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FLUCTUATIONS IN P(#) ,  PROCESSES 

Princeton University 

Let H = -d2/dx2 + P(x) on L2(W, dx) and let E = inf spec ( H ) .  Let 
be a normalized vector with H a  = E n .  Let q(t)be the Markov process 

with generator G = a-l(H - E ) a ,  which is a Brownian motion with drift. 
We investigate behavior of q(t)as t - oo and in particular prove that if 
P(x)= azmx2m + . . + ao; azm > 0, then 

lim supt,, 1if'q(s) ds/(ln t)'Izm = ( ~ z m ) - ' / ~ ~  

with probability one. These represent fluctuations in the sense that the 
liminf is -(azm)-1/2m. We obtain some weaker results for the P(4)2 
Euclidean field theory. 

1. Introduction. The theory of Markov processes [7, 8, 27, 281 has generally 
been developed on a fairly abstract level; the prime concrete examples which 
have been studied are Gaussian Markov processes [5, 25, 321. It is our goal to 
study a particular class of non-Gaussian processes in which interest has been 
aroused by developments in constructive quantum field theory [37, 45, 491. In 
addition to the intrinsic interest in these processes, it is our hope that the study 
of these specific but non-Gaussian processes will be of use in the general theory. 

We are interested in certain properties of the P($),  Markov process which 
can be described as follows. Let 

be an arbitrary polynomial which is bounded from below. Le H be the differ- 
ential operator 

where Eo is chosen so that H has zero as its smallest eigenvalue. General argu- 
ments [2, 33, 391 assure one that His essentially self-adjoint on COm(R).Moreover 
[15, 471 there is a unique positive function Q(x )with HQ = 0 and Q 2  d x  = 1 .  
Let dv = Q2(x)d x  and let G be the operator Q-'HQ on L2(R,dv) .  Then since 
H Q  = 0, we have G1 = 0. oreo over, since e-tH is positivity preserving, so is 
e - t ~. The P(# ) ,  Markov process is the process q( t )with initial distribution d v ( x )  

and transition function 

E ( f ( q ( t ) )I q(s ) )  = (e-'t-s'Gf ) (q(s ) )  . 
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This is the Markov process with generator G and invariant probability measure 
dv . 

This process can also be described as a Brownian motion with drift since it 
satisfies 

dq(t) = 24 dW(t) + r(q(t)) dt 

where W(t) is Brownian motion and r = 2Q'/Q. 
In case m 2 2, there is another natural description of the process. For con- 

sider first the case P(X) = $X2. Then {q(t)} is a Gaussian process with covariance 

and is thus the familiar Ornstein-Uhlenbeck velocity process [36]. We realize 
dp, throughout this paper as a measure on C(R1), the continuous functions on 

R.F,,,,, = exp(- P(q(s)) ds)/N ,,,,, where P(x) = P(X) - +X2, and N,,,,, = 
1 dp, exp(- 1; P(q(s)) ds) is a multiplicative functional [8] over dp, [37], and so 
by the standard procedure defines a new Markov process. That this is just what 
we have called the P($), process above is part of the content of the Feynman- 
Kac formula [30, 31, 351; see Section 4. We note that because of the above 
construction, what we have called the P(#), process is sometimes called the 
P(#)l process. 

A final way of describing the process is to define a measure dp on C(R1) as 
follows. Let C,,,,, denote the o-algebra generated by q(s), a 5 s b. Then 

dp 1 C,,,,, is absolutely continuous with respect to dp, 1 Z,,,,, with Radon-
Nikodym derivative 

where N is a normalizing constant. Then [22], the P($), process is q(s) on 

(C(R1)9 d ~ ) .  
These processes can therefore be described in terms of Q, r, P or P. We choose 

the description in terms of P partly because we wish to make contact with con- 
structive field theory, and partly because our results seem to be described most 
naturally in terms of P (see the remarks at the end of the introduction). We 
note that P - E, is determined by r through the equation 

In particular, the simple example of r(x) = -2xZm+l leads to P = x4"+, -
(2m + l)xZm. 

Our purpose in this note is to distinguish the support of the measures dp on 
C(R1) which result for different P's. These measures are disjoint since one has: 

THEOREM Let (M, C) be a measure space with a measurable action t +T,1. 
indexed by R. I f  dp, and dp, are two distinct probability measures, both ergodic for 
the action T,, then they are mutually singular. 
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REMARKS1. This result is a standard one in ergodic theory. It has recently 
been emphasized by constructive quantum field theorists in their study of the 
P(#), process; see Frohlich [13], Lenard-Newman [34] and Schrader [42]. 

2. One proof of Theorem 1 suggested to us by H. McKean employs the 
individual ergodic theorem. For let A E 2 be a.set with pl(A) # p,(A). Let 
Si = {m E M 1 lim,,, 1/T \,T xa(Ttm) dt = p,(A)}. Then S, n S, = 0but pl(Sl) = 

p,(S,) = 1. 
3. A second proof depends on the fact that the finite invariant measures form 

a convex simplicia1 cone whose extreme rays are the multiples of ergodic proba- 
bility measures. Moreover, two invariant measures are disjoint if and only if 
their greatest lower bound is 0. This is automatically true of distinct extreme 
rays. 

