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DEGENERATE AND NON-DEGENERATE GROUND
STATES FOR SCHRDINGER OPERATORS

WILLIAM FARIS AND BARRY SIMON*

1. Introductioi.

In the study of quantum mechanical energy operators, particular attention
is paid to the question of whether the bottom of the spectrum is an eigenvalue
and whether that eigenvalue is simple. The corresponding eigenvector is
usually called the gound state. Throughout our discussion we will say that
a self-adjoint operator H has no ground state degeneracy when either E
inf spectrum H is not an eigenvalue or E is a simple eigenvalue. Our concern
in this note will be SchrSdinger operators H -A - V acting in
where V is a suitable multiplication operator.
When n 1 the lack of ground state degeneracy for a large class of V is
classical theorem in the theory of ordinary differential equations. There is
n rgument in Courant and Hilbert [4] concerning the case of general n.
Implicit in their rguments are assumptions (about the regularity of nodes
of any eigenvector) that seem difficult to prove for general V. (However, we
should remark that a proof along the lines of Courant and Hilbert should be
possible, especially if one uses Kato’s inequality [14].) The modern treatment
of the non-degeneracy problem follows an idea of Glimm and Jaffe [11] in their
study of quantum field models. They suggested applying theorems of Perron-
Frobenius [10, 17] type to exp(-tH). The applicability of these ideas to
SchrSdinger operators was noted by Simon and HSegh-Krohn [23] and Faris
(see [2]). It was discussed further in Faris [8], where the following general
result appears.

THEOREM 1. Let V V V where V and V. are real ]unctions on R’.
Assume that V >_ O, V Loo, and that V L - L where p n/2 i] n >_ 3,
p > li]n 2, andp li]n 1. ThenH --A- Vhasnogroundstate
degeneracy.

Remarks. 1. Here and below we define H -A + V as a sum of quadratic
forms. That is, H is the unique elf-adjoint operator whose quadratic form
domain (H) -= (IHI 1/2) is (-A)F (V)with

((sgn H)[HI1/2, [H[) (, ) + ((sgn V)IY[1/2,
2. The conditions on V re mde so that V is smll form perturbation
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of -A. The assumption on V1 implies that Q(--A) Q(V) D Co (R) and
so it is dense.

3. Since the V2 part of V always requires wordier statements and proofs
without any significantly new ideas, our theorems below will suppose that
V2 0. It is easy to add a non-zero V obeying the conditions of Therorem 1.
Our interest in discussing improvements in Theorem 1 was raised by a general

phenomenon discussed by Klauder [15] (see also [21]). Among other things,
Klauder notes that H (d2/dx2) + x - x-" (a >_ 1) has a doubly degenerate
ground state. The non-L singularity at x 0 does not prevent the definition
of H, since Co(Rn\{0}) C (-(d/dx2)) (x + x-") is dense. But it is
so severe that it decouples (-o, 0) and (0, o). That is, L( , 0) and
L(0, ) are invariant subspaces for H, and H has identical spectrum on the
two spaces and thus doubly degenerate eigenvalues.

In this note we answer the question of how general Klauder’s phenomenon is.
Let K be closed set of measure zero and let V be positive and in Loo (R\K),
so that V can be very singular on K. We want to know under what conditions
on K are we assured that H -A + V has no ground state degeneracy for
all allowed V’s. We will give necessary and sufficient conditions on K by
proving the following two theorems.

THEOnEM 2. IfR\K is connected, then H -A - V cannot have a degenerate
ground state ]or any positive V in Loo (Rn\K).

THEOREM 3. I] R’\K has m or more components, then there is a positive V
in LoI(Rn\K) such that the ground state o] H -A + V is m-]old degenerate.

Remarlcs. 1. Since K is a closed set of measure zero, Co(R\K) C (-/)
(V) is dense, and so H -A + V is definable as a sum of forms.

2. One can also prove by the methods we use that if R\K has precisely m
components, then the ground state never has degeneracy larger than m.
We give two proofs of Theorem 2. The first (2) exploits path integrals

and the second (3) decomposibility ideas which in the context of quantum
mechanical problems go back to Segal [19]. One proof uses arcwise connected-
ness, the other topological connectedness.

