled on 
the Osterwalder-Schrader reconstruction theorem. Interestingly enough, the 
effective dressing transformation in this construction will be the Hamiltonian 
semigroup. 

(III) Problem of Vacuum Overlap 

A key element in many proofs (where formulas like (3) are used) is that the Fock 
vacuum is not orthogonal to the spatially cutoff vacuum. In Pi, this is proven 
by postivity arguments of Perron-Frobenius type [18]. It is possible to formulate 
such arguments for Fermion systems [26] (see also [4]), but it is not yet clear how 
to use this extension in Y, theories. What we will find, quite remarkably, is that 
vacuum overlap is a consequence solely of Osterwalder-Schrader positivity in the 
spatial direction. 

For technical reasons, which we will discuss, we have been unable to extend 
our Y, proof of vacuum overlap to (d4), . However, we will find an argument 
exploiting Nelson-Symanzik positivity that is clearly a relative of Perron-Frobenius 
arguments and that works to prove vacuum overlap in (c#~)~, in the sense that the 
limit of the pressure as t + 03 is the negative of the relativistic energy per unit 
volume. 

The content of this paper is as follows: In Section 2, we discuss our choice of 
energy counterterms which differ from the usual ones [5, 161 by finite constants 
and control the difference between the two families of counterterms. Throughout 
this paper, Hz and Zz refer to objects with our choice of energy counterterms and ps , 
z, refer to the conventional objects. In Section 3, we discuss the Y, Hamiltonian 
working solely in a Matthews-Salam formalism and avoiding Osterwalder- 
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Schrader fields; and in Section 4, we construct the (#J~)~ Hamiltonian. In Section 5, 
we discuss vacuum overlap. In Section 6, we discuss the l---f 03 behavior of El ; 
in Section 7 +-bounds and in Sections 8 and 9, we discuss Friihlich bounds. 

We sent an announcement of our Y, results from Sections 5, 6, 7, and 8 to the 
Marseille conference. We learned that McBryan, using Osterwalder-Schrader 
positivity, announced Yz results for Sections 5,6, and 7 (his argument for Section 5 
is identical to ours in the basic principle used). 

McBryan’s results appear in [39]. By a very different method, Frbhlich [12] has 
proven +-bounds in Cs4. We learned of Friihlich’s results verbally before we began 
our work. 

2. MATCHING EUCLIDEAN AND HAMILTONIAN COUNTERTERMS 

As explained in the introduction, for the conventional objects z,,, # 
<.Q,, , exp(--tBr) a,>. Our goal in this section is to make a further finite renormal- 
ization so that Zl,t = (Sz, , exp(--tH,) a,) and to discuss the situation for ($4)3 . 

We will call a sequence of ultraviolet cutoffs acceptable if: The free boson (and 
fermion propagators are finite and obey uniform bounds of the form: 

I GAx - VII G CR exp(--ol I x - Y I); lx-y1 ZR 

for any R > 0 and constants (Y, C, independent of K. For example, the cutoffs 
obtained by replacing (~2 + m2)-l by (~2 + m2)-l exp(-p2/K2) or ( p2 + m2)-l . 
eXp(-p12/K2) (in two dimensions) are acceptable. Convolution with an x-space Cgm 
function is acceptable. More critically, there are acceptable cutoffs that, with 
conventional renormalization, lead to conventional partition functions and 
Hamiltonians. For example, in (@)3 , the cutoffs of Feldman-Osterwalder [7] are 
acceptable. 

THEOREM 2.1. Let G2(l, t; K) denote the conventional second-order Euclidean 
counterterm in Y, (i.e., J dp, Tr(K,,,J in Matthews-Salam formalism [45]). Then, 

for any acceptable cutoffs, there is a divergent constant c, , so that for all 1, t > 0, 

S>&, t; K) - c,lt has ajinite limit A,(l, t) independent of cutoflso that 

j A,(& t) - a(1 + t) - b 1 < C(le+ + te-al) (4) 

for suitable constants a, b, C, and 01 > 0; and all 1, t 3 1. 

Remarks. 1. The form of the estimate (4) is suggested to us by results of 
Lenard and Newman [35] who prove similar results for the full P(4), - In Z1,, 
at small coupling. 

2. Our method of finding the volume expansion of 6P, is borrowed from [28]. 
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Proof. For each K, 6?,(Z, t; K) has the form sF,(x - y)f(x)f( v) dx dy, where 
fis the characteristic function of (-I/2, Z/2) x (--t/2, t/2). Now 

where 

Thus: 

g(x) = j f(v>J(v + 4 dv. 

6p2(zp t; K, = It J ,<t,2 ,s,<t,2 dx ds FK(x, s)( 1 - (2 1 x l/1)(1 - (2 I s I/t)), 
32. : . 

Let c, = JE;(x, s) dx ds; aK = -2 J I x I F,(x, s) dx ds; b, = 4 J I x I / s I F,(x, s) dx ds. 
Then c, -+ cc as K + co, but a and b have finite limits since F(X) - I x Id2 In 1 x j 
at zero. Moreover: 

@,(I, t; K) - c,Zt - a,(Z + t) - b, 

= ----It I , z ,~~,20r ,s,>t,2 dx ds F,(x, s)U - (2 I x l/O>0 - (2 I s l/t>>. / 

As a result, the limit d,(Z, t) exists and 

d,(Z; t) = a(Z + t) + b - It j dx ds 
Ixl>2/20r ~Sl>El2 

x fTx> s)(l - (2 I x l/0)(1 - (2 I Y I/t>). 

Since I F(x, s)l d C, exp(-/?( j x I + I s I)) for I x I > 1, one easily finds that for 
Z, t > 1, I d2(Z, t) - a(Z + t) - b ) < C,Zt(exp(-Zfi) + exp(-tp)) so that (4) 
holds. 1 

We thus define Zl,t, the renormalized partition function by 

-G = %,t exp(+d2(z, t)), 

or equivalently, by replacing g2 in the usual definition by c,Zt. We define Hr by 
subtracting -c,Z in place of 6E,(Z) in the usual renormalization. We have: 

COROLLARY 2.2. Zl,t = (a,, , exp(-tH,) Q,,) and in particular, Nelson sym- 
metry holds: 

GA,, exp(-tH3 QJ = <Q,, exd-ZHJ Q,>. 
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COROLLARY 2.3. The infima of the spectra of HI and l?, obey: 

I El - I!?, - a 1 < C exp(-aoll). 

In particular, liml,, (-Et/l) exists if and only if liml,, (-&/I) exists and they are 
equal. 

Proox El and I?, only differ by the difference of the renormalization constants, 
so 

El - I?, = f’+? (l/t) A,(/, t) = a + O(exp(-cJ)). 1 

Remark. Since only an overall constant is involved, Hl - Et = A, - I& so 
that C# bounds and Schwinger functions are unaffected. 

Next we turn to ($4)3 . First, we consider the second-order linear energy diver- 
gence : 

THEOREM 2.4. Let S?&, 1, , t; K) denote the conventional second-order 
Euclidean counterterm in 43” (i.e 0, ~Sd~(Slzlsz,,2;ly1<z1,2;lslst/2 dx dv ds :dlp(x,v,s):)“) 
Then for any acceptable cutofls, there are divergent constants c, and d, so that 

has a$nite limit d,(l, , I, , t) independent of cutofso that 

I d,(h, 4, t) - a(& + 1, + t) - b I 
< C(I,Z, exp(--cut) + Zlt exp(-al,) + 12t exp(--oil,) 

for suitable constants a, b, C, and 01 > 0, and all 1, , 1, , t > 1. 

Proof. As in the case of Y, , 

The limiting function F(X) has an ( x 1-4 singularity so that both 

c, = s F%(x, y, s) dx dy ds, 

(5) 

and 

d, = -2 [ 1 x j F,(x, y, s) dx dy ds 
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diverge as K -+ co. But 

477 

and 

b= -8 fIxI lyl IsIFC.u,y,s)dxdyds, 
J 

are finite and so is 

A,Ul , 12 = 3 0 44 + 22 + 6 

x (1 - (2 Ix 

+ b - I&t J’, dx dy ds F(x, y, s) 

I/Ml - (2 I Y KNU - (2 I .s l/t>), 

where D is the complement of (--1,/2, &/2) x (-1,/2,1,/2) x (-t/2, t/2). The 
estimate (5) follows as in the case of Y, . 1 

THEOREM 2.5. Let SP,(l, , lz , t; K) denote the conventional third-order Euclidean 
counterterm in (VI3 (i.e., is .f d~3~lxl~~,,2;l~ls~~,2~~~~s~,2 dx dy ds :yL4(xy Y, sH3). 
Then for any acceptable cutoff, there is a divergent constant e, so that 

8P3(1, ) 13 ) t; K) - e,l,l,t 

has a finite limit A& ,13 , t) independent of cutoflso that 

I A3W2t) - p(lA + 4t + 44 - q& + 1, + t> - r I 

< D(ll12 exp(-$1 + 4t exp(--yl,) + 12t exp(-yl,) 

for suitable constants p, q, r, D, and y > 0 and all lI , 13 , t 3 1. 

Proof. Letting a, b, c, be three vectors, we see that 

8P3(l, , 1, , t; K) = Q j  GK2(a - b) GK2(b - c) GK2(c - a>f(a)f@>f(c> d3a d3b d3c 

= Zl12t I K@, b> f&h b> d3a d3b, 

where 

.h,&, b) = UJ2W j f(c>f(a + c>f(a + b + 4 dc, 

with f the characteristic function of the II x l2 x t “cube.” Now, we divide the 
a, b parameter space into 63 = 216 regions depending on whether 0 -=c a, < a, + b, , 
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etc. In each region&rz,(a, b) has a simple form: For example, if 0 < a, < a, + b, , 
0 < a2 < a2 + b2 , 0 < a3 < a3 + b, , then 

~lz,t(a, b) = (1 - 2(a1 l ‘“)( 1 - 2(a2 t b2’) (1 - 2(a3 1 b3)) x 

with x the characteristic function of the six conditions 0 < ai < a, + bi and 
0 ==c ai + bi < Z,/2 (i = 1, 2), 0 < a3 + b, < t/2. Each of the 63 terms can be 
treated by the method used for Y, , namely, by removing the latter three conditions 
and proving the remainder is exponentially bounded. The key fact is that the 
integral J HK(a, b) da db is divergent but only logarithmically so that 
J 1 ai I H,Ja, b) da db < c;o. I 

We now define the renormalized partition function by: 

z zl.zz.t - - ~z1,z2.t ew(+~2Ul , 1, , t) + d3(k , l2 , t)), 

or equivalently by the formal expression: 

z ~~.bt = [I exp (- J’ :I+ + Sm2 :V:) dpo] 

x [ed-(cK + eKW2t> - d,W, + kt + ZtNl. 

We defer the definition of the Hamiltonian until Section 4. 

