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of strongly coupled theories 
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Abstract: We prove uniqueness of the vacuum in the infinite volume 
(half-Dirichlet) P(o)2 theory when P(X) = aX' + bX2 -MX; a > O ,ic 0. 
This completes the proof of the Wightman axioms for such theories. 

This paper is a contribution to the P(o)2 quantum field theory whose 
foundations have been presented by Glimm-Jaffe [3] and others (see [4], [5], 
[15] for reviews of results and a guide to the literature). 

It is a development in the program proposed and initiated by Guerra, 
Rosen and Simon [7] of using statistical mechanical methods in constructive 
field theory. This program, in turn, is an offshoot of the introduction of 
Euclidean techniques and probability ideas in field theory by Symanzik [191 
and Nelson [10]. 

In order to describe our main result, we recall the definition of half- 
Dirichlet states [7]. Throughout this paper, we only deal with half-Dirichlet 
states and fields, so we do not add a superscript "D" as was done in [7]. We 
also fix a bare mass, m, throughout. Given a bounded open region A c R2, 
we write - A, for the Dirichlet boundary condition Laplacian on L2(A, d2x), 
i.e. the Friedrichs extension of -A on CO(A). HL(A) denotes the comple- 
tion of L2(A) in norm <., (- , + n2)'.>12* The free Dirichlet theory in 
region A is the Gaussian random field over HL(A) with mean zero and covar- 
iance matrix: 

<O(f)0(9)>OA =(f ( A-A + m2)ig) 
We will denote the expectation value with respect to this Gaussian measure 
by K. >O,. If P is a semi-bounded polynomial, the expectation value 

-< Kexp (- U(XA))>OA 

<exp (-U(xA))>OA 

where U(g) = g(x): P(O(x)): dx and where XA is the characteristic function 
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of A, defines the interaction field in region A with Dirichlet boundary condi- 
tions. 

Here : denotes ,a0 (free) Wick ordering; hence the term half-Dirichlet. 
If the polynomial P intended is clear, we write < >,. 

The importance of half-Dirichlet states was pointed out by Nelson [121 
who noted that monotonicity of the Schwinger functions resulted. Bounds 
allowing the convergence of the Schwinger functions are due to Guerra et 
al. [7] and Fr6hlich [2]. The existence of a half-Dirichlet transfer matrix [17] 
then implies convergence of the Wightman functions. One therefore has 
(see e.g. [17] for details): 

THEOREM. Let P(X) = Q(X) - "X where Q is an even semibounded 
polynomial. Iff1, *.., f,, are functions in C-(R2) with disjoint supports, 
then limAoo <(fl) ... *5(fn)>PA exists and is the (smeared) Schwinger function 
of a theory obeying all the Wightman axioms except possibly uniqueness of 
the vacuum. 

The basic inequality of Nelson is the following consequence of the second 
Griffiths inequality [7]: 

( 1) <O(ff) ... 0(f.>A <_ <O(ff) ... 0(fnDA 

if 
A C- A',f > ?,*** 0 f>O c 0 . 

One handles the case [t < 0 by using 

(2) <O(f1) ... 0(fn)>Q+xA = (-1)' < A(f1) ... 0(fXQ-J1XA 

We write < > for the infinite volume expectation values. 
Our goal in this paper is to prove: 

THEOREM. Let P(X) = aX4 + bX2 - aX where a > 0 and #u + 0. Then 
the Wightman theory defined by < > possesses a unique vacuum. 

Remarks 1. This completes the proof of the Wightman axioms for a 
class of P(5)2 theories without any restriction on the magnitude of the over- 
all coupling constant. For small coupling constant (high temperature in the 
statistical mechanical picture) and arbitrary semibounded polynomial, the 
uniqueness of the vacuum has already been proved by Glimm-Jaffe-Spencer [6]. 