2. Path Integral Proof.

In this section we use the machinery of path integrals and the Feynman-Kac
formula. For a brief introduction, see Nelson [16] or Reed and Simon [18];
for more detailed discussion, see Ciesielski [3], Ito and McKen [12], or Kac [131.
We note that Kluder [15] has emphasized the pth integral picture ssocited
with his phenomenon.

Let be Wiener measure on paths 0 in R with (0) x. Thus,

(exp
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Let V >_ 0 be in Llo1(), where 2 C R is the complement of a closed set of
measure zero. Let H -A -t- V. The Feynman-Kac formula states that
for >_ 0 (and for suitable functions ])

(exp (-tH))(x)= f exp (-fo V((s))ds)((t))d().
Remarl. If s > 0 and N C R is a set of mesure zero, then ((s) N) 0.

Thus 0 fo ((a) N)ds f meass (s) N d(). It follows
that for lmost every , (s) N for almost every s.

This implies that o V((s)) ds is unchanged if we change V on null set.
It is possible that o V((s)) ds is infinite for certain pths , but in that cse
we interpret exp (-fot V((s)) ds) as zero for those paths.

It is esy to check the formula for the case when V is in L by expanding
in u power series in V. The general case follows by monotone convergence
for forms (see [9], for instance) nd for integrals.
We need some information about paths lying in a subset of R. Let be
n open set in R" and let a(M) ( M liesin). Then 5,the
Laplacian in with Dirichlet boundary conditions, may be defined by

=f d(exp (t,))(x) l((t)) ,
LEMM 1. Let be an open connected set in R. Then exp (tA) is an integral

operator with strictly positive kernel on L().

Remarl. The Dirichlet boundary conditions defined by the restriction
paths to lie in agree with the conditions given by a Friedrichs extension
method. While this is true for arbitrary (see [3]), here we define A, in terms
of the pth description, and the equiwlence will only be required for cubes
where it is easy to establish.

Proo]. It is clear from the definition that if ] 0, then exp (tA)] 0,
so exp (tA) has a positive kernel. To show that it is strictly positive, it is
sucient to show that if meas S 0 snd x 1 on S, 0 elsewhere, then

(exp (tA)x) (x) ((t) ) > 0.

Consider first the case when is a cube. Then it can be shown that A is
the classical Dirichlet Laplacian and by separation of variables this Laplacian
has non-degenerate ground state with strictly positive eigenfunction. By
an argument of Faris [7], exp (tA) is ergodic and then by an argument of Simon
[22], it has a strictly positive kernel.
Now le be arbitrary. Let be ph lying in such that (0) x nd

(t) S essentially (that is, meas (S U) > 0 for all neighborhoods U of
(t)). Cover by cubes C, C C such that (0) x
nd C C+ has non-empty interior (see Fig. 1). Since the cubes ll lie in
we have
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u, (co(t) S) > u (s) C;if
(j- 1)t <s < allj o(t) S

n n’

This is the sme s sying that

(exp (tA)x)(x) [ (exp (--in
where P is multiplication by xc But the lst expression is strictly positive,
by the result for cubes and the fact that the cubes overlap.

LEMMA 2. Let be an open set in R". Let V 0 be locally L in . Fix
> O. Then ]or almost every x and almost all paths starting at x and lying

Cn e, o’ v((s)) ds < .
Proo]. Let be sequence of compact sets with C+," and ,, .

Let V Vx,,,, where x 1 on , 0 elsewhere. Thus V,, L for each m.
Since the unrestricted Wiener measure is translation invariant, we have

Hence

Figure 1
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It follows from Fubini’s theorem that

fff ’ fdx d.(o) V.,(co(s)) ds V,(x) dx <

and hence for almost every x R" and almost every path in R",

fo’ v(())< .ds

In particular, for almost every x R and almost every path lying in
fo* V(o(s)) ds < o. Since the paths re continuous, almost every path lying
in gt lies in some . Hence for Mmost every x and almos every path lying
in t, fo* V(o(s)) ds < o.