Remarks. 1. It is clear that the methods we use above allow one to make finite 
any second-order vacuum diagram in a theory with nonvanishing bare mass by sub- 
tracting a function of the form aKl,Z2 a** Z,-,t + b,(l,l, *.* I,-, + *a*) + ..a + 
q&1 + .** + t) + rK . Higher-order diagrams are also controlled by our methods 
so long as they have the following property: no subdiagram obtained by taking all 
lines connecting a strict subset of the vertices is divergent. If the latter property fails, 
the theory will also have counterterms in some m-point function that might cancel 
the divergence that occurs by applying our method to just the vacuum diagram. 

2. While we have continually linked Z to 2, some of the previous theory is 
a little simpler dealing directly with 2. For example, in our proof [47] of the linear 
lower bounds in Y, , we had to add a few extra remarks because the second-order 
energy counterterm for a union of volumes differed from that for the volume. This 
is not needed for Z. 

3. We have done all our computations in x-space, which seems to lead to 
the most detailed bounds. However, some information can be obtained by looking 
at the p-space diagrams. For example, a second-order vacuum diagram with 
general cutoff g has the form s I& p)12 QK( p) dp, where QK( p) is the value of the 
mass diagram obtained by putting momentum p in at one vertex and -p at the 
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other. The fact that Y, is made finite by an infinite counterterm linear in the 
volume is a consequence of the fact that QK( p) is made finite by a single subtraction 
at p = 0 and the resulting renormalized Q behaves at co only as (In p)“. That (+4)3 
also has a divergent surface term results from the fact that after renormalization Q 
behaves at co as 1 p 1 (InP) [14]. This has a vague connection with Stiickelberg [55] 
divergences. 

4. We note for later purposes that c, , eK= +co,d,= -coforfc+CO. 

As a final aspect of our study of d, and d, , we want to make a few remarks about 
their behavior as I and/or t go to zero. At this point they may diverge since integrals 
over the complement of (-Z/2, Z/2) x (-t/2, t/2) occur and as I or t go to zero, the 
singularity at (x, s) = (0, 0) is felt. In fact: 

THEOREM 2.6. (a) In Y, , us I -+ 0, Z-“&(I, I) -+ - co. 

(b) In (~$3~ , as t ---f 0, for anyJixed 1, O,(Z, t) + + co, and d,(Z, t) + 0. 

Proof. (a) We can write 

z-%l,(Z, I) = - j F(x, s) dx ds + 
l2/>1/20r 191>2/2 

s 
iacldZ/zand IslGZ/2 

x KG s)[-G I x l/Z) - (2 I s l/O + (I x I I s WY1 (6) 

For an explicit constant C > 0: 

/ F(x, s) + C(x2 + 9)--l ln(x2 + s”)i < D(x2 + ?-I, 

for all / x 1 < 3, I s ( < 4. Now: 

1-l g”‘” ds 10”’ x ln(x2 + s2)(x2 + s2)-l dx 

= l/21-1 Jo”’ ds ~S~p”‘sz ln( y) y-1 dy 

= z-1/4 
s 

112 
ds(ln[l + (Z/2s)21)[ln((Z/2)2 

0 
+ s2) + ln(s2/2)] ds 

=x l/S I’ dy Ml + y2)1[W/2) + WI + Y-“) + ln(.r2)1 
0 

diverges only as In(Z). Similarly Zh2 j j x 1 1 s / ln(x2 + 3)(x2 + s2)-’ dx ds only 
diverges as In(Z). In these terms, the error from D(x2 + s2)-l is bounded. However, 

i ,r,~z,20r,s,~z,2 (x2 + s2>-l Mx2 + ~“1 dx ds 
, 
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diverges as (In I)” and the error correction as In 1. Thus, the leading divergence in (6) 
is -(hi 1)2. 

(b) The only terms in d,(Z, t) for (c$~), that are nonzero as t -+ 0 are 

-wz L2 
I s 1 F(x, y, s) dx dy ds s A,(t), 

and 

--IJzt j  
lslZti2 

F(x, y, s) dx dy ds = A,(t). 

Since F(x, y, s) - (x2 + y2 + s2)-” near (x, y, s) = 0, A,(t) diverges as 
J$ rse2 ds = O(ln t-l) while A,(t) - t J$2 s-2 ds = O(1) is convergent. It is easy 
to see that d,(l, t) goes to zero. 1 

Remarks 1. We will see the significance of (b) in Section 4 below. 

2. The significance of (a) is the following. We expect that in Y, as I- 0, 
Z-2 In .&, -+ 0 since this is true order by order in perturbation theory. (In fact, the 
nth order term goes to zero with a power going to co as n --f co.) Thus, we 
conjecture that 

LY~,~ E 1-2 In ZI I -+ - cc 

as I -+ 0. Since alst is monotone increasing in 1 and t (see (6)) this is certainly 
allowed. It is rather different behavior from P(b2) where (Y~,~ -+ 0 as l--f 0 if P is 
normalized [28]. 

3. CONSTRUCTION OF THE HAMILTONIAN: YUKAWA, 

Our goals in this section are twofold. First, we give purely Euclidean proofs of 
the convergence theorem for the Y, renormalized Hamiltonian (a theorem 
originally proven by Glimm and Jaffe [21]) and of the bounds of Glimm [15] and 
Schrader [44]. (We have already sketched the latter in [47] but there is a further 
simplification due to the vacuum overlap results of Section 5.) Second, we wish to 
give a “direct” proof of the Matthews-Salam formulas [36). Previous proofs [45] 
have used the procedure of going through Osterwalder-Schrader fields [40], 
which are then integrated out. It seems to us that it is slightly unnatural to have to 
introduce auxiliary objects that are then eliminated as quickly as possible. Our 
proof will involve perturbation expansions of semigroups (Phillips = iterated 
DuHamel expansions) and of determinants (Fredholm expansion). Boson expec- 
tations will be replaced by Euclidean fields, but fermion expectations will be kept 
essentially in that form. In a sense, our development is thus semi-Euclidean [l]. 
We remark that Osterwalder-Schrader [40] also make a perturbation expansion 
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in their proof of their Feynman-Kac formula. Their expansion is made after using 
the Trotter product formula. As the reader can check, the combinatorics are 
simpler with a Phillips expansion than with Trotter product formula. We also note 
that our method can be used to give a new proof of the Feynman-Kac formula in 
P($)z (one uses our method to prove the formula with a potential that is a bounded 
function of the time-zero fields and then, successively removes cutoffs on both sides). 

To deal with the Phillips expansions it will be useful to use what Davies [2] calls 
Phillips perturbations and to very briefly review their properties. 

DEFINITION. Let Ho be a self-adjoint operator that is bounded from below. A 
self-adjoint operator V is called a Phillips perturbation of H,, if and only if 
Ran(exp(--tH,,)) C D(V) for all t > 0 and 

I 
1 N(t) dt < co, N(t) = I/ Vexp(--H,,I[. 

0 
(7) 

Remarks. 1. It is more natural if Ho is only assumed to be the generator of an 
exponentially bounded strongly continuous semigroup and V a closed operator. 
In that case, all the results below go through with minor changes. 

2. It is possible to develop a theory of quadratic forms along these lines. 
Condition (7) is replaced by: 1 s I 1 

ds dt t-1&1/2N(t, s) < co; N(t, s) = Ij exp(-MO) V exp(--sHo)l/. 
0 ‘0 

THEOREM 3.1. (a) A su$icient condition for V to be a Phillips perturbation of 
Ho is that V(l Ho j + l)-~l be boundedfor some OL < 1. 

(b) A necessary condition for V to be a Phillips perturbation of Ho 
is that D(H,) C D(V) and V(H, - E)-l is bounded for all E 6 @I,) with 
limE+, 1) V(H, - E)-l // = 0, i.e., that V be Ho-bounded with relative bound zero. 
In particular, if V is a Phillips perturbation of Ho , H, f V is self-adjoint and 
semibounded on D(H,). 

(c) If V is a Phillips perturbation of H,, , then one has the DuHamel formula: 

exp(--H) = exp(--Ho) - It exp(-(t - s) H) V exp(--sH,) ds (8) 
0 

and rhe norm convergent expansion: 

x exp(-(t - s1 - ... -s,) Ho) V exp(-ss,Ho) ... I/ exp(-s,H,). 

(9) 
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Proof. Without loss, we can suppose H,, is positive, which we do throughout 
the proof. 

(a) Under the hypothesis 

N(t) d II Wfo + 1P II II(Ho + 1)” exp(-tHo)ll < II Wfo + I)-” II q(t) t-’ 

so the integral in question converges. 

(b) Since Ho is positive, N(t) is monotone decreasing. Thus, JF exp(tE) N(t) dt 
converges for any E < 0 and goes to zero as E + - co. This essentially completes 
the proof. 

(c) By the hypothesis and (b) the integral on the right side of (8) converges. 
Moreover, given a, u E D(H,) it is not hard to see that if the right side of (8) applied 
to u is called u(t), then 

This proves (8). 

To prove (9), we note that after iterating the Duhamel expansion, we obtain the 
first n terms of the series on the right of (9) and an error that looks like the (n + 1) st 
term, but withexp(-(t - sr - =a* - s,)H)replacingexp(-(t - s1 - a*+ - s,)H,). 
Let -&+1 denote this error and T, denote the nth term in the series. Then 

1) T, jl < ,d ds, s,‘- ’̂ ds, *a* j.‘“‘“‘-s~-l ds, N(s,) *.. N&J. (10) 

Clearly, we can decompose N(s) = f(s) + g(s) where Jr I f(s)1 ds < 4 and 
0 < g(s) < C. Thus 

RHS of (10) < i (;) j d”s g(s3 .-a &m> I J(sm+Jl ..* If&J 
Vb=O sl+.+r,<t S&O 

d li (“)J m=o m 
d”s g(sJ . . * &ml I f(sm+J I * *. I f(s3 I 

sl+...+n,<t 
O<Sf 

G i (9 (l/2)“-” F/m! t* 
W&X0 

Q D(3/4)“, 

where D is chosen so that (Ct)“/n! < D(1/4)” for all rn. This proves the conver- 
gence of the series in (9). Since II E, 11 is also bounded by the right side of (lo), 
we are finished. 1 
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The simplest Matthews-Salam formula is the following. 

THEOREM 3.2. Let I+&(X), 4,,(x) be the free time-zero relativistic Fermijield with 
an ultraviolet cutofl, let C&(X) be the free Bose field at time zero, and q&(x, s) the 
corresponding Euclidean jield, let S,,, be the cutof Euclidean Fermi propagator and 
H,,B (resp. HO,F) the free Boson (resp. Fermion) Hamiltonian of mass m, (resp. AI,,). 
Define 

fL&) = &.B f & + h s , ,<1,21 dx Mx) dcL4 W&L 
e. 

and the integral operator: 

Then: 

(Q,, exp(-tK,,,d~N Q-J = I det(l - ~KK,o,l,t) dpo. (11) 

Remarks. 1. Thus, e.g., SF.oKx, 4 - ( Y, t)) = 64 , do(x) exp(- I t - s I f&l 
$,( JJ) 52,). As in [45], r stands for either 1 or iy5 . 