Now let PI and P, be distinct polynomials with PI - P, nonconstant and let 
pl and p, be the corresponding P(#), measures. If pl were equal to p,, then, in 
particular, we would have that (Q"))2 dx = (Q'2))2dx SO Q(l) would equal 0(2). 
But since Q-l(Q") = P - E,, we would have P, - P, = const. Thus pl and p, 
are distinct and so ~nutually singular. 

Our direct goal is to study the fluctuations of the paths q(t) on which the 
measures dp are concentrated, and exhibit their dependence on the polynomial 
P. The ergodic theorem assures us that with probability one 1/2T ST, Iq(t)l dt 
approaches a constant, so "on the average," the paths are bounded. On the 
other hand, one expects, and we will show, that lirn sup,,, \;+l q(t) dt = oo 
with probability one. Our major results will involve suitable P-dependent func- 
tions f(n) and g(n) with lirn sup,+, f(n)-l[\;+l q(t) dt] a finite nonzero constant, 
c, with probability one and sharper results involving further P-dependent con-
stants, d, with lim sup g(n)-'[[\;+' q(t) dt] - cf(n)] = d with probability one. We 
will also give some similar but weaker results for certain P(Q), theories. While 
one can obtain some information about P given the process, from our results, 
more efficient ways of finding P are available; for example, one can use the DLR 
equations [22]. 

Results on fluctuations of Gaussian processes go back to the law of the iterated 
logarithm [28], and there are results on the fine structure of the fluctuations due 
to Erdos [9] and Watanabe [50]. Asymptotic behavior of certain non-Gaussian 
processes have been obtained by Gihman and Skorohod [14] for processes quite 
different from the ones we consider. Our work is partially motivated by, and 
our results generalize, the work of Collela and Lanford [3] who studied the 
Gaussian case and proved among other things that for the case P(X) = $ X 2 ,  
with p,-probability one, 

(3) lirn sup,,, q(t)/(ln t)b = 24 . 
Our results typically will involve growths slower than (In t)l and this is easy to 
understand. If deg P > 2, the extra exp(-P(q(s))) gives smaller weighting to 
q's which have very large values and so the growth of the fluctuations is smaller. 
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There is another important difference in the P($), for deg P > 2 as compared 
with the Gaussian case. If deg P = 2m, we will find that 

(4) lim sup,,, q(n)/(ln n)ll("tl) = c > o ;  C < m ,  

( 5 )  lim sup,,, q(s) ds/(ln n)lI2" = d > 0 ; d < oo .\;+l 

Thus the growth of the fluctuations of q(n) is much more rapid than the growth 
of the fluctuations of S E t l  q(s) ds. As a result, in the non-Gaussian case, the 
fluctuations of q(t) are very sharp. The critical difference is that in the Gaussian 
case q(s) - e-it-Sq(t) is independent of q(t) so that if q(t) is large there is only 
a mild restoring effect tending to make q(s) smaller for s near t .  In the non- 
Gaussian case we are learning that the restoring effect is much greater; that is, 
the distribution is strongly dependent on q(t). 

Let us next say a word about our proofs of (3)-(5). If X,(w) is a family of 
independent identically distributed random variables, then it is easy to find 
lim sup X,(w)/f(n) in terms of the distribution function for X ;  in fact, there is a 
simple intuition. In f(n) is defined so that Pr (X(w) > f(n)) = n-', then we expect 
that about n trials will yield a value at least as large as f(n) and not one very much 
larger. Thus, in the independent case, one expects that lirn sup X,(w)/f(n) = 1 
with probability one. Our first step (Section 2) will be to show that on account 
of an "exponential decoupling" built into the measures dp, the q(n)'s and 
\;+I q(s) ds r q(n) are "almost. independent" as n T,oo to the extent that obtain- 
ing lim sup results is restricted to controlling the distribution functions for q(0) 
and q(0). Since the distribution functions are explicitly known in the Gaussian 
(P(X) = ax2)  case, we will be able to easily recover the Colella-Lanford result 
(3) (see Section 3). The behavior of the distribution function for q(0) at infinity 
is known by ordinary differential equation methods [6, 261 but we will have to 
work to control the distribution function for q(0) (Sections 4, 5) and, in par- 
ticular, we will require recent estimates proven by J. Rosen [41]. We are then 
able to discuss fluctuations in the Y($ ) ,(Sections 6, 7, 8) and to a lesser extent 
the P($), Markov processes (Section 9). 

The question of whether to emphasize the labeling of the process by P, C2 or 
r is to some extent dependent on whether one wishes to emphasize q or q. The 
probability density of q is Q2 dx, or in terms of the drift 

As we shall see, the probability distribution for q is asymptotically expressed 
most naturally in terms of P. 