Proof o] Theorem 2. By the Feynman-Kac formula, if ] > 0 then exp(-tH)]
_> 0. Thus exp(-tH) has a positive kernel. We will show that it has a strictly
positive kernel by showing that if meas S > 0, then exp(-tH)xs is strictly
positive Mmost everywhere.

Let gt R\K. Since the set of all paths from x to S which lie in 2 is a subset
of the set of all paths from x to S,

(fo(exp (-tH)xs)(Z) exp V(oo(s)) ds)
_> exp V(oo(s)) ds)

Since P. is open and connected, by lemma 1 a(o(t) S) > 0. But since V
is in L locally in t, by lemma 2, for almost all x and almost all o starting at x
and lying in ft, fot V(co(s)) ds < . Thus for almost all x the integrand of
the path integral is strictly positive on a set of strictly positive measure, and
hence the integral is strictly positive.
The proof is concluded by noting that semigroups exp(-/H) with strictly

positive kernels have generators H without ground state degeneracy [11].
Proo] oJ Theorem 3. Let Vo(x) x -[- [dist(x, K)]-a. Then Vo Loo(R\K)

Moreover, since -zX + Vo _> -zX + x, -z - Vo has purely discrete spectrum.
Let x and y be in distinct components of R\K. Let o be a path from x to y
which is HSlder continuous of order 1/2. Then since o must go through K to
get from x to y, f dist(o(t), K)- dt . So for x and S in distinct components
of R"\K, the Feynman-Kac formula gives

(exp (-t(- A + Vo))Xs)(X) f(,)es exp (--fo’ Vo(O(s)) ds) dt,(o)

Thus if ft ft_ are distinct components of R\K and ft is the union
of the other components, then L(R\K) @0.L(ft,) and under this de-
composition exp(-t(-A -[- Vo)) e-’ @ @ e-. Now A A
all have discrete spectrum. So by adding suitable constants c c to
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A1 Am we can ensure that (A1 -- c,) ( (A, d- c,) has an at least
m-fold degenerate ground state. We let V Vo d- Zki Ckk where xk is
1 on 2k 0 elsewhere. Then H -A - V has an at least m-fold degenerate
ground state.

Remark. Since Wiener paths are HSlder continuous of order 1/2-e, dist(x, K)-3

can be replaced by dist(x, K)-:- without any change in the proof. Actually
we expect that, at least for reasonable K, dist(x, K)-1 will suffice. Our expecta-
tion is based on two facts. (a) Quadratic form considerations suggest that
if (-A) and fdist(x,K) -1 I(x)l < ,then 0onK, at least if
K is a smooth manifold of codimension 1 (see Agmon [1]). Thus the quadratic
form mechanism that causes Klauder’s phenomenon in one dimension to occur
at x-1 potentials [21] should work in more than one dimension. (b) In one
dimension it has been proven that almost every path from x 1 to x -1
hasf](t)1-1dr [5, 6].

3. Differential Operator Proof.

Our second proof of Theorem 2 rests on the following criterion for non-
degeneracy of ground states (see Segal [20], Simon and HSegh-Krohn [23]
or Faris [9]).

Definition. A configuration projection is a projection in L(M, ) which is
multiplication operator. A bounded operator is called indecomposable if it

commutes with no configuration projections other than the trivial ones 0 and 1.

LEMY[ 3. I] H is a semi-bounded, sel/-adjoint operator acting in L(M, )
such that exp(-tH) is positivity preserving and indecomposable, then H has no
ground state degeneracy.

We also need a basic perturbation lemma.

LEMM 4. Let Ho and U be positive sel]-adjoint operators acting in L(M, ,).
Suppose (H) (Ho) (’ (U) is dense. Let H Ho d- U as a sum o] ]orms
on (H) and let io be the self-adjoint operator whose ]orm is the closure of the
restriction of Ho to (H). Suppose that U is a multiplication operator. Then
exp(-H) is indecomposable i] and only i] exp(-/o) is indecomposable.