2. On the Hilbert space Z+1,2 0 Y+1,2 (X+1,2 = Sobolev space of order l/2), 
K, is easily seen to be trace class (see, e.g., [46]) for a.e. $ so that det(l - hK) 
is defined by the usual theory of trace class determinants [3, 25, 511. 

3. Note the minus sign in det(l - AK) in (11). In our previous work on the 
subject [45-471 and that of McBryan [37, 381, det(1 + AK) was discussed but the 
connection with the coupling constant in the Hamiltonian was not explicitly made. 
All estimates hold for all X E R (and when I’ = iy5, det(1 + AK) = det(1 - XK), 
see [45]) so the change of sign affects no estimates. 

Proof. Since &, and I,& are bounded operators commuting with H,,D we have 

V2 < const(HO,, + 1) < const(H,,,, + HO,F + I), 

where JJ’ = .ILI<~~~~ dx Ah4 &4x> ~~u( x on account of the estimate c&(x)~ < 1, 
const(H,,, + 1). Thus, by Theorem 3.1(a), V is a Phillips perturbation of H,, . 
Thus, by Theorem 3.1(c), the left side of (11) has a convergent power series in h. 

Similarly, the right side of (11) has a convergent power series in X. For, it is easy 
to see [46] that Jexp(A /I K(#ll,) dp,, < co where // . II1 is the Z1,2 @ XII2 trace 
class norm (henceforth, 11 K 112, will denote a We norm on this Hilbert space). More- 
over, det(1 - AK) is entire in X with 1 det(1 - XK)I < exp(l X / I/ K II& from which 
the analyticity in question follows. 
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It thus suffices to prove the coefficients in the power series expansions agree. 
By (9), the nth order term of the left side is: 

Now, write the Bose expectation as a Euclidean field integral and the Fermi 
expectation as an explicit free Fermion-Schwinger function, i.e., a determinant of 
propagators, and obtain: 

(-l)“/n! J 
l%lQP 

dnx dns det(S,& - xj , si - sj)) 1 dpo fi &.(xi , si) 
i-l 

1%1@/2 

which is the classical Fredholm expression [8] for the nth term in the expansion 
of det(1 - AK). (The equality of this expression and the more general Tr(hn(K)) 
[51] is easy to establish given the fact that the kernel of K is continuous.) 1 

Without putting in detailed proofs, we wish to extend this theorem in three ways: 

(1) We want to consider a more general Hamiltonian object: 

(Q, , exp(--toHI PYxJ exp(--tJ8 *se vW4 exp(---t,WQd, (12) 

where each I,P is a &, 4, or a r$K . By charge symmetry, this is zero, unless equal 
number of z&, and z,& appear. If equal numbers appear, say k, the perturbation 
expansion of the Hamiltonian object is still convergent and still given by an 
integral of a Bose field object times a determinant. This determinant is almost the 
nth term of the classical Fredholm expansion of the kth Fredholm minor 
A”(K/l - AK) det(1 - AK) except that for points corresponding to the Fermi fields 
in (12), SF appears in place of K. Thus, one obtains formulas, of which a typical 
one is 

= 
s 

dpo det(1 - hK)(f 0 6, , S,( 1 - AK)-’ g @ S,,). 
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(2) We wish to allow the interaction V to include P(#z terms as well as the 
basic Yukawa interaction. One needs to do this not only to recover Schrader’s 
results [43] on Y, + P(4), (this is a simple extension of our results for Y, and we 
say no more of it) but also to accomomdate the mass renormalization. The effect of 
adding such a term is just to add a factor exp(-J 9($(x, 3)): da- ds) to the dp, 
integral. One way of seeing this is to include the P(d)a term in the H,, factor when 
doing a Phillips expansion. The boson expectation is then written in terms of 
Euclidean fields using the P(r$)Z Feynman-Kac formula. Alternatively, one can 
rederive the I’($), Feynman-Kac formula as in (3) below. 

(3) We will not attempt a complete analysis of the generalized Y, theory [5] 
here but we note that if one does replace &,&t$, by I&&, :I’(+,):, then our proof 
breaks down since :P(&): will not be aPhillips perturbation if deg P > 2. However, 
if one replaces &,& :P(&): by && :P($,J: exp(-adKz) for any Q: > 0, then we 
have a bounded interaction and we obtain a Matthews-Salam formula by our 
method. Controlling the, 01 -+ 0 cutoff limit is a part of controlling the GY, theory. 

We summarize remarks (1) and (2) above by: 

THEOREM 3.3. Let Hl.o,KZren denote the Y, Hamiltonian with acceptable cutofls 
and with the conventional mass renormalization, Wick ordering and the energy 
counterterm of Section 2. Then: 

al 3 exp(--tHz.o.x:ren) QJ 

= exp( -cJt) s dp, exp (-8n?(~) 1 
I;$;$2 

:c$~(x, s): dx ds) det, (1 - K,,&. 

Moreover, the Schwinger functions (analytic continuation of Wightman functions to 
imaginary times) are given by Matthews-Salam formulas. 

Remarks. 1. That Wick ordering corresponds to taking det, can be seen either 
by explicitly looking at the subtraction [45] or by noticing that Wick ordering 
causes diagonal terms in the Fredholm expansion to be surpressed leading to 
Hilbert’s original definition [33] of det, . 

2. The above connection implies that the ultraviolet cutoff Schwinger 
functions obey Osterwalder-Schrader positivity in the time direction and lead to 
OS positivity in any direction in the limit where all cutoffs are removed. 

We now want to describe how removing the Euclidean ultraviolet cutoffs allows 
us to remove the Hamiltonian ultraviolet cutoffs. 

THEOREM 3.4. (a) For all st.@ciently large K, u and 1 > 1 

H z,o.K.ren 2 --cv + 1). 
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(b) As 0, K -+ 00, ff~oxren converges in strong resolvent sense to an operator 
HL . 

Remarks. 1. (a) combines results of Glimm [15] and Schrader [44]. (b) is a 
result of Glimm and Jaffe [21]. 

2. Henceforth, EL = inf spec(Hi,). We note that by (a): 

--Et -G CO + l), (1 > 1). (13) 

In the proof of Theorem 3.4, we need the following: 

LEMMA 3.5. Let f,, E Lp for a probability measure space with supla /I fn /ID < co. 
Suppose that fn --f f pointwise. Then f E L” and fn --If in any Lq norm with q < p. 

Proof. For any R, define f tR) and f kR’ by 

fk%> =fn(x>, if IfnWI < R 

= 0, if lfn(x>I Z R. 

Then f kR’ + f (R) pointwise for any R with ~(x / 1 f (x)[ = R} = 0 and so for all 
but countably many R. Thus, f kR’ - ftR) in any Lq; q < cc by the dominated 
convergence theorem. In particular, 

Ilf (R) l/P < sup II fi? lie < sup Il.fn 119 . 1E ?a 

Since 1 f tR) j 7 / f 1, f E LP by the monotone convergence theorem. The conver- 
gence in Lq follows from: 

11 g - gcR) 11’ -C R(‘-“) /I g (1’ a--. n 

if q < p and the estimate II g - f/IQ < II gfR’ - fCR) /IQ + [I g - gfR) II,+ 
llf -f’“‘llq. I 

Proof of Theorem 3.4. (a) will be proven in Section 5 (Theorem 5.4) using the 
Euclidean lower bound on vacuum amplitudes. 

(b) Since the operators exp(-tHi,,,,;,,n) are uniformly bounded for each 
fixed t it suffices to prove convergence of a dense set of matrix elements and then 
appeal to general theory [42]. Consider matrix elements between Jost states, i.e., 
states of the form 

exp( - tdXJ P(fJ ew(- h&J FYfJ . . . exp(- t&J @Y.A> QO 

(such states are dense; see Section 5). 
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Matrix elements for such states have a Matthews-Salam formula, so it suffices 
to prove A”(S,(l - K)-l) de&,(1 - K) converges in some D(Q, dp,,), p > 1. 
These converge in all Lp, p > 1: For these functions are bounded in all Lp ( p < CO) 
and thus, by Lemma 3.5, it is enough to prove pointwise convergence. Since K 
is a.e. in %Y8 (see [46]) and det,(l - K) Ak(K(l - K)-l) is continuous (see [46, 51]), 
we obtain pointwise convergence by the explicit formula for detren . m 

THEOREM 3.5. In Y,: (Q, , exp( - tH,) &J = (J& , exp( -IHt) Sz,). 

Proof. Follows from the Euclidean invariance and the use of matched counter- 
terms. 1 

4. CONSTRUCTION OF THE HAMILTONIAN: &4 

In this section, we will construct a Hilbert space and Hamiltonian for $34 
with a space cutoff by exploiting Feldman’s result [6] on the existence of Schwinger 
functions. Our main idea is borrowed from the Osterwalder-Schrader recon- 
struction theorem. Throughout, we use the formal symbol exp(-Url,J dpO to 
denote the measure constructed by Feldman (who allows sharp cutoffs) with a 
sharp cutoff in (--1,/2,1J2) x (-142, /,/2) x (--t/2, t/2) but renormalized only by 
the subtraction of our counterterm exp(-cJ& - dK(fit + Zzt + ZIl,)). 

Let us begin by explaining why the matched Euclidean counterterms are so 
critical for this construction. One might try to construct the Hamiltonian by trying 
to define vectors exp(-rrHJ J2;‘) so that 

(exp(-tHJQ!)L exp(--sHJ Q? = j exp(- Ui122.t+S) dpo , (14) 

(where 1 will be shorthand for II , &). For the Schwarz inequality to hold, we need 

(1 ev(- ut+J GoLo) ’ d j -PC- ud Go \ exp(- b.J dp, , (15) 

(15) holds with an ultraviolet cutoff in the spatial direction before “energy” 
renormalization. For energy renormalization not to destroy such an inequality, 
we need the energy counterterm to be of the form exp(--F(t)) with 

2F(t + s) > F(2t) + F(2s). (16) 

The “usual” energy counterterm violates (16) (the “transients” (VX2, , 
H;l exp(--tHO) H;lVJ&,) obey the opposite inequality strictly by the Schwartz 
inequality and the nontransient terms lead to equality). But if 

F(t) = at + b, (17) 
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(16) is clearly obeyed. Notice that (17) plus symmetry forces an overall energy 
counterterm of the form: 

We only take the first two terms because they are the only infinite terms. 
We now proceed to construct the physical Hilbert space for space cutoff 

1 = (Z, , Iz) fixed. Consider formal objects: 

with s, ,..., s,,+~ strictly positive and f 1 ,..., fn , Cm( R2) functions with support in 
(--1,/2,1,/2) x (--1,/2,1,/2). The right side of (18) is intended merely as a formal 
indication of what W will be. We do not claim to have objects Hz , J.#’ or d(h)! 
(in fact, as we will see, GA’) does not exist: it will be a formal vector of infinite norm). 
Let V&l ,-**3 fn+1 , l,***, *f fn) be defined formally as W(s,, ,..., S, ;fi ,..., fn) with 
tl = s, , ta = S, + S, ,..., t,, = s1 + **. + s,+~ . Finally, for Cgrn functions 
g,,...,g,withthepropertythatsupg,C[al,bi];O<u,<b,<a,<b,<... <b, 
and T = tn+l > b, consider the formal object: 

~cig, ,“*, g, > T;fl ,...,fn) 

= I gdh) --* gn(tn) v&l ,..., 4, , T;f, ,...,fn> d"t. (19 

Form a vector space of finite linear combinations of the formal objects V,,( gi , T;J;:). 
(These will be the basic objects; (18) and (19) are purely intended for heuristic 
purposes.) Define an inner product on this formal vector space by linearity and: 

(~&%a ,..-, ZI 3 T;w&z ,...,fA J'o(gn+l,..., gn+m ; S;fn+, mfn+m) 

X gi’) exP(- uZ,Z,.T+S) +o , 

where gi is defined by 

t%‘(t) = gi(tz(S - T> - 0, i = l,..., n 

= gi(HS - 0 + 0, i = n + I,..., n + m. 