2. The Borel-Cantelli lemma for h-mixing algebras. Let (X, 2 ,  p) be a prob- 
ability measure space and let h be a given function from Z+ to (0, oo). A se- 
quence 2, of a-subalgebras of 2 is called h-mixing if and only if for any 2,-
measurable f and any 2,-measurable g 

(6a) ISfgdp - (Sf dp)(S sdp)l s h(ln - ml)llfllzllgllz; 



159 NON-GAUSSIAN MARKOV PROCESSES 

see e.g. [ l ]  for many properties of such sequences. (6a) is easily seen to be 

equivalent to various other statements. For example, if P(S) = S ~,d,u for 

S c 2 ,  then (6a) implies 


for all S, e 2,; S, e 2,. Alternatively, if Q, is the L2-projection onto all 2,-

measurable functions with 1f dp = 0, then 


( 6 ~ )  llQ,Q,ll 5 h(ln - mi) . 

We will see below that the P($), process is h-mixing for h(n) = exp[--a(n - l)] 

for suitable cr and suitable a-algebras, 2,. 


The following proposition generalizes the classical Borel-Cantelli lemmas: 

THEOREM2. Let 2, c Z be h-mixing for an h with 

C&l  h(n) = p < 03 

I f  S, E Z, and we let 

(7) sw= n~ (UL, sm) 

be the set of points in injinitely many S,'s, then 

(gal P(S,) = 0 if CZl P(S,) < 00 , 
(8") P(S, )=l  if C & l P ( S , ) = w .  

PROOF. Since x e S, if and only if C;=l zs,(x) = w and under the hypothesis 
@a), E ( C E ~  zs,) < w ,  (8a) is immediate. 

To prove (8b) we appeal to a theorem of Erdos and RBnyi [lo] which states 
that P(S,) = 1 if C,"=, P(S,) = w and 

(9) lim inf,,, CtjE1P(Si n Sj)/(C;=l P(Si))2 = 1 . 

We will show that h-mixing and (8b) imply (9). By the definition of h-mixing, 

(9) certainly follows if we can prove 


But since h(ji - jj) defines a bounded (convolution) operator on 12: 

(Cz",j=l h(li - jl)P(Si)bP(Sj)h)2 P C?=1P(Si) 

so the expression on the left of (10) is bounded by ,8/C;=1 P(S,) which goes to 
zero by hypothesis; (8b) is thus proven.' 0 

REMARK.See the appendix for a proof of (8b) independent of Erdos-RBnyi. 

The'relevance of Theorem 2 to the problems we are considering is: 

THEOREM Let (M, 2 ,  p) be the P(#), process for some Jxed poljnomial P. 3 .  
Let 2, be the a-algebra generated by {q(t) I n 5 t 5 n + 1). Then there is a > 0 
so that {2,} are h-mixing with h(m) = exp(-a(m - 1)). 

PROOF. We will prove (6a). It is well known (e.g., [29, 40, 431) that H has 
purely discrete spectrum and that ([2, 15,471) 0 is a simple eigenvalue of H. Thus 
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G has the same properties, 1 is its ground state and for any F,, F2E L2(R, dv) 

where a = inf (spec (H)\{O}). Now let n 5 m be fixed. Let Elk) be the a-algebra 
generated by q(k) and let E, be the conditional expectation w.r.t. Elk). Let fl 
be C,-,-measurable and f2  2,-measurable. Then, by the Markov property, 

where F,(q(n)) = E,(fl - E(fl)) and F2(q(m)) = E,(f2 - E(f2)). Thus, by (11) 
and the definition of the Markov process: 

IE(flf2) - E(fl)E(fZ)l = I(F1, e-tGF2) - (Fl, 1 x 1 ,  F2)I 

5 e-lm-mlEl I2l f l l l 2 l l f 2 l  

where we have used the fact that conditional expectation is a contraction on L2 
in the last step. 0 

3. The Colella-Lanford results (Gaussian process case). Let us consider the 
Gaussian process with 

(12) E(q(s)q(t)) = e-4t-sl 

which is the P(#), process for P(X) = ax2.We will discuss lim sup,,, q(n)/(ln n)b. 
A similar argument allows one to discuss lim sup,,, !;+I q(s) ds/(ln n)b and the 
process when P(X) = a x 2  for any a > 0. The arguments in Section 8 would 
allow us to obtain the Colella-Lanford results on lim sup,,, q(t)/(ln t)h. 

