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Nelson [7] has made the deep observation that a variety of quantum fields
analytically continued to imaginary time are represented by stationary, ergodic,
generalized Markov processes (see also [12, 14]). Recently, there has been some
interest in determining the support properties of the measure in the canonical
model of the process on Co (R) given by Minlos’ theorem [4]. The analysis
has begun with the free Euclidean field, i.e., the Gaussian process over Co (R)
with covariance

f q(l)q(g) do ([, (-A -t- mo)-’g}.

The min results found for go re:
(0) ([2]) Those distributions equal to signed measure on some open set hve

mesure 0 if n > 2.
(1) ([1, 2]) If z is the Lplcin in n 1 dimensions, then o is supported

on (- - 1)H if a > n/4 1/2 nd H is the set of locally H61der continuous
functions.

(2) ([2]) If 1 Co(R) nd q(x) q(](. x)), then with go-probability one:

lim q,(x)/ X/ln Ix[ C(], too, n)

where C is an explicit constant only depending on 1, mo, n.
(3) ([9]) go is supported by (-5 A- 1)"(1 -t- x2) "/4 [log (2 -t- x’)]/ZL2(R")

ira > 1/4n- 1/2 and > l and by its complement if a > 1/2n- land < 1.
We have studied the extension of these results to the P()I and P(6)2 Markov

fields [7, 6, 14]. (0), (1) extend (or should extend) to these theories since they
are known or believed to be locally absolutely continuous to the free theory.
(This local absolute continuity is known for all P()1 theories [6] and for "small
coupling" P()2 [8]). We will examine the analog of (2) in detail elsewhere [11]
using partly methods from [10]. This note had its genesis in an attempt to
extend the result (3) of M. Reed and L. Rosen to these interacting fields. We
have found that their result only depends on the ergodicity of the process
associated with
Our results all follow from Theorem 1 which is a simple consequence of the

ergodic theorem:
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THEOREM 1. Let (, (, ) be a. probability space on which 1 acts ergodically
as a continuous group o] measure-preserving transformations, TX(x
0

_
h with 0 < E(h) < o, then:

TX(h) dx < o a.e. for / > 1
,(l-J-x2)’/[log(2-i-x2)] o a.e. for

_
1.

Proo]. Let us denote the integral in question by F(). Then for t > 1,
we have the stronger result that F() Ll(d) since, by Fubini’s theorem"

dx
E(F) E(h) (1 -{- x)V/2[log (2 -{- x)]

If

_
1, the multi-parameter individual ergodic theorem [15] tells us that

lim (1 + R)-v/ f T(h) d’x 2’E(h), a.e.

Hence for almost every 2, there is some R() with

T(h)() d% >_ E(h) if y _> R(0).

But for some C and all x’

(1 -[- x)-/[log (2 -[- x)]- _
C fu:>(maxlxlI)

Thus"

(1 -- y2)-v/2-1/2[Iog (2 -- y2)]- dly.

F() >_ C fa [:l"(h)](o)[f (1 + y)-’/-1/21g- dyI d’x

C ((1 + y’)-lg-)[.l. + y]-’/ T(h)()

C (1 + y)-t[log (2 + y)]-0 dy E(h) .
()

The following corollaries apply Theorem 1 to the P() and P() Markov
roeesses. The reader should eonsulg [11, 14] for ghe definigion of ghese processes.

Cooa 1. For he P(4) Mrlcg proce X()

IX(t)i’dt < a.e. if -> 1

,(1 + t)(/O(2+ t)) a.e if < 1

Proo]. Since the generator of the process is a second order differential opera-
tor with a one-dimensional eigenspace for its lowest eigenvalue, translations
act continuously and ergodically.
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Corollary 1 now follows from Theorem 1 if we set h IX(0)I and note that
by standard estimates, 0 < E(h) < .
COROLLARY 2. For the P()I Marlcoff process X(t) the measure tt (on C(R))

is supported on (1 -t- t2)i/2(lg(2 -- t2))/L(R1) if > 1 and on its complement
i]<1.

Proof. This is merely restatement of Corollary 1.

COROLLARY 3. (generalizing [9]) Let o be the ]ree Euclidean field o] mass m
on R (within > O i] <_. 2andre > O i] , > 3). Let 7 be the Laplacia with
respect to some R-’ R. Let a > 1/2. Then o (on Co (R)’) is supported by

(1 )( + x;)/[og (2 + x)]’L()

i] > 1 and by its complement i]

_
1.

Proo]. to is the measure corresponding to the Gaussian process, , indexed by
H_i,,,(l), the set of distributions ] $’(R ) with f I]15 (p2 -t- ?n2) -1 dp < .
In particular, (1 )-" io H_I.,,(R ) so that ((1 )-" io) is a Gaussian
random variable. We can thus take h I((1 )-" io)I and use Tlmorem 1.

COROLLhRY 4. Let t be the measure ]or a P(). field theory with unique vacuum
(in particular, a theory with small coupling constant [5] or one with P(X)
X- hX, k 0113]). Then for any1, > anda > 1/2, t is supported by"

(1 A)(1 + x)/[log (2 + x)]/L(R)
or by

(1 )"(1 + x)’/[log (2 - x’)]/L(R)

i] > 1 and their complements i] <_ 1.

Proo]. As in Corollary 3, we need only prove that E([O(h)l) < o and
E(IO(],)]) < where h is the function whose Fourier transform is (1 + p)-
and , the function whose Fourier transform is (1 -[- plY)-". Write h,ez h (n) where h () has support in the unit square about the point n
Z C 1. Since (1 z7 p)- is analytic in a tube, h falls off exponentially and
by integration by parts, h is C away from x 0. Thus by FrShlich’s bounds
[3] in the simplest form o (h()) (’< L($’(R), du) for any ,. To
control the central square, we need the estimate proven as in [3] or [14]"

E(cosh (6(]))) <: C exp (C f_
for ] with support in {(x,t}llx

_
1/2} where ],(x) ](x,t) and Ilgll_

--1f_ 10(/)1 (/c + 1) dlc. It is not hard to see that to prove

_
dt h

< it is sufficient to prove that

_
dt IIh.ll_ < . But by the Plancherel

theorem,
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f_ IIh,,ll_ (const) J (, + 1)-1(] -- 1)-2
P

dt

which is finite if , > -. Thus (h) (,< L if , > 1/4. A similar argument
based on FrShlich’s time zero bounds proved the a > 1/2 result.

For the case p 2, we can extend Corollary 3 to the P(). theory:

COROLLARY 5. Let be a measure ]or a P()2 theory with mass gap (in partic-
ular, a theory with small coupling constant). Let 7 -(d2/dx12). Then is
supported by

(1 )"(1 + x2)i/2(1Og (2 -- x2))/252(I2)

i] > 1, a > 0 and its complement i] <_ 1, a > O.

Proo]. As in Corollary 3, we need only prove that 6((1 )-" o) L2(R).
But in a theory with mass gap and canonical commutation relations

E(4(])2)

_
C f ]](k)] (k2-t 1)-1 dlc

by arguments in [1.2, 14].
Finally, by the method used in Corollaries 3, 4:

COIOLLAaY 6. Let be a Borel probability measure on Co (R) ]or which the
translations act invariantly and ergodicially. Suppose that is supported by the
locally L ]unctions and that f (fx,<l dx IT(x)]) d(T) < . Then is supported
by (1 + x) /2 log (2 + x)/L(R) i] > 1 and its complement i] <_ 1.
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