We now have the basic fact: 

(20) 

THEOREM 4.1. The inner product defined by (20) is positive semideflnite. 
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Proof. Choose acceptable cutoffs in the spatial direction. Define H,,, as an 
operator on Fock space by H,,, = H,, + HI,, + full mass counterterm -I- 
cJl,l,) + &(I1 + Z,). Define vectors in Fock space W,(s, ,..., s, ;fJ by (18) with 
exp(--siH,) replaced by exp(--s,HL,,) and QF) by exp(-&I,$,&) Sz, and V,,, by 
change of variable and (19). The inner product of VO,K is positive definite by the 
Fock space positive definiteness. But these inner products converge to the right side 
of (20) by the FKN formula and Feldman’s convergence theorem. 1 

We temporily interrupt our construction of HE to note a most important 
consequence of Theorem 4.1: 

THEOREM 4.2. Z,., = Jexp(- U61,Lz,t) d,u,, is always nonzero and as t -+ 0 with 1 
jixed Zl.t - co. 

Proof. Consider first the function z,,, defined with complete second order 
subtractions, defined for I fixed and 0 < t < co. Extend to t = 0 by z,,, = 1. 
We claim that 2 is continuous including at t = 0. For zl,t,K is continuous including 
at t = 0. Moreover, we claim that gL,t,K converge uniformly for 0 < t < T. This 
follows from noticing that all Feldman’s estimates involve constants independent of 
g so long as 0 < g < I, supp g C [ --1,/2, f,/2] x [--1,/2,1,/2]) x [0, T]. Thus, 
2 1,t is nonzero for small t. Since d,(l, t) is finite for all t # 0 and goes to + co 
as t - 0 (Theorem 2.4) and d,(l, t) is finite for all t including the t = 0 limit, 
Z,,, is continuous for t E (0, co) and goes to + co as t + 0 since Z,,, = 
-%, exp(f&(L t> + 4(& t)). 

Now by Theorem 4.1 (see the discussion of (14) and (15)) 

zt+s G Zz.2t-G3s . (21) 

From this and the finiteness of 2 for all t, it easily follows that 2 cannot vanish 
for any t unless it vanishes for all t. 1 

Remark. Of course, it follows that z # 0 for all I, t. 
We now form a Hilbert space Xl, by dividing out by the vectors of norm 0 and 

completing. V( gi , 7’,fJ will denote the equivalence class of V,,( gi , T;fJ in this 
space. Such vectors we will call dressed Jest states. By construction they are dense 
in JPL . 

We remark, that if one does this construction for P(4), , one recovers the entire 
Fock space, since the constructed Hilbert space will be a subset of Fock space 
containing Sz, , and invariant under exp(-tHl) and the algebra of fields 
{4(f) 1 suppfC [-I/2, I/2]}. By standard arguments it follows that it is also 
invariant under exp(-tH,,) and so all of Fock space by the cyclicity of Q2, for 
(4(f), r(f) / suppfC [-l/Z, j/2]). There is an open question for (+4)3 analogous to 
what we have just proven. Namely, one could define a possibly bigger Hilbert space 
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that would include vectors with suppf, not in [-l/2,1/2] and would also include 
objects like exp(--sH,) exp(--tH,,) d(f) QA”‘. All our results carry through in this 
possibly bigger Hilbert space, essentially because the vacuum overlap theorem still 
holds (see the remarks in Section 5) but we prefer to work in the Hilbert space 
we have constructed. Clearly, the two spaces should be equal but we do not see a 
proof. 

We also remark that on account of Zr,, -+ co as t -+ 0, lim,,, Ilexp(-tH,)Q~z’[l = co 
so that there is no natural vector Q 6”‘. Our Hilbert space can be interpreted in the 
spirit of Friedrichs [9] and Glimm [16]: exp(-$d,l,l,) (remember that a, + - co) 
plays the role of “wavefunction” renormalization and exp( - tH,) of dressing 
transformations, Sz~“’ is similar to the formal vector used in studying Dirichlet BC 
in P(4j2 [481. 

Now we define exp(-tH,) as operators on our Hilbert space in the spirit of 
Osterwalder-Schrader [41]: 

THEOREM 4.3. For each t, the map 

A,%i , Wi> = W,t, T + c.0, where g:(s) = gds - t> (22) 

is well defined and extends to a bounded map on Zz . The family At is a one parameter, 
continuous, exponentially bounded semigroup, and is of the form exp(- tHz) for some 
self-adjoint operator HL . Hz and all its powers are essentially self-adjoint on the family 
of (linear combinations of) dressed Jost states. 

Proof By repeated use of the positive definiteness of the inner product, one 
fmds that 

II A,vo’,(gi , T; fi)ll < II v&i , T~fiW-1’2n II A2n,Vo(giT,f~)l11’2n. 

By the exponential upper bound on (2s) (see Feldman [6]): 

(23) 

II A2n,l/,(g, , T;fi)l12 d exp(Wt + 0 4 (24) 

where c is a constant independent of t, T, n, gi and fi and d only depends on gi 9 fi 
and T. Taking n to infinite in (23) and using (24) we obtain: 

Thus, At “lifts” to a bounded operator on sz with II At 11 < exp(ct). 
Continuity in t of (V( giT&), A,V(hi , T’; ki)) follows in the same way that 

continuity of g,,, was proven. By construction, the (linear combinations of) dressed 
Jost states are a dense set invariant under exp( - tH,). It follows from the spectral 
theorem that such a set is a core for any exponentially bounded function of Hz . m 
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In Section 7, we discuss the construction of a time zero field as a quadratic form 
and of HZ + $(f 0 &J. 

THEOREM 4.4 (Nelson’s symmetry for #Jam). 

(Qt’, exp( - tHJ Q:‘) = (L@‘, exp( - IHJ QF’). 

5. VACUUM OVERLAP 

Let A be a semibounded self-adjoint operator on a Hilbert space #. We say that 
4 E A overZaps the vacuum for A if and only if (1) The support of the spectral 
measure for 4 extends down to inf spec(A). (2) Moreover, if A = inf spec(A) is an 
eigenvalue of A, then P&4)$ # 0. Our goal is to prove that Q,, overlaps the 
vacuum for Hl in Y, and that exp(--tH,) Qc’ overlaps the vacuum for Hl in (43, . 
In Y, , where it is known that H8 has an eigenvalue at the bottom of its spectrum 
[17], we can conclude that Q0 is not orthogonal to the corresponding eigenspace. 
We emphasize that in ($4)3 , it is not known that HZ has an eigenvalue at the bottom 
of its spectrum, so our term “vacuum overlap” is somewhat artificial. We begin 
with a functional analytic result: 

LEMMA 5.1. (a) Suppose that 4 E S isjixed and that there is a dense set D C G-F 
andp > 1 so that for any # E D, there is a 01,~ E %, and C, 

C$, exp(--tA)$) < Cd4, exp(-t4W”P(rl, exp(-t&Y* (25) 

for all t, where (I/p) + (l/q) = 1. Then q5 couples to the vacuum for A. 

(b) If 9 couples to the vacuum for A, then 

inf spec(A) = - ‘,‘+% (l/t) In<+, exp(-tA) +). (26) 

Proof. (26) follows from the more general result that 

- v+~ t-l ln(+, exp(-tA) 4) = inf supp(spectra1 measure for $). (27) 

Given (25), we can replace A by 2 = A - inf spec(A) without changing the 
inequality. Since a 3 0, we then find: 

(4 ev(--t4$) G G II T IIYA ev(---t4W~~. (28) 

Since D is dense, given E we can find # E D so that (#, exp(-t&) > C exp(-et). 
Then by (28) 

$I t-l ln(+, exp(-ttz) +) >, --up. 
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Since the limit must be negative and E is arbitrary, we conclude that 

inf spec(A) = - v+% t-l ln(+, exp(-L4) +), 

whence, (27) yields the first half of vacuum overlap. If A^ has 0 as an eigenvalue, 
then we can find $J ED so that limt+&#, exp(--t&) # 0, whence, by (28) 
lim,+,(4, exp(-ta)& # 0 proving the second part of vacuum overlap. 1 

For our proof of vacuum overlap in Y, , we require some elementary facts about 
Jost states including a Euclidean Reeh-Schlieder theorem. The vector valued 
distribution I&*(X,) 0.. &#(xn) Q, for the free Relativistic Fermi-Boson field is the 
boundary value of a vector valued analytic function in the region Im z1 , 
Im(z, - zh,..., I@, - ~-3 E v+ , the forward light cone (see [34, 381). By 
cyclicity of the vacuum, the set of linear combinations of Jest states, i.e., the range 
of those vectors is clearly dense. We call a Jost state Euclidean if and only if each zi 
is Euclidean, i.e., zi = ( yi , i&) with yi , ti real and moreover, the yi’s are non- 
coincident. We call a vector a good Jest state if it is an integral of Euclidean Jost 
states with a function in C,,m(R2n) supported in a region {tl, t2 - t, ,..., t, - t,-, , 
&r(z) - X,(l) ,..-, x,(,) - x,(,-r) all positive) for some permutationn on n letters. 
We say the state is supported in (a, b) x (c, d) iffis also supported in the region 
a < xi < b, c < ti < d. 

LEMMA 5.2. (Euclidean Reeh-Schlieder theorem). Fix a, b, c, d with a < b, 
0 < c < d. The linear combinations of good Josr states with support in (a, b) x (c, d) 
are dense in Fock space. 