THEOREM For the Gaussian process with covariance (12), with proba- 4 ([3]). 
bility 1, 

lim sup,,, q(n)/(ln n)4 = 21 . 
PROOF. Since q(n) has probability distribution (27~)-4e-"~/~ =dx, P(q(n) >= X) 

e-~ ' /~dy.It is easy to prove the estimates for a > 0: 

for suitable c,, c,. Let 
A, = Iq(n) 2 (2(ln n))41 

Then, by (13) 
p(A,) 1 cl(l + (2(ln n))4)-1n-1 

so Zp(A,) = oo and thus by Theorems 2 and 3, p(A,) = 1. Fix a < 4,a > 0, 
and let 

B, = {q(n) >= (2(ln n))i + a(ln n)-a) . 
Then, by (13) and e-" 5 c , x - ~ ,  all k > 0, 

1;(27~)-4 
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Choosing k large we see that Cp(B,) < oo, so by Theorems 2 and 3, p(B,) = 0. 
The theorem is now proven. 0 

Actually, we have proven more, namely: 

(14) lim sup,,, (In n).[q(n) - (2 In n):] = 0 

with probability 1 if a < 4. Similar arguments prove that with probability 1, 

lim sup,,, (In n)b[q(n) - (2 In n):] = oo , 

or more strongly that 

(15) lim sup,,, {(ln n)b[q(n) - (2 In n)b]}/ln (In n) = $21 . 
NOTE 1. (14) and (15) are statements about the fine structure of fluctuations 

in the path. 

NOTE 2. Since q(t) given by (12) is related to Brownian motion W(t) by 

Theorem 4 and (15) are related to the asymptotics of Brownian motion. For 
example, the continuous version of Theorem 4 is just a restatement of the law 
of the iterated logarithm [28], and (15) follows from results of Erdos [9] on the 
behavior of W(t) near t = 0 (since W(t) = tW(l/t)). 

4. Controlling the characteristic function at imaginary argument. Let us 
now fix a polynomial P and let d p  be the corresponding P(#), Markov process 
measure. Let q(t) be the corresponding process and define 

As in Section 3, to use the Borel-Cantelli lemma we need to have information 
on the distribution functions 

(17a) D(a) = pIq(0) > a} 7 

as a + oo. As a preliminary to obtaining this information for ~ ( a )  we will study 
in this section the function 

( 1 7 ~ )  C(a) = exp ( -iaq(0))dp 

when a = ip with ,5 real as ,4 + oo. Our key tools will be the Feynman-Kac 
formula, the variational principle and certain technical estimates of J. Rosen 

[41]. In our analysis, we reverse the classic approach of constructive quantum 
field theory [16] where probability methods are used to study operators via the 
Feynman-Kac formula and use operator theoretic methods (e.g., the estimates 
of Rosen [41] have an operator theoretic proof) 'o study probability measures, 
again via the Feynman-Kac formula. 

Let H be given by (2) and let Q be given by requiring HQ = 0, Q > 0 and 
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11Q1I2= 1. Then the Feynman-Kac formula we need is: 

(18) C(iP) = 1 exp(pq(0)) dp = 1 [e-(G-fiq)(l)]dv = (Q, exp[-(H - pq)]Q) 

which follows easily by Nelson's method [35] of using the Trotter product for- 
mula and the transition (dv, G, 1) to (dx, H, Q) (see e.g., [45]). Thus we define 
H(P) = H - pq, let E(P) be its lowest eigenvalue and Q, the positive correspond- 
ing eigenvector for H(P). On account of (18) and the estimates ($, A$) 5 
IIAII I I $ I I "  (Ai#>$)" 11#112($, A$), we have: 

PROPOSITIONFor all real P: 5. 

(Q,, Q)2 exp(-E(P)) 5 5 exp(-E(P)) . 
Control of C(iP) is thus reduced to control of E(P) and (Qp, Q,). 

PROPOSITION For ,4 real, let P*(P) be the Legendre transform of P [ l l ] :  6. 

Then, letting deg P = 2m: 

(20) P*(P) - R(P) 2 -E(P) 5 P*(P) + Eo 

where R(P) = ) a s p + , .O(P"'+1)/(2"-11 

NOTE4. Using methods of Combes [4], one should be able to show the quoted 
behavior on R(P) is best possible. 

PROOF.Since H(P) = -(d2/dx2) + P(P) - PX - E,, we certainly have E(P) 2 
inf (P(x) - px) - E, = -P*(P) - Eo, proving one half of (20). 

On the other hand, for P large, let xB be the unique point where px - P(x) 
takes its maximum so ,4 = P'(x,) and xB = O(p1/(2?n-1)).Letting $Bbe the trial 
function 

(ground state for -d2/dx2 + ~P"(x,)(x- x ~ ) ~ ) ,it is not hard to see that 

($p' H(P)#,) = P(xB) - Pxp + 0(P" (~p)~)  
whence 

E(P) 2 -p*(P) +'O(P("*.1)l(2"-')1 7 

proving the other half of (20). 1 
PROPOSITION7. In (Q, Q,) 2 -O(P(m+1)/(2?n-1))US p ,,. 


PROOF.We first use an idea from [44]: Let dv = Q2dx. Let f, = QpQ-l SO 

that 1f p 2  dv = 1. Then, by Jensen's inequality w.r.t. the probability measure 
fP2 dv: 

In (Q, QB) = In 1f p  dv = In 1fB-'(f,)Vv 

r- - 1  f;lnfBdv. 
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Now Rosen's supercontractive logarithmic Sobolev inequalities [41] for G = 
O-'HQ on LZ(R, du) assert that 

iff is normalized where the inner product is in L2(R, dv). Moreover, i f f  is 
normalized, the spectral theorem and Holder's inequality assert that 

( 2 0 ~ )  (f, (G + f )  2 (f, (G + l)f)("+1)'2". 