Proo]. Let U rain(U, n). Then it is easy to see using monotone con-
vergence theorems for forms [9] that/o - U -- H in the strong resolvent
sense and that H U. -o /o in the strong resolvent sense. Thus by the
Trotter product formula

exp (-tH) lim lim (exp (-tlo/m) exp (-tU/m))

exp (--to) lim lim (exp (--tU/m) exp (+tU,/m))

with strong convergence. It follows that a configuration projection commutes
with exp(-tH) if and only if it commutes with exp(-t/o). But by the func-
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tional calculus, for any semi-bounded, self-adjoint operator A, a projection P
commutes with exp(-tA) for all if and only if it commutes with exp(-A).

Proo] of Theorem 2. Consider V _> 0 in LoI(Rn\K). Let Vn rain(V, n).
Then H -A - V lim,, (-A V) (strong resolvent limit), by a mono-
tone convergence theorem for forms. Hence

exp (-tH) lim lim (exp (t/X/m) exp (-tV,/m))

(strong limit), so exp(-tH) is positivity preserving. Thus by Lemma 3 it is
sufficient to prove that exp(-H) is indecomposable. But by Lemma 4 for
this we need only prove that exp(-o) is indecomposable.
Now/o is a quadratic form whose form domain contains Co(R"\K) and

is contained in (-A). It follows that Co (Rn\K) C (/o) and the operators
o and -/ have the same restrictions to Co (R\K).

Let P be a configuration projection commuting with exp(-/o). Then P is
multiplication by some function xz Since )(/o) {1 exp(-t/0) is C’
art 0}, (/o) implies that xsO (/o) and/o(Xs) x(o).

Define supp S /x meas (S N) 0 for every neighborhood N of x}.
Let OS supp S supp (R\S). We claim that OS C K. Let x K. Choose
4, Co(Rn\K) so that 1 near x. Since )(/o), x )(/o), so
o(X) x(/o) x(-/) 0 near x. Thus Ax 0 near x. By the
elliptic regularity theorem, no is, after change on a set of measure 0, C" near x,
sox@ OS.
Thus supp S ’ supp (R\S) C K. Since supp S supp (Rn\S) R

nd the support is closed, the hypothesis that R\K is connected implies that
either supp S C K or supp (R\S) C K. Since K has measure zero, P 0
or P 1. Thus exp(-to) is indecomposable.

Remark. There is n alternative proof of Lemma 4 which uses the operators
directly instead of going through the semigroups [9]. A variant of this ide
may be used to show that H -A -t- G cannot have ground state degeneracy
even in certain cases when G is not a multiplication operator.

THEOREM 4. Assume that -G is positivity preserving and that G is relatively
bounded with respect to/. Then H -/ - G cannot have ground state degeneracy.

Proof. A perturbation argument [7] shows that exp(-H) is positivity
preserving. In order to be able to apply Lemma 3 we need to show that it is
also indecomposable.

Let multiplication by x be a configuration projection which commutes with
exp(-H). It must also commute with H and in prticular leave )(H) in-
variant. But since G is relatively bounded, )(H) (A), so it lso leaves
(/) invariant.

If x 1 nd is smooth with 1 near x, then x is in (h) and x x
near x. Hence Ax L near x. By Lemma 5, x is constant. This proves
indecomposability.
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LEMMA 5. I] X on R is 2-valued and 5x Loc (R ), then x is equal almost
everywhere to a constant ]unction.

Proof. We suppose that x takes on the values 0 and 1. Since )(--A)
C2(02/0xl2) )(O2/Ox) we know that x/(x Loc (R) In

particular O/Ox Loo(R) C Llol(l:l-n).
This implies that. for almost every yk (xl x-i x/ x,),

Ox/Oxk L (R’) as a function of x Hence for almost every y
x is equal almost everywhere to a continuous function of x For each y
this function must be 0 or 1. Let x be the function on R which for fixed
y is equal to this corresponding constant function of x Then for almost
every y R-, x is equal to xk for almost every x Thus x is equal to
almost everywhere.

Since this is true for each k, it follows that x x x almost every-
where. Since each x is independent of x, x const almost everywhere.
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