Proof. Suppose 17 is orthogonal to all good Jost states with the support 
property. By taking the smearing functions to delta functions, T] is orthogonal to all 
Euclidean Jost states with the support property. By analyticity, it is then orthogonal 
to all Jost states and so zero. 1 

Remark. This lemma is true in any Wightman theory. 

THEOREM 5.3. The Fock vacuum overlaps the vacuum for Yz . In particular: 

Proof. Let 7 be a good Jost state supported in (-$I - 1, --?$I) x (0, 1). We 
will show that there is an +j so that: 

(7, ew(-tH,)7) < <7j, exp(-tHJWW, , exp(--tH&?F, (29) 
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so that the last two lemmas complete this proof. The proof of (29) is shown pictorial 
in Fig. 1. Since 71 is a good Jost state, there is an $ with 

(7, exp(--t&h) = CT’, exp(--IH,) J&J, 

7’ is supported in [(-&t - 1, -$t) u (Q, $t + I)] X (0, 1). By the Schwarz 
inequality 

(rl’, exp(--IH,) Q,> d GA, exp(--IH,) QPYrl’, exp(--I&) 7’) 
= <L$ , exp(-HZ) Qn,>1/2(+j, exp(-tHr)+j)1/2. 1 

Notice that the above proof essentially uses OS positivity in the space direction. 
In Fig. 1, the empty box stands for the interaction, the shaded box for Jost states 
and the whole box for log{& exp( -tH,)#). 

0 ’ u 0 
FIGURE 1. 

Remark. One consequence of this theorem is that the vacuum for Ht has a 
charge zero component. A priori, this is far from clear. 

THEOREM 5.4, Let K, o be ultraviolet cutoffs obtained by convoluting with 
functions with support in (-4, 4). Let nl,rrVK:re.en be the Hamiltonian with cutoffs K, 

u and interaction turned on in (-I- 1, - 1) u (0, I). Then for a dense set of states 
and all t: 

In particular, the linear lower bound for (S;r, , exp(-&) QO) [38,47] implies a 
uniform lower bound on Hz,o,K,rB1l for IJixed as u, K -+ co. 

ProiJ: We take good Jost states, ‘I, supported in (--$I - 2, -+I - 4) x (0, t). 
Since the interaction is a function of the fields in (-(Z/2) - (l/2), (Z/2) + (l/2)), 
we can use OS positivity about the line x = -(l/2) - (l/2). The proof is shown 
pictorially in Fig. 2. 

Remarks. 1. TO justify using OS positivity for the interaction with an 
ultraviolet cutoff in the spatial direction, one uses the fact that the perturbation 
series in h converges. OS positivity for the partial sums in the series is the positivity 
of the inner product of explicit Fock space vectors. 



494 SEILER AND SIMON 

D m +$ a 
FIGURE 2. 

2. Fix I, 0, K. For any positive a, let I?(a) be the Hamiltonian with interaction 
in (---I - a, -a) u (0, I). Then our method shows that: 

- inf spec(H) < 4 F+i t-l ln(Q, , exp(--t&u)) Sz,) (294 

for any a > extent of K, ~7 cutoffs. For each fixed t, (a, , exp(-&(a)) I&) ---f 
(52, , exp(-tA) Q$ as a -+ OD by clustering for the free field, so one might try to 
obtain vacuum overlap for Hz,o,K;ren by taking a + co in (29a). However, this 
requires an interchange of r and a limits that cannot be justified purely on the basis 
of clustering. This can be seen most clearly in the K, ~7 -+ 00 limit where the 
“error term” N exp( -unq,) exp( - tE,,) while the “direct term” N exp( -2tE,). 
Since --I$, 3 2(--E,) and strict inequality is expected (and is true in P(4)z [28]), 
for any fixed a, the error dominates as t -+ co. 

3. By the above remark, one cannot use just the idea of this proof and spatial 
clustering to prove vacuum overlap. However, one can obtain the a = 0, K, u = a3 

version of (29a). 

-El < 4 viny t-l In Z,,,, , 

which together with 
;&I t-l In ZISt < -EL 

implies the major consequence of vacuum overlap: 

lim (/t)-l In Zz,* = 7-2 -El/I. I, *+a, 

Next, we turn to (#~a)~ . In principle, our method for Y, should extend to (+4)3 ; 
after all, the method certainly works in Pi . However, we have a technical 
problem in the extension that we do not know how to overcome. Namely, we need 
to prove that the dressed Jost states supported in the region (--1,/2,0)(--1,/2, 1,/2) 
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are dense in 2L . We expect that this is true but do not see the proof. Analyticity 
of the dressed Jost states in spatial variables is not even clear in Pi . We will 
therefore develop a distinct method for +34 which, because it relies on Nelson- 
Symanzik positivity, does not obviously extend to Y, ! As we will explain after the 
proof, it is a relative of Perron-Frobenius arguments. We first need an extension 
of the unnormalized OS positivity, Theorem 4.1: 

LEMMA 5.5. Given any function F of the positive time Euclidean Jields, E will 
standfor the function obtained by reflecting theJields in the (t = O)-plane and taking 
the complex conjugate of the function. dvZ,(a,b) stands for the (unnormalized) ($4)3 
Euclidean measure with cutofl(-1,/2,1,/2) x (-1,/2,1,/2) x (a, b) normalized only 
by the matched vacuum counter terms of Section 2. Then, for any polynomial bounded 
F, G and a, b > 0: 

Proof. Identical to that for Theorem 4.1 given Feldman’s result [6] on the weak 
convergence of the dv2,(a,a) , and of their moments. 

THEOREM 5.6. In (qY)3, f  or any t > 0, exp(- tH,) Sz~“’ couples to the vacuum 
for HL . 

Proof: (We repeat our warning that we are not asserting HL has a “vacuum,” 
i.e., eigenvectors at the bottom of the continuum.) Let 77 be a dressed Jost state. 
r] corresponds to some polynomially bounded function, F, of the positive time fields 
together with a time a, so that: 

(7, exp(--tHJ d = j f’@J dvlx(-a-t,a) , 

where Ft is F translated t units upwards. By Nelson-Symanzik positivity, i.e., 
positivity of the measure dv,: 

since 

1 j F<&> &x(-a-u) 1 G j F2 dvw--a+) , 

j F2 dv = j (E,)2 dv 

by reflection symmetry. By Lemma 5.5: 

IJ F2 dvw--a+) 1' < j F2f12 dvwa.a) j &xc-a-t,n+t) . 
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(7, exp(- tN,) T) = C$JJ”‘, exp(-(2t + 24 H,) Q,(‘))1’2, 

from which the result follows by Lemma 5.1. The proof is shown pictorially in 
Fig. 3. 

FIGURE 3. 

Remark. The above argument is motivated by the result that a matrix with 
nonnegative elements always has as its largest eigenvector a vector that has non- 
negative components and thus, a vector that is not orthogonal to any vector with 
strictly positive elements. One way of proving this result and its Hilbert space 
analog is to prove that if A is any positivity preserving operator on P(M, &) 
with &%I) = 1, then for anyf, g E I,*: 

Kf, &)I2 d (lf12, au, A I g I”). (30) 

Equation (30) may be proved by applying the three lines lemma to the analytic 
function: 

G(x) = (If I”, A I g I”-““>. 

Equation (30) is clearly what we obtain from our use of NS positivity. 
The three main results of the genre we are discussing that hold in Pi but that 

we have not been able to extend involve the vacuum overlap: 
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(1) uniqueness of the vacuum; 

(2) prove a vacuum exists for HC in (f$4)8 ; 

(3) prove that the vacuum overlap vc = -(l/Z) In@&,, Qn,) (in(d4)3 (GA”, Q,)) 
is bounded from above. 

In P(4)z , (1) depends on strict positivity arguments [18, 531 (2) on either 
compactness arguments [18] or hypercontractivity [26] and (3) on hyper- 
contractivity [28, 501. 

6. PROPERTIES OF EL GUERRA'S THEOREM 

In Y, , Z,,, -+ 1 as I or t -+ 0 so one can directly mimic the P(c#J)~ methods [28] 
in proving: 

THEOREM 6.1. (a) El -+ 0 as I+ 0. 

(b) -El/l and (It)-’ In Z,,t are monotone increasing in I and t and converge as 
i, t + co to the same limit CL, . 

(c) Foranyl> 1, 

-Et-, < -El + El . 

(d) -El + cu,l is monotone decreasing in I. 

Remarks. 1. As we have already discussed in Section 2, we expect P2 In Zz,z 
and also --FE, to diverge to - cg as I + 0 as -(In Q2. 

2. We do not know how to prove that ,$ is bounded below. 

Proof. (a) Let I < 1. Then by monotonicity of -EC/I in I (see (b)): 

On the other hand, by monotonicity of (It)-’ In .Zlt in t: 

-EL = lim t-l In Zlt 

3 In Z, = In&$, exp(--I&) Q}, 

and (~‘2,) exp(--IH,) Q,,) --f (Q, , Q,,) = 1, as I -+ 0. 

(b) The proof is identical to P(d)z [28] where one uses Hiilder’s inequality 
and the spectral theorem to prove I-l ln(S2, , exp(--tH,) Q,,} is monotone in t and 
then Nelson’s symmetry to get monotonicity in 1. The results for -Et follow from 
-EJl = lim&lt)-l In .& , which comes from our overlap result. 
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(c) By monotonicity of -EL/1 in I: 

-El-, = (I - 1)(--EL-,/Z - 1) 

< (1 - (l/Z))(-E,) = -El + I-lE, 

< --EL + El . 

(d) As in P(4)2: 

--El+, + Et = v+% t-l lnKQ,, exp(-ttNc+,) QoXQo, exp(--tll-lJ J&J1 

= v+c t-l ln[(Q,, ev(-(2 + 4 f&l GJ/W, , exp(--IHd J&J1 
< v-2 t-l In (1 exp(--aH,)jl = a lim(-E,/t) = aor,, 

so that the result holds. 1 

Because /I sZ&” 11 = co, these proofs do not extend to (+4), ; in fact, as we shall 
see -El -+ + co as I + 0. However (b) and (d) (and (c) suitably modified) are all 
true in (c$~)~ . The key to their proof is the realization that they are really conse- 
quences of convexity of -El as a function of 1. For example, iffis convex in I and 
I f(Ol d CL then liml,,f(l)/l exists because (f(2) - f(Z,))/(Z - ZO) is monotone 
increasing. Moreover, for any a, f(Z + a) -f(a) is monotone increasing in I, 
which leads to (c). Finally, as we shall see, f(Z) - I lim,,,(f(x)/x) is monotone 
decreasing in Z, which is behind (d). 

THEOREM 6.2. In (+4), , In Zl,,l,,t and -Erl,rz are convex in each variable with 
the others heZd$xed. Moreover: 

(4 --Ezl,z2 -+ co us ZI or Z, goes to zero, the others being heldfixed. 