Thus>by (20a-c) and (f,, (G + l)fB)L2(dv)= (Q8, (H -k 1)QB)L2(dz): 

(21) 	 In (Q, Q,) >= -c(Q,, .( H  + 1)Q,)(m+1)12" 

Now, by Proposition 6 and Note 3, 

(Q,, (H  + l)Q,) = 2(Q,, (H(P) + $)Q,) - (Q,, H(2P)QP) 
-1 2E(P) + 1 - E(2P) = O(PZ""2"-1)> . 

From this and (21), the proposition follows. 0 

From Propositions 5, 6 and 7, we conclude the main result of this section: 

THEOREM Let P have degree 2m and let P* be its Legendre transform (given8. 

by (19)). 	 Then, for some k: 

c(P) 5 (const) exp(PW(P)) all p 
e(p) 2 (const) exp(P*(p) - k,B(m+1)l(2m-1) all) p 2 p,, . 

5. The distribution function for q and q. In this section, we find the large a 
behavior of the functions D(a) and D(a) of (17). We first use our results from 
Section 4 to control D and then the results of Hsieh-Sibuya [26] to control D. 
Upper bounds on D are easy to obtain from upper bounds on C: 

PROPOSITION Let f be a random variable and dejne Cf(ip) = E(exp(Pf)),9. 
Df(a) = Pr (f 2 a). Suppose rhat Cf(iP) 5 exp(g(P)) for some g. Then for a >= 0 

where g*(a) = maxgZo(aP - g(b)). 

PROOF. Clearly E(ebf) 2 ee@D(a)for a ,  p 2 0. Thus 

The lower bound is considerably trickier and we are grateful to D. Newman 
for fruitful suggestions on how to go about finding lower bounds on ~ ( a )  given 
upper and lower bounds on e(P). By Proposition 9 and Theorem 8, we have 

~ ( a )5 C exp (- P* *(a)) . 
By a general result [ l l ] ,  P** is the convex hull of P(i.e., {(y, x) I y 2 P**(x)) is 
the convex hull of {(y, x) 1 y 2 P(x)}); so, in particular, 

(22) 	 d(a)  5 C exp (- P(a)) > QO 
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since P is convex for large x. The basic idea of the proof below is the following. 
Suppose that D(a,) is "significantly less than" C exp(- P(a,)). Then since D is 
monotone decreasing, the bound ~ ( a )  5 ~ ( a , )a 2 a, is better than (22) for 
a c (a,, a,) where a, is determined by D(a,) = C exp(-P(a,)). Now choose a 
value of @ so that 1 exp(@q(O)) dp has its value primarily from the points where 
q(0) 2. +(a1+ a,). Then we will obtain an upper bound on C(P) "~on's iderabl~ 
better" than what we would get by taking the bound (22). But the bound (22) 
leads essentially to an upper bound C exp(P*(P)) on e(p) so we obtain a "con- 
siderably better" upper bound on e(@) than C exp(P*(P)). If it is sufficiently 
better, we will obtain a violation of the lower bound of Theorem 8. 

THEOREM10. I f  D is the distribution function for 1; q(s) ds in the P(#), Markov 
process with deg P = 2m > 2, then: 

~ ( a )5 const exp (- P**(a)) all a 2 0 

D(a) 2 const exp ( -P(a) - Q(a)) 

where Q(a) = O(a*m+))as a -+ oo. 

REMARK.For a large, P(a) = P**(a). If P is even and all a,'s are nonnega- 
tive, Pja) = PX*(a) for all a. 

PROOF. AS we have already noted, the upper bound on D follows from Prop- 
osition 9 and Theorem 8. As a preliminary for the lower bound we note that 
for ,G 2 0 

In the above, the upper bound already proven justifies the integration by parts. 
To fix notation, let us rewrite (22) and the lower bound in Theorem 8 explicitly 

(224 ~ ( a )g C, exp (- P* * (a)) a 2 0  

(22b) c (@)2 C, exp(P*(P) - k@(m+l)l(zm-l) P 2 P o .1 
If necessary, increase @, so that 

' ( 2 2 ~ )  1 < +c,exp(pX(p)- 1kp(m+1)l(2m-1) P 2  Po. 
Now we will pick successive constants L; A, such that 

(24) ~ ( a )2 C, e x p ( - ~ ( a )  - La#"+&) a 2 A, 

concluding the proof of the theorem. Equation (22) fixes the constants C,, C,, 
k, Po > 0. Now choose A, and E so that 
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Define k by: 
k = k(22ntmE)(nt+l)/(2nt-l)(25e) 


Next choose L so large that: 


L2($(22mmE)-2m(2m- l)E) 2 k + L , 

(26") 22mm~,~a+m+ie-~am+1 " 2  A,,< &c2 
( 2 6 ~ )  

22mmEC1pe-L a m + l  < 9c2 " 2  A,, 

(264 
2 4 m + l m ~ c l a * m - & ~ - l e - L , n t + l  < 9c2 " 2  A,. 