2. Our theorem is motivated by a result of Lebowitz and Penrose [9] 
who prove exponential falloff of truncated correlation functions for finite- 
range, pair-coupled Ising ferromagnets at non-zero magnetic field. We do 
not see how to mimic their proof which depends on a Mayer expansion since 
this expansion relies on the boundedness and discreteness of Ising spins. The 
use of the Lee-Yang zero theorem to control truncated vacuum expectation 



262 BARRY SIMON 

values was suggested by another argument in [9]. 
3. We expect that < >p . possesses a mass gap under the hypotheses of 

the theorem.* 
4. This theorem is "predicted" by the "conventional wisdom" model of 

[20], [18]. 
5. By equation (2) we need only consider the case ,e> 0. 
6. Without a priori knowledge of uniqueness of the vacuum in < >a, 

one could construct theories with unique vacuum by a decomposition proce- 
dure applied to < > . See [1]. 

The proof of this theorem uses many of the techniques recently developed 
in the statistical mechanical approach to P(5)2 [7], [12], [16], [18]. The basic 
idea is very simple. 

On the one hand, we will show, using FKG inequalities (indirectly) and 
the "transfer matrix", that if <a >O. does not have a unique vacuum, then 

(3) <O(XA)O(XA)>T ,, > C I A I2; C > 0 
where 

<0(f)0(gD)>r, - <0WOOD.(g)> <0(f)>. <0(g)>.. 

and I A 1 = volume of A. On the other hand using the Lee-Yang theorem, 
and the second Griffiths inequality, we will prove for squares A, that 

(4) <0(XA)0(XA)>T, - < d I Al ; d < . 
LEMMA 1. <0(x)0(y)>T,, is a function, f, of I x - y l. f (.) is a real 

analytic, monotone decreasing, positive function on (0, o). 

Remarks 1. This result holds in any scalar theory obeying the Oster- 
walder-Schrader axioms [13] without necessarily having unique vacuum. 

2. A proof can also be based on the Kiillen-Lehmann representation [14]. 

Proof. That the truncated two-point function only depends on I x - y I 
is a consequence of Euclidean invariance. Real analyticity is a consequence 
of the fact that the non-coincident points in the Euclidean region lie in the 
permuted extended forward tube [13]. Pick g e CW(R2) with support in 
{<a, t> I t < 0}. Let g8(a, t) = g(a, s - t). Then, there is a vector, A, in the 
physical Hilbert space so that 

(5) <0(g)0(C8)>T, = (*, e A,1) 

for all s > 0 where H is the Hamiltonian on the physical Hilbert space. For 
example, * = E0(O(g)) - (Q(?, 0(g))Q% in the Nelson language [11] and * = 

V(Og) - (QO, 0(g)Qo)Qo in the Osterwalder-Schrader language [13]. By (5) and 
* This has been proven by Guerra, Rosen, Simon (submitted to Commun. Math. Phys.). 
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the spectral theorem, <0(g)0(g8)>T,, is monotone decreasing and positive. Let- 

ting g -+ a, the Dirac measure at (0, 0), we complete the proof. D1 

LEMMA 2. <> has a unique vacuum if and only if 

1im-1,y1t0. <v(X)v(Y)>T,- = 0 X 

In particular, if there is not a unique vacuum, then there is a C > 0 with 

<O(X)O(Y)>TX > C 

for all x, y. 

Proof. If <a>O. has a unique vacuum, then by equation (5), <0(g)O(s) >T 00 
as s -a .oo Taking g - a and using the fact that the resulting convergence 
is uniform for s e [1, oo), we see that the limit is 0. Conversely, if the limit 
is 0, then <im8 b g)0()T = for any g e C- with support in (<a, t> I t<O}. 
It follows from the FGK inequalities [7] that < >OO has a unique vacuum (this 
is the main theorem, Theorem 6, of [16]). The second statement follows from 
the first and Lemma 1. LI 

This proves (3). 
The basic estimate going into the proof of equation (4) is: 

LEMMA 3. For all squares, A, of side bigger than 1 

(6) <0(XA)XA)>T, A _ d I A 

for some d < oo. 