(b) lim~l,+a -E~,z,lk~2 and lhltzt+m 1 2 (1 I t)-’ In ZIIlzt both exist and are equal. 
Cull the limit 01, . 

(c) For Z,jxed A(Z.J = lim,l,, -Ell,l,/Z1 exists and obeys 

44 - 1) < 44) - 42) + A(l), if z,>2. 

(d) &I,) = lim +4-Et,.z, + E(t+).ta). 
(e) For any fixed I, , -EII1, - A(Z,) ZI is monotone decreasing in II and 

A(Z,) - a,Z, decreasing in I2 . 

Proof. By an argument we have already given In Zll,12,t is jointly continuous 
in its arguments. Alternatively an upper bound and mid-convexity implies conti- 
nuity. Moreover, for each fixed Z1 , Z2 , it is &convex in t and so by continuity, 
convex in t. It is then convex in Z 1 , Zz by symmetry. Convexity of -E,I,2 and A(Z,) 
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(once we know the limit exists) then follows. Now fix Is and suppose that I, --+ 0. 
Then 

-Ez1z2 a In [ 

(@lb), exp( -2H,,,,) 52$‘2)) 
(Qhz~z2), exp(--Hz,z,) Q*“z)) 1 

= W2,z,2/~z1~,~I 
= ~n[-%,z,2/~zIz,,1 + 44 , I2 , 2) 

+ 44, 4, 2) - 4~1 3 12 2 1) - 44 3 4 3 0. 

As II -+ 0, all the terms but the d, terms go to zero, and by the proof of 
Theorem 2.4(b) 

44 , & , 9 - C&t W3, 

where C a positive constant, so that 

-E,,,, > O(ln Z;‘). 

This proves (a), (b) and the first part of(c) follow from convexity and Lemma 6.3. 
The second half of(c) is then a simple consequence of the convexity of A([,) in Z2 . 
Parts (d) and (e) then follow from Lemma 6.4. m 

LEMMA 6.3. Letf(xl ,..., x,) be defined in the region where all xi 3 1 and obey 

f (x1 ,..*, xn) & cx, -** x, 

in that region. Suppose $ is convex in each variable when the others are held$xed. 
Then: 

,,,.!fT +,f(xl Y...> &J/Xl *** AZ n 

exists independently of how the xi go to infinity. 

Proof. Let J(xI ,..., x,J = f (x1 ,..., x,) - Cx, *** x, . Then f is negative and 
convex in each variable the others held fixed. By convexity, 

rJcx1 ,.‘.> &) 41, x2 ,*-., x?zN/(x, - 1) 

is monotone increasing in x1 if x2 ,..., x, are held fixed. But then 

(x1 - 1)-1&x, )...) x,) = (Xl - 1)-1(&x 1 )...) +=(I )... )) + (x1 - I)-‘j(l)...) 

is monotone in x1 if x2 ,..., x, are held fixed sincejis negative. Thus, by symmetry, 
lx, (Xl - o-vt~, ,a.*, x,) is monotone increasing in the xi . Since it is negative, 

595/971247 
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it has a Iimit independent of the order in which the x1 go to infinity. But then 
ny=, x;y(xJ has a limit and therefore, so does f(xr ,..., x,)/x1 *** x, . 1 

LEMMA 6.4. Let f (x) be convex in the region 1 < x < a3 and linearly bounded 
from above. Let a = lim,,,f(x)/x. Then 

(a) f(x) - f(x - 1) -+ a as x ---f 00, 

(b) f(x) - ax is monotone decreasing. 

Proof. Since f is convex, it has a right-hand derivative (D+f)(x) at every point 
and 

Moreover, (D+f)(x) is monotone increasing. From this monotonicity and 

x-‘(f(x) -f(l)) = x-l j-= (D+f)(t) dt, 
1 

it follows that (D+f)(t) -+ a monotonically as t -+ 00. Thus 

and for x > y 

SW - .f(x - 1) = j-;, (o+fW dt - 0, 

so that 

f(x) -f(y) = j: (o+f)(t) dt d 4x - Y), 

f(x) - ax G f(y) - ay. I 

We note that since we have precise control on the difference between the objects 
with conventional renormalization and those with matched counterterms 
(Theorems 2.1, 2.4, and 2.9, we have: 

THEOREM 6.5. In Y, (resp. &*) the limits lim,,, --i&/l (resp. limll+, -&l,JIIl,) 
and lim l,t+m(lt)-l In .% (rev. liql.+m (l I 1 d) -l In && exist and are equal to each 
other and also to w,, . 

Remark. In addition, lim(-I& - or,Z) exists if and only if lim(-E, - ~1) 
exists and the limits differ by an explicit constant. 
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7. &BOUNDS 

Jn this section and the next we prove 4 bounds and Friihlich bounds in Y, and $34 
(these bounds were first proved in P(4), by Glimm-Jaffe [20] and Frohlich [IO], 
respectively). Tt is known that modulo technical difficulties and hypotheses these 
bounds are equivalent (see Friihlich, [IO] for r$ -P F and [I I] for F - 4). We give 
distinct (but related) proofs for two reasons: In Y, , we wish to prove Fermion 
Frljhlich bounds; it is not quite clear how to obtain these from +-bounds alone 
even using the fact that smeared relativistic Fermi fields are bounded. On the other 
hand, the passage F + $ requires additional hypotheses that certainly hold, but 
that we wish to avoid. 

By the methods of this section and the next, one can obtain bounds for :@: 
and various nonlocal functions of the field in Y, and +a” theories. 

As previously in this paper, our replacement for the Markov property used at 
this point in P(4)z proofs is OS positivity: for +-bounds in spatial directions and 
for Frijhlich bounds in space and time directions. We note that the joint use of OS 
positivity in space and time directions to obtain operator bounds in P(r$)z has been 
exploited recently by Glimm and Jaffe [23] and by Glimm, Jaffe, and Spencer [24]. 

As in the P($)z case, we prove operator bounds by proving bounds on difference 
of vacuum energies [20]. However, the passage from the energy bounds to operator 
bounds is more subtle due to operator theoretic questions. We begin by describing 
this passage in ($4)3 . Similar considerations work also in Y,: 

1. Fix f E C,m(Rz). One defines an operator “HI + b(f)” on H! by giving 
the semigroup between dressed Jost states. For example: 

(exp(--aHJ J$‘, exp(-tt(H, -k &f>>> exp(--bHd Qt’> 

= I exp(d(.f 0 xkd &A-~.~+~) . 

The boundedness of the operator so defined follows as in Section 4 using a slight 
improvement of the $34 lower bound of Glimm-Jaffe [22]. (Such a bound is implicit 
in some of the proofs in Feldman’s paper [6]; see especially [6, Theorem 221.) 

for 0 < g < 1,1 f 1 < a where C is an a-dependent constant and A(f) = volume 
{x I dist(x, suppf) ,( I}. 

2. Forfe C,“(R2), one defines 4(f) as a quadratic form with form domain 
equal to the dressed Jost states. This is done by using analyticity arguments very 
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similar to those in [41]. A priori exp(+sZZ,) 4(f) exp(--sHz) is defined between 
fixed Jost states if we smear in s with a function having support in a small interval 
whose size depends on the Jost states. But one can show analyticity in s and so 
define 4(f) between the Jost states. 

3. Between Jost states, one proves that 

= ew(-t&) + Jot exp(--sWi, + #f>>> 4C.f) exp(-0 - s) HE) ds, 

and then that H1 + 4(f) is an extension of the form sum Hz + d(f) on Jost states. 

4. A bound -E(H, + 4(f)) < -E(H,) + a implies that between Jost states 

b(f) G Hz + 4(f) - EWt + 4(f)) - 4(f) 

< HL - E(HJ + a. 

Thus, on a form core for HL we obtain 

5. The above considerations lead to $-bounds. They prove that the form sum 
Hz + 4(f) is a closed quadratic form on Q(Hl) but they do not prove that this form 
sum equals “Hz + 4(f)” as constructed in step 1. We suspect this could be proven 
but do not pause to do so. 

THEOREM 7.1. In Y, , one has 

&d(f) < a + c1Ilfll"-1 + 5 

for allf E Corn(R) with supp f C [-4, 41 all I > 1 and suitable constants cl , c2 . Here, 
fit = Hl - El and II f il!l = s I f(k)12(k2 + 1)-l dk. 

Proof. Let E,(f) be the ground state energy for Hz + 4(f). As in the above 
remarks, we need only prove 

-Nf) < -El + ~1 llfl1~1 + ~2. (31) 

Let F be the function obtained by translating f by & unit and taking the sum of the 
translation and its reflection about I = 0. We first claim that 

-Et(f) < -&EL-, - B&+,(F). (32) 
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This follows as in the proof of coupling to the vacuum and is shown pictorially 
in Fig. 4: 

2 

FIGURE 4. 

In Fig. 4, the effect of the Jost states drop out in the t + co limit. By iterating (32) 
we obtain 

--E,(f) G (1 - ww(--E,-,) + (l/2”>(-E,+,,-1(F,)), (33) 

where F, is obtained by iterating the passage fromf+ Fn times. Now by coupling 
to the vacuum (which holds for Hc + $(F,) if y1 3 1 since F,, is symmetric) 

where L = I + 2” - 1. Taking n + cc in (33) we obtain 

--E,(f) < --El-, + G + Cl llfll”1* 

Equation (31) results by using --&_I ,< --E, + E1 and taking C, = C, + El . 1 

If one can pass to the infinite volume limit, then Theorem 7.1 extends by the 
method of Glimm and Jaffe [20]. By using translation invariance in that limit, one 
easily obtains 

*w> < IlfllS(~~ + 1) 
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for a suitable Schwartz space norm 11 * JJs . However, one can do much better than 
the usual II * IIs at least, as involves behavior at infinity. One first proves a suitable 
“improved” linear lower bound as in [29]: 

TIBOREM 7.2. Fix a semiboundedpolynomial P, a Y, coupling constant, A, and r 
(= 1 or &). Let H8 , d pl,t be the Hamiltonian and cutoff (unnormalized) Euclidean 
measure for Y, + P(#)Z . Let Q,(P) denote the pressure for this theory with a - ~4 
term added, i.e., 

Then for any f E Corn(R) with supp f C [-l/2, l/2]: 

HG - ‘+cf) 2 - ,rl:; %,(f(x)) dx (35) 

andfor any f E CO”(R2) with suppf C [-l/2,1/2] x [-t/2, t/2]: 

In [I / exp(+(f)) Gz,t 11 G J,,,<l,2 , ,<t,2 ~dfk ~1) dx ds. (36) 
9 II. 

Remarks. 1. In this theorem and the one immediately following we intend 
to allow both the pure P(& case (A = 0) and the pure Y2 case (P = 0). Theorem 7.2 
is, of course, not new in the P(4)>, case; (35) is from [29] and (36) from [30], in fact, 
we just follow the proofs from there. Theorem 7.3 below is a slight improvement 
of existing P(+)2 results. 