We can arrange (26b-d) by first choosing Lo so large that for L > Lo all the 
functions on the left of the inequalities are monotone decreasing for a 2 A, and 
then arranging for the inequalities to hold at a = A, by increasing L further. 
Finally choose A, 2 A, so that 

(27a) rnEAZrn-I2 Po ' - 4 2 4 ,  
22m 

(27b) -- EA2"-I 2 Po A 2  A,, 
2 

(27c) (22m-1- 1)EAZm2 LA#"+* A 2  A,. 

Now we claim that (24) holds. For suppose that (24) is false for some a, 2 A,, 
i.e. 

~ ( a , )  C, exp(- P(a,) - Laosm+*). 
Define a,, iu, ) by: 

(28b) P(a,) = P(ai) + La$"+&, 

( 2 8 ~ )  = &(a0+ q ) ,  


( 284  ,4 = Pt(iu) . 

We will obtain an upper bound on C(j) which violates (22b) and thereby es-

tablish (24) by contradiction. By (25c), P(a) is monotone for a > a, 2 A,, and 

by (25b), (27c) and the definition (28b) of a, P(2a,) > P(a,), so a, < a, < 2a,. 

Since P' is monotone on [a,, a,] by (25d), we have Pt(a,)(a, - a,) =< P(a,) -

P(a,) 5 Pt(2a,)(a, - a,) from which we obtain by (2%): 


(29a) (22mmEa,2m-1)-1La$m+~- (a, (mEa,2m-1)-1La$m+~I - a,) . 
From (25c) and a, c? 5 2a,, we also find 

(29b) rnE~~ ,2~- l5 p'i =< 22mmEa,2m-1 
so that, in particular, ,& 2 Po by (27a) and by (25e) 

( 2 9 ~ )  a o m + l k  2- kij(m+l)/(~m-l) 

Now consider the concave function 

(30a) Q(a) = a j  - P**(a). 

By (28d) and (25a), Q(a) has its maximum at a = iu so that using P*** = P* 

(30'3) Q(iu) = ~ * ( , 4 ). 
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Moreover, since Q'(a) = 0, we have for any a > a :  

where we have used the fact that Q" = -P" when a 2 A, (by (25a)). In par- 
ticular, taking a = a, in the above using (29a) with a, - a = &(a,- a,) and 
using (29a): 

- (2)s- 1)aom+lE- Q - 22mErn L2m(2m ; 

so by (26a) 
Q(al) 5 Q(a) - (k + L)aOm+'; 

so by (29c) and (30b) 

Similarly 


(30d) Q(a
0
) 
= 
< p*(p) - kj(m+l)l(zm-l)- Laom+, 


We have the following bounds on ~ ( a ) :  (22) if 0 5 a 5 a, or a 2 a,, and 
~ ( a )5 ~ ( a , )5 (28a) if a, 5 a 5 a,. Thus by (23): 

where we have written !; = 1;; + !,a, + s;,. ~ 0 ~ : 

by (30c), (29a), (29b) and (26b). Moreover 

where the first inequality uses the fact that Q is monotone increasing on (0, a )  
and the second uses (29b), (30d), and (26c). I n  addition, since Q(a) is monotone 
decreasing and concave in (a,, oo) 

1, 5 c,p !:, exp ( Q ( 4 )  da  

5 c,P S r1exp (Qt(al)(a - a,) + Q(al)) da  

5 Cl p(pt(al) - b)-l exp(Q(al)) 
5 QC,exp(~*(P)- 1 9k/j(m+l)l(2m-l) 
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where we have used (29b), (30c), (26d) and the inequality 

by (25d) and (29). Finally by (22c) we have 

All these bounds together imply that 

Since /I>Poby (27b) and (29b), we have the required contradiction with (22b). 0 
Next we turn to the distribution function D(a). Clearly D(a) = 5," Q2(x)dx 

by the definition of the Markov process. Fortunately the large x behavior of 
Q(x) has been analyzed by Hsieh and Sibuya [26]; see also Dicke [6]. We are 
thus able to conclude: 

THEOREM Define the polynomial Q(a) by1 1. 

as a-+ co. Then as a -+ co, 

PROOF.By the result of Hsieh-Sibuya [26], Q has the property that 

Q(x)/xa exp(-Q(x)) -k , a nonzero finite constant 

for a certain explicit a. Let o(x) = Q(x) - a In x. Then for a large: 

(k + E ) - ~ D ( ~ )  exp(- 2$(x)) dx 1; 5 
5 1;exp( -2 ~ ( a )+ 2(a - x)Qt(a)) dx 

= exp(-2&(a))/2&'(a) = exp(-2Q(a) + O(1n a)) 

where we have used the fact that Q is convex for large x. Also for a large, Q 
is monotone so: 

D(a) 2 6 exp (- 2&(a + 6)) 

= exp(-2~(a))6  e x p ( - 2 ~ ( a  + 6) + 2 ~ ( a ) )  

for any 6 > 0. If we choose 6 so that ~ ( a  - = 1, then 6ot(a) + 1+ 8) ~ ( a )  
as a -+ m; so 6 is certainly 2 [&'(2a)]-I for a large, so that 