2. Since Theorem 7.2 depends on monotonicity of -Et/l, it does not extend 
to +s*, but using the monotonicity implicit in the proof of Lemma 6.3, we expect it 
should be possible to prove a substitute suitable for extending Theorem 7.3 to +34. 

Proof (following [29]). For (35) it suffices to consider the case where f is 
piecewise constant, i.e., -(Z/2) = a, < a, < a** < a, = l/2, and f(x) = ai on 
(aiel , ai). Then, by Nelson’s symmetry: 

< fi exp(-[E(Ht - w$(xd>(ai a** ai- 
i=l 

9 fi ewC+th(4(ai - ai-,)1 
i=l 
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This proves (35). In (36), we consider f’s of the form f(x, S) = g,(x) for 
aiel < s < ai and repeat the argument of (35). 1 

We now have: 

THEOREM 7.3. Fix f E Corn(R) and fix P, A, r as in Theorem 7.2. Then for all 1 
with supp f C [-I/2,1/2]: 

where cl(f) is a constant which obeys 

(37) 

In particular, ly the infinite volume limit of the Wightman functions exists, then for 
anyfEY: 

+j(f> < fim + l-1 [xm(f(x)> - do)1 dx. (38) 

Remark. It is not hard to see that for large p, LX,(~) < O(p2) for pure Y, and 
LX&L) < O($+“(d)) with m(d) = (deg P - 1)--l if deg P > 2, and for small CL, 
01,(p) < O(p) in general and U&L) d O(p2) in case P is even and r = iy5 and 
we are below the critical point as defined by continuity of (Y,‘(P) at p = 0. These 
bounds allow the passage from (37) to (38) (for f E 9’) and also lead to bounds of 
the form 

hm < llf llLv% + I>, 

where 11 f IIL is a sum of L” norms. For example, in pseudoscalar Y, below the 
(putative) critical point 

Proof: By following the proof Theorem 7.1 but using Theorem 7.2 to bound the 
factor --E1+2n-l(F,) in (33) we obtain, if supp f C [-u/2, a/2]: 

-E,(t) < -El-, + 2-” /z-a+2’a a,(F,(x)) dx 
I-a+2% 
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This implies &4(f) < I?, + cl(f) with 

c,(f) = --z-a + Ez + 1-1 4f(x>> dx. 

Equation (37) follows by using Lemma 6.4. 

Ez-a - Ez + ~wm(0), as I-+00. 

As explained in the remark, (38) follows from (37). m 

For (+4)3, the &bounds that arise naturally from the methods we have been 
using do not quite have the form one might guess. We have (suppfC [-$, &] x 
L-t, 61) 

f+(f) d fiz,z, + cz,z,w> (39) 

but we do not prove that crl,,(f) is bounded for all llIz >, 2; rather, we only prove 
that lim SUP~~+~ cl&) is bounded for all I, > 2. That this is the form of the 
&bounds should not be too surprising. For Frdhlich’s bounds in P(& only hold 
if one direction is taken to infinity. The key moral is that we get l-independent 
bounds in one direction, if all but one direction are taken to infinity. We note that 
bounds on lim sup cz 1 (f) for free boundary conditions lead to bounds on clIl,(f) 
for Dirichlet BC: thk’is just a transfer to 43” of a remark of Friihlich for I’($& 
[lo, 481. (See the next section for a brief discussion of $2 with Dirichlet BC). 

THEOREM 7.4. Consider &* with fixed coupling constant. Let f E Com(R2) have 
support in [-$, 41 X [- $, 31. Then for II , I2 > 2: 

Mf> d fiz,.z, + cz,.z,Cfh (39) 

where c,Jf) is only dependent on /If Ilrn and 

f”m cz,z,(f) d c(f) (40) 

for all 1, > +, where c(f) is only dependent on I( f Ijrn . 

Proof. By the method of Section 5, exp(--t(Hl - $(j))) 52:’ overlaps the 
vacuum for Hl - 4(f) so -E,(f) is given as the limit as t + cc of an object 
whose cross section at fixed t is given in the first part of in Fig. 5. We reflect n times 
in the II direction and then m times in the I2 direction to obtain: 

-Ez,z,(f) < (1 - WW-&-I,,,,) + (l/2”) Ez~+~~-I.z&J 

< (1 - W”W-&Z~-~.E~~) + (1 - W’W/W Ez~+P--~,z~--~ 

+ 2-m2--nE11+2”-1,1,+2m-1(Fn.m) 

(shown pictorially in Fig. 5). 
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!!!!I!& 

t,+ zm -1 

1,+2"-1 

FIGURE 5. 

Taking first m + co and then n -+ co and using the genera1 qJ4 linear lower 
bound, we find 

where AtI,) is given by Theorem 6.2(c). Equation (39) now holds with 

czlz,(f) = -Ezl-I,z, + &,.I, + -4 - 1) + co(f). 

Using Theorem 6.2(d), 

(41) 

so that (40) follows from Theorem 6.2(c). 
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Remark. Using Lemma 6.4 and (41) one easily sees that 

Thus, bounds of the type occuring in Theorem 7.3 will follow from a bound 
c,,(f) f ~lx,l~l.lz,~~l a&f(x)) d2x, which we certainly expect to hold. 

8. FR~HLICH BOUNDS 

In this section, we want to very briefly describe the method for proving Friihlich 
bounds in Y, and d3*. 

THEOREM 8.1. Fix coupling constants in Y, . Let 

sdfl J2 ,...,.h ; g, 9.*-,&n ; hl ,--., hJ 

denote the Schwinger function with space-time cutofi in (--l/2, l/2) x (-t/2, t/2) 
and fi ,..., fk smearing functions for +, g, ,..., g, for $ and hl ,..., h, for #. Then, 
for a constant C independent of 1, ,f, g, h, and all 1 > l,f, g, h, with SUPP fi( gi , hi) C 
L-B, $1 x f-4, iI: 

where 

II f II-a = [ / j(k)j2 (k2 + m2)-rr d2k. 

Remarks. 1. Bounds of this form for fixed 1, t were first proven in [45]. 
Bounds on Zl,Jl,t with a volume dependent constant occur in [38,47] and are 
used below. 

2. [-+, &] x [-4, $1 can be replaced by [-a/2, a/2] x [-a/2, a/2] if C is 
taken suitably a-dependent. 

3. The bounds in (42) are not in the form of temperedness bounds but in the 
next section we prove temperedness bounds for lim SUP~+~ lim suptqm S,,, in a form 
suitable for the Osterwalder-Schrader reconstruction theorem (see Theorem 9.3). 

4. Equation (42) holds also for Y, + P(&2 theories. For pure P(+)2 theories 
the Ij fi 11-I norms seems to be an improvement on the best local bounds [48] which 
have the form II f II = J I f(k)12(k12 + m2)-l d2k. 

5. Similar results hold for generating functions for S. 
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Proof. Pictorially the proof is already shown in Fig. 5 suitably reinterpreted 
(change II to t and Z, to Z): Namely, we start with Z,,tSr,t and reflect n times in the t 
direction and then m-times in the I direction and obtain: 

/ z,,,sl*t I < (zL,t&1)l--(1’2”) (Z1-1,t+2”_1)(1’2n)(1-(1’2~)) 

By the volume divergent bounds on (ZS) [38,47], the last factor is bounded by 
exp(4 + 0 - 1) WP + (t - 1) 2-‘WkV2 I3 IIJ;: IL1 II a ll--1/2 II h ll--112 and so 
takingn-t coandm-t co: 

I ZL.t&,t I < Z,+, exp(--El-,) @Y/2 (fl llh IIL II gi II-I/~ II hi II-.&). 

Dividing by Zl,t and using Lemma 6.4 to see that Z&Z,,, + exp(EJ and 
Theorem 6.1 to see that --Et-, + El < E,: 

with C’ = c exp(E,). 1 

Similarly, we have: 

THEOREM 8.2. Fix coupling constants in #34. Let SlllJfi ,..., fk) denote the 
Schwinger function with space-time cutofl in (-IJ2, 412) x (--1,/2, 12/2) x 
(-t/2, t/2) andsmearingfunctionsf, ,..., fE . Then for a constant C independent of I, 
andf and all I, > 2,h with suppA C [-+, +] x [-&, 41: 

(43) 

Proof. We first note that by applying C!auchy estimates to the bound 
.fexp(W)) dpl,ltt < exp(CW,tN for all f  E Gm with Ilf IL < 1 and suppf C 
[--11/2, WI x e.1 (see point 2 in Section 7) we find that: 

(44) 

where each fi is supported in a unit cube with integral center, k, in one cube, . . . . k, 
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in another cube, k, + **a + k, = k. Reflecting m times in the t direction, n in the 
lz direction andj in the 1, direction and then using (44) we find: 

< (Zlllzt-p(1/2”” (Z, (I -1) t+2n-*)‘1/2”“1-‘1/2m)) 12 . 
k 

x (z, -l z +2m-1 t+2n_3(1/2n)(1/21n)(l--(1/2i)) [CCl12”)+Cl/2m)+Cl/2~)] k! n llfi Ilm . 1 -2 * %=I 

Taking n -+ 03, then m -+ co, and then j + co: 

l(Zs>z,z,t ul P.“> fill < Zzlzz(t-l) exp(--Ez,,t,-J ew(Nl 

Dividing by Zl,l,t and taking t - co, we get 

liy+%uup I S~,~,t(h)l G exP@z,.z2 - Ez,,z,-~ + NI 

- 

- 

1)) k! fi llfi I!m . 
i=l 

1) k! fi llh IL. (45) 
i=l 

Now taking I2 + 00 and using El 1 - E1 ,z --1 -+ --A(&) and A(& - 1) - A(I,) < 
A(1) - A(2), we obtain (43) with12 = eipiA(l) - A(2)). m 

Remarks. 1. In (43), we can replace Ck! by CDkk! for a D > 0 and C 
dependent on D. 

2. Equation (45) follows using Friihlich’s method [lo] from the +-bounds 
of Section 7.We note that it is not necessary to have a vacuum for Friihlich’s method 
to work. All one needs is that (G’F’, exp( - tH,)Q~“)/(Q~“, exp(-(t - l)H&?/,“) -+ 
exp(-E,), which follows from the spectral theorem and coupling to the vacuum 
(or by Lemma 6.4). 

As it stands, (43) does not involve Schwartz space norms. In the next section 
we will remedy this by using improved volume divergent bounds. Alternatively 
one has: 

THEOREM 8.3. Zf SzlzptCf;.) has a translation invariant limit as 1, , 12, t --f 00, then 
for allfi E C,a 

I S&i ,...,fk)l G Ck! fi llfi Ils, 
i=l 

for a suitable Schwartz space norm ]I fi Ijs . 
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Proof. The key fact is to note that by NS positivity, if eachh is supported in 
some unit cube, we have: 

Thus, writingh 

since 

&EZ3 fii’, where f(j) has support in the unit cube about j: 

7 llfj IL < [sup ll(2 + X2>2fllml 1 (1 + I j 1°F” 
j 

is a Schwartz space norm. 
The point of Theorem 8.3, of course, is that it gives one bounds in a form 

suitable for the Osterwalder-Schrader reconstruction theorem [41]. We remark 
that modulo technical details involving convergence of the lattice approximation 
in (I$~)~ with Dirichlet BC, one can construct ($4)3 infinite volume field theories as 
follows: The key observation, which we learned from Herbst in the fall of 1974, 
is that the mass counter term in ($4)3 can be taken to be the same with free or 
Dirichlet BC (This is not true for the second-order energy counter term. Thus 
“conditioning” estimates [30, 311 break down). As a result, the Dirichlet Schwinger 
functions should be monotone in region and bounded by the corresponding free 
Schwinger functions. Our bounds then allow the passage to an infinite volume 
theory obeying all the OS axioms (except perhaps clustering) and thus a Wightman 
theory obeying all the axioms (except perhaps uniqueness of vacuum). If a cluster 
expansion can be developed at large external field (in the spirit of Spencer [54]), 
then one should be able to use Lee-Yang arguments [53] to obtain uniqueness of 
the vacuum and nonzero mass gap for any (+4)3-p$ theory as in two dimensions 
[32, 491. 
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9. IMPROVED VOLUME DIVERGENT BOUNDS ON SCHWINGER FUNCTIONS 

We, in a previous paper [47], and independently McBryan [38], have proven 
volume divergent bounds on unnormalized Y, Schwinger functions, in the form 

(=h*t (f; 7...,fk ; 81,***, gm  ; 4 ,..., hn) 

< c;+2m j-J (k,!)l'2 ew(C,W n 1l.f;: Ll II gi 1/-1~2 II hi lh2, (46) 
a 

where 1 and t are integers and each test function has support in some unit square 
obtained by breaking [-l/2, l/2] x [-t/2, t/2] into unit squares k, functions in 
square 01. One expects (46) to hold with C, = 01, , the Y, pressure and this is our 
goal in this section. We prove this not so much for its own sake but because when 
put into our machine for proving Frdhlich bounds, it yields bounds on 
lim suplam lim SUP~-,~ Sl,t suitable for the Osterwalder-Schrader reconstruction 
theorem. The knowledgable reader will notice that our philosophy in proving the 
new bound is closely connected to that in [29] and that related ideas appear in the 
recent paper of Glimm, Jaffe, and Spencer [24]. 

THEOREM 9.1. In Y, , (46) holds with C, = 01, . 

Remark. The new C, is related to the old C, , C, (call them ci) by 
Cl = Z;, exp(c;, - 01,). 

Proof. We suppose first that 1 is an even integer and that the functions are 
symmetric about x = 0 (i.e., for every function supported in x < 0, its reflection 
occurs as another function). The improved bound in this situation easily leads to 
the improved bound in the general case by applying the Schwartz inequality 
(OS positivity) in the spatial direction. 

Let B, )...) B, denote the interaction and any trial functions in each strip 
-(t/2) < s < -(t/2) + l,..., (t/2) - 1 < s < (t/2). Let 8j2m) denote the object 
with interaction region (- l/2,1/2) x (- m, m), with copies of Bi and its reflection 
alternated. Then, we claim that: 

t-1 

@l -.. B,) < (Bp)>1’2 (Bt(2))112 n liiz (By)>1’2n. (47) 
i=2 

To prove (47), we define an operator 0: between Jost states by (4, Oi$ = 
(&-Bgb+) where &- means putting the Jost state in the time interval 
(- co, -(t/2) + i - 1) and Q+ at time interval ((t/2) + i, co) and (**e) denotes a 
suitable Schwinger function. Exploiting the usual (OS) iteration and (46), Oi is a 
bounded operator, and since Bi is symmetric in the spatial direction, D, couples 
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to the vacuum for --In 1 Oi 1 by the method of Section 5. Thus, for any Fock space 
vectors: 

In particular: 

(4 ... B,) < (B~&j1j2 (B~~B~z))1/2 liT+:up (&,~+l)112” 

< <BF B;;;2,-l)1’2 <B~B;2Y2 

x ‘,E (8;;;y2” p; (B~;;;,+,)ll2”, 

where in the second step we deal with the operator defined by B$ . Iterating this 
argument, we obtain (47). Since 

@,12))1/2 = ($2, ) o,qJ < $2 (Pyy (48) 

for a suitable operator Oi , we obtain 

(49) 

Repeating this argument in the space direction, we find 

where Aij is a lim sup as n, m ---f co of a square, which is 2” x 2” copies of the 
stuff in box (i,j) and its reflections raised to the 2-“2-” power. If there is no test 
function in box i, j, then Aij = exp(a,). If there is stuff in box i, j, then by (46) 
Aij < (kij!)l12 (n test function norms) C,” k~~fmii+nij exp(C,), so that the improved 
(46) follows. 1 

THEOREM 9.2. Let fi ,..., fk , g, ,..., g,, , h, ,..., h, be functions supported in any 
unit squares with centers at integral points. Then 

liy%uup l&y I %t(f;l , gj , 17i)l) 

< C;+2m (I1 k,!)l’z I-I llh I/--I II gi IL/z II hi 11-m . (50) a 

Proof. Let N denote the right side of (50). Suppose that the f’s, g’s, and h’s are 
inside a (-442, &/2) x (-tO/2, t,/2). By following the proof of Theorem 8.1, but 
using the improved bounds of Theorem 9.2, we find: 
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so that 

l$~up I z.t I < ~ex~(+t~[--E~-~, + EZ + ~&I), 

which yields (50) since 

- Ez + Ez-z, -+ lOam . 1 

THEOREM 9.3. Fix a Y, + P(4)>, theory. There exists a Schwartz space norm, 
I] . I/, so thatforfi , hi, gj E COm(Rz): 

(51) 

Remark. The point of (51) is that it is a suitable input for the Osterwalder- 
Schrader reconstruction theorem [41]. 

Proof. Since I-Is (k,)! < k! , (51) follows from (50) if llfll = C, lif, 11-112 with 
fb the restriction off to square it. 1 

We make a few remarks about extending these ideas to &“. The volume 
dependent bounds as essentially proven by Feldman [6] take the form 

I zzlz*tszlz2t(fi >. * *9 .m < Gn (j-J d)( fi llfi ILo) WI 2 4 3 09 (52) 
m i=l 

where F(l&) = exp(Cl,l,t). One might hope that this extends to the case 
r;(E, , Z, , t) = exp am(lIZzt) but this is not true. Equation (47) still holds but (48) 
is no longer true. Thus, boundary squares require different treatment. One finds 
thus that: 

THEOREM 9.4. In +34, (52) holds where 

F(Z&) = exp(a,(l, - 2)(12 - 2)(t - 2) + 2A(l)[(l, - 2)(1, - 2) 

+ (I1 - 2)(t - 2) + (12 - 2)(t - 2)] - 4E(l, l)[& + 12 + t - 61 

+ 8 In Z(l, 1, 1)). 

However, in applying the improved bound to get a Friihlich bound, we deal with 
a big (2”Z:O’) x (2”Zk”‘) x (2kt(o)) square so boundary terms do not matter, and 
we find: 

THEOREM 9.5. In +34 for a suitable Schwartz space norm: 

liy_s_up liy_s_up liy+tup I Sz,z,t(fi ,...,fJl < @!I fi Il.6 II. 
i=l 
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10. A REMARK ON HALF-DIRICHLET ENERGIES IN I'(#)2 

In proving :y: bounds [23] and related bounds [24] in the infinite volume limit, 
an estimate of the form -El-, 6 -El + C would be useful, where -El is the 
half-Dirichlet energy as defined in [30, 31,481. By a clever argument [23,24], one 
can avoid this estimate, but it is natural to ask if it is true. We will prove such an 
estimate here. Our proof exploits the fact we have emphasized already in this paper 
that estimates -Et-, < -El + C follow from convexity of -El in 1. Actually, 
--El will not be convex in I, but rather -E, + f(Z) will be convex for an explicit 
function f(Z). The term f(Z) arises from corrections to Nelson’s symmetry, so that 
the situation for half-Dirichlet energies is somewhat akin to the situation for 
half-periodic energies in Z’(d)z [31]. 

THEOREM 10.1. Let E, be the half-Dirichlet energy in Pi . Then -E1 = 
G(Z) - f(Z), where G(Z) is convex in Z and 

f(Z) = --(4~r-~ jrn ln(l - exp(--2Z&))) dk. (53) 
0 

Proof. In terms of the machinery of [48, Sects. VII.1 and VII.31, there is an 
“idealized” vector r], “) like L$,“’ in +34 so that: 

z ?P = (rlt), exp(--HI) dW#, exp(-tH,,J d% 

where Hz (resp. Ho,,) is the interacting (resp. free) HD Hamiltonian. An explicit 
computation shows that 

(#, exp(-tH,,I) 76”‘) = fi (1 - exp[-2tp(kz’)])-“‘, 
7kl 

where k;” = 2m/Z. Thus, using Nelson’s symmetry, we see that 

-EL = Iii: t-l In 2:: = G(Z) -f(Z), 

where G(Z) = lim,,, t-l In($), exp(-ZH,) 7;“‘) is convex and 

f(Z) = - 3 Fim t-l t ln[l - exp(--2Zp(kt)))] 
n=1 

is given by (53). 1 

Notice that f(Z) has to following properties: 

(a) f(Z) > 0 all Z, 
(b) f(Z) = O(exp(--olZ)) at infinity, 
(c) f(Z) is monotone decreasing, 
(d) f(Z) is convex. 

595/97/z-1s 
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COROLLARY 10.2. Let EI be the half-Dirichlet energy in Pi. Then for all 
Z>l 

--El-, < -El + J% - El + a, 

where a is a constant independent of P and I (but dependent on the bare mass). 

Proof. On account of the convexity of G(Z), 

--El-, < --El + & - El + al, 

al = f(l) - fV - 1) + f(l) -f(2). 

Sincefis decreasingf(l) -f(Z - 1) < 0, so a, <f(l) -f(2) = a. 1 

COROLLARY 10.3. If -E, is the half-Dirichlet energy ip P(&, then 
lim,,, -E, - cu,l exists (but it may be - CO) and the limit is nonpositive. 

Proof. liml,,f(l) = 0 and by convexity liml,, G(I) - or-1 exists and is 
nonpositive. m 
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Note added in proof. 

1. The Y, “matched” counterterms are used already by 0. McBryan and Y. Park in [56]. 

2. Y. Park, (Bielefeld preprint) has independently established the bound 2 # 0 in (T”)~ 
by a method similar to ours. 

3. F. Guerra in [57] has proven the Pi case of Theorems 7.3 and 9.2 essentially by the 
method we use. His work clearly precedes ours. 
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