D(a) 2 exp(-2~(a))e-~&'(2a)-~ 

= exp(-2Q(a) + O(ln a)) . 
EXAMPLES.If P ( X )  = x4+ a3x3+ a2x2+ alx, then Q(x) = 9x3+ aa3xz+ 

($a, - $a,2)x. 
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REMARK.Our bounds on D(a) are clearly only sensitive to those coefficients 
of P(X) = C;?!, a,Xn with n > #m + 3 while the bounds on D are sensitive to 
those with n 2 m; see Table 1 below: 

m D depends on D depends on 
2 a4 a,, 03 ,  a4 

3
 '6 '3, '4, '5, '6 

4 0 7 ,  a, a,>a,> a,> a?$a, . 
6. Fluctuation of the paths in P($),. As in Section 3, it is easy to combine 

detailed bounds on D, D and the Borel-Cantelli lemma to find the behavior of 
the fluctuations of the paths in the P($), process: 

THEOREM With probability 1 in the P($), Markov process: 12. 

lim sup Y(") = (a2,)-112m
(In n)'I2" 

where q(n) = \;+I q(s) ds and P(X) = a,,X2" + , . . . 
PROOF. We consider the result for g; the proof for q is similar. By Theorem 

10, for any E > 0 we can find a, so that for a > a,: 

(32) exp (- (a2, + ~ ) a ~ ~ )  - .s D(a) 5 exp( -(a2, ~ ) a ~ ~ )  

Let 
A, = {q I q(n) > [(a,, - 2 ~ ) - l l n  n]1/2m} 

B, = {q / d(n) > ((a,, + c)-l ln n)'12"} . 
Thus for n large, we know by (32) that: 

p(A,) <= exp(-[1 + (a,, - ~E)- 'E]In n) 
-- n-[1+~ia2n-2t)-1]  

~ ( 4 )2 a-' , 

so Cp(A,) < m, Cp(B,) = m. From Theorems 2 and 3 we conclude that with 
probability 1, 

lim sup q(n)/(ln n)'I2, j(a,, - 2 ~ ) - ~ ~ ~ ~  

lirn sup d(n)/(ln n)'Izm g (a,, + E)-~I~,. 
Taking E = 4, 5 ,  . . ., the result follows. 0 

We emphasize that since a similar proof shows that lim inf q(n) =-lirn sup q(n), 
these results are on fluctuations. We also note once more the dramatic difference 
between the growth of the fluctuations in q and in its average. 

7. Fine structure of the fluctuations. Fix a polynomial P. Let us define 
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numbers c,, . . . ,c~,,,-,~by demanding for large y that 

and numbers b,, . ., b,-, by: 

-lwhere h = 2 9  and & is given by (31). Here denotes the inverse function. 
The c's and b's are computable inductively from the coefficients C;?!, anXn of 
P by the binomial theorem and the c's only depend on a,; n > $m + 4and the 
b's only on a,; n 2 m. Thus, e.g., if P(x) = x4 + a,x3 + a2x2+ . then 

THEOREM With probability 1, in the P($), Markov process: 13. 

lim sup 1(In n)"-l/m+l (m + l)llm+l (In n)lim+l - C-'GZ b,(ln n)-il"+l 
(a2m)1'2m+2 

= bm-, 
and 

(In n)[m/z-21/2m - - c~,,,-,~lim sup 1 [q(n) -(In n)1'2m C!n;2-31ci(ln n)-"'"]j = 

REMARKS In cases where the sum has terms (i.e., m 2 2 in 1. one or more 
the q case; m 2 4 in the q case) we are actually saying one can draw two curves 
which approach each other asymptotically so that the maximal fluctuations 
asymptotically fall in between the curves. 

2. The order m - 1 for q and [m/2 - 21 for g are determined as the best we 
are able to obtain given our error estimates. 

PROOF. Let us prove that the second lim sup is less than cIm,z-21 + E for any 
E .  The other parts are similar. Let 

Then since ~ ( a )  for dc large (by Theorem 10): 5 C exp(-P(a)) 

p(An) jexp[-ln n - al,tm&(ln + O((1n n)[~mli2m)] n)[~m+11/2m 

for n large since exp(-6xs) 5 x-"or any y, 6 > 0 and sufficiently large x. Thus 
Z,u(An)< co so the lim sup in question is less than c,,,~-,, + E .  0 

8. Fluctuations of the continuous paths. 

THEOREM14. Let g(t) = S:+l q(s) ds. Then lim sup,+, q(t)/(ln t)ll2% = 
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REMARK.It may be possible to obtain a similar result for q(t) by following 
some of the ideas in [3] but this would require detailed upper bounds on the 
probability distribution for the moduli of local Holder continuity for the paths 

d t ) .  

PROOF. Fix k.  Then as above one finds 

lim sup,+. q ($)/[ln = .(n)]1/2m (a2m)-1/2m 

But since lim,,, [In nlln (n/2k)]1/2m = 1 we find that 

n+1/2kNow, let r(n) = Sn,,k Iq(s)l ds. By following our arguments above with suitable 
modification (e.g., -d2/dx2 + P - E - q is replaced by (1/2k)(-d2/d~2 + P -
E - 191)) we find that 

since the Legendre transform of (1/2k)P*(/?) has leading behavior 2k(2m-1)a z m  a2" 
Now for any t, let t, be the largest number of the form n/2k less than t. Then 

l im sup (In t)-1/2mq(t) - lim sup (In tk)-1r2mq(tk)l 5 2 lim sup r(n)/ln [T-J"~
2, 

with probability 1. Since we can take k = 1, 2, . . . we obtain the result. 0 

9. Fluctuations in the P($), field theory. We will suppose that the reader is 
familiar with the P($), Euclidean field theory (see e.g., [45, 491). In attempting 
to mimic the above, we must first deal with smeared fields and so try to mimic 
the methods of Sections 4 and 5. Since the tools of Section 4 used to obtain 
lower bounds, most notably the supercontractive estimates, are not available 
we can only obtain upper bounds on C and so only upper bounds on lim sup. 
In fact: 

THEOREM15. Let p be the measure on C,"(R2)' associated to a :P($),: theory of 
one of the following types: 

(a) small coupling constant free boundary conditions [17, 181; 
(b) P = Q - p$"; Q even, n odd, p large [48] with periodic boundary conditions; 
(c) P = a$4 + b$, - p$; p f 0, a > 0; with Dirichlet boundary conditions [12, 

13, 22, 24, 38, 451. 

Let deg P = 2m and let f E Com(R").Dejine $,.(x) = $(f(. - x)). Let x, be a 
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sequence ofpoints with Ix,. - x,/ 2 Cln - ml for some C > 0. Then for any E > 0: 

lim sup,,, $f(xn)/(ln n)lizm < co 
with probability one. 

REMARK.This result distinguishes p from a free field; in fact, from any 
Gaussian field. The first results of this type are due to Schrader 1421. 

PROOF.Since the theories in question are known to possess mass gaps [17, 
24, 481, this result follows by our general method given the following bound of 
Frohlich [12] type: 

THEOREM Under the above circumstances: 16. 

PROOF.We consider case (a). The others follow with suitable modifications 
for the different boundary conditions 122, 231. As with Frohlich's paper, we 
need only prove that 

with 1 independent constants. Let f have support in 1-a/2, a/2] x [ -012, a/2]. 
Then, by the general results in 1441, (34) follows if we prove that 

(35) H~ + @(ft) 2 -o(p2m'2"-1) 


for each fixed t where ft(x) = f(x, t). Let aB(P +. pX) denote the energy per 

unit volume for the interaction :P  f pX: 119, 201. By the improved linear lower 
bound [21]: 

(36) + P$(ft) 2 const - + Pllf llwX) 

(35) follows from (36) and the bound 1231: 

a,(P + pX) 5 O(p2"/2m-1) 
for suitable a. 0 

APPENDIX 

A Borel-Cantelli lemma. In this paper we required a generalized Borel- 
Cantelli lemma. As we noted in the text, the case we need is covered by a 
general theorem of Erdos-Rknyi. In this appendix we want to prove a simple 
result which also covers the case we need: 

THEOREM.Let {A,} be a sequence of sets in aprobability measure space. Suppose 
that: 

(A. 1) Ip(An n Am) - P(A,)P(A~)I 5 cnrn~LI(An)'~(Am)' 


with {C,,} the matrix of a bounded operator on 1,. Let A, = n,"=, (J ;=, A,. Then: 


(A.2) p(A,) = 0 if C ~ ( 4 )< , 
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PROOF.x A, if and only if x is in infinitely many A,, if and only if 
C x,(x) = co where X ,  = characteristic function of A,. (A.1) follows from 
Fubini's theorem for 

implies C X ,  < oo, a.e. 
Now suppose C p(A,) = oo. Let S, = C r  1,. Since S ,  is monotone, we 

need only prove that for any integer k, S ,  2 k a.e.; or equivalently, that for 
any k, m, there is an N with p{x 1 SK < k} 5 m-I. Fix k, m. Let p, = p(A,), 
f, = p, 1 - x,, F,,, = C;Y f,; UN = C ;V p,. Then, in L2(dp): 

I ( f n , f m ) l  = Ip(An n Am) P P ~ I- ~ S Cnm/ln'/lmt 
Thus 

IIFh~II2L2= Cn,nsN Cnmilln4~m% IICIIUn;. 
Thus 

{ X  I Fhr(x)2 I ICI I*UKa} S I ICI I-gU,-* . 
Since U, -+oo,we can find N with IICII-W,-g 5 m-l and U,, - /IC//*U,*2 k. 
For this N: 

{ X  1 S K ( x )= UN- Flv(x)S k} S m-' . O 
In the case that interests us, C,, is a convolution operator by a function in 

I, and so is a bounded operator. 
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