Remark. Once we have Lemma 4, the condition that A have side bigger 
than 1 can be dropped. 

Proof. Let 

aA"(/) = Iii ln exp ( A (a: 04(x) +b: 02(x):-U0(x))dx)) 

The functions aAola) are entire in ," (a, b fixed with a > 0 and b real). By a 
result in [81, they converge when ,a is real, as I A I A oo, suitably to a,,. By 
the Lee-Yang theorem [181 (see especially Theorem 10 of [181), aAo(,) converges 
to a function aO(Xa) uniformly on compacts of the right half plane. In partic- 
ular, by the Cauchy integral formula, d2oa/dt2 converges for any / > 0. 
Thus 

SUPWAIAisasquare, IA1Ai} d aA/djA- d < 00 

Since 

aA(/) = . 
K 
<(XA)0(XA)>T, aX4+bX2_-AX y 
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(6) follows. D1 
LEMMA 4. Let d be given by (6). Then for any square A, 

<0(XA)0(X>T,- < d I A I . 
Proof. Suppose not. Then for some s > 0 and some square A0 centered 

at the origin, <5 (X?0(X0)>TOO > (d + 2s) I A, l. By equation (1), the limit 
A m oo is in the sense of the direction given by inclusion. (We make use of 
the fact that even though, a priori, <K(XAJ)0(XAJ)>O may be I, <KO(XA0)>2 is 
finite.) Thus, there is some square A' centered at the origin so that A' c A 
implies that <K(XA0)0(XA0)>T,A > (d + s) I A, 1. Let l- = I A, 1112 and I A 1112 = 

lo + 2a. By translation covariance, we conclude that if Aa is any square of 
side lo so that the square with the same center and side lo + 2a is contained 
in A, then 

( 7 ) K))(X~a))X(XXa)>T, ? (d + 6)lo . 

Let Al(k) be the square of side kNO + 2a centered at the origin. Al(k) can be 
decomposed into a "corridor" of width a about its boundary and k2 squares 
Aap each with side lo, mutually disjoint, and so that each obeys the geometric 
condition required for (7) to hold with A= l(k). By the second Griffiths 
inequality (6): 

<5O(XA (k))A6XA (k) >T,ASk W> Ek2 I <0(Xl~a)1 O(Xl~a)>T,A1k 

> (d + &)(klo)2 
Choosing k so that (d + s)(klo)2 > d(klo + 2a)2, we obtain a contradiction to 
Lemma 3. I1 

Our theorem follows directly from Lemmas 2 and 4. 

Acknowledgment: I should like to thank Prof. J. M. Combes for the 
hospitality of Centre Universitaire, Toulon. 

Appendix A: Uniformity of convergence of the one-point function 

Geometric considerations of the type used in the proof of Lemma 4 have 
led us to an improvement of equation (8) of [18] which we feel may be of 
some use: 

PROPOSITION 1. Let M=z <0(x)>p,0. where P(X)= Q(X) - pX, Q an even 
polynomial, 4rp > 0. Then for any s > 0, there is a a so that 

(7) M-6 <_ <(x)>PA <_ M 

for any region A and any x e A with dist (x, DA) > a. 

Remarks 1. (7) is interpreted in a "distributional" sense; i.e., it means 
that there is a neighborhood of x so that for any non-negative function, f, 
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with support in the neighborhood 

(M-_ )( fd2X) < <0W > P A <_ M fd2x) 

2. It must be true that x <-K(x)>p,, is continuous, in which case (7) 
holds pointwise and our proof below can be made less wordy. 

3. By equation (2), if , < 0, the proposition holds if <qO(x)>p,, is replaced 

by< - O(x)>P,A in equation (7) and in the definition of M. 

Proof. Let S be the unit square centered at the origin. Let A,, be a 
square centered at the origin of side r > 1 so that 

<0(XS)>A0 >_ (M - K <(XS)>0.- 
Let n be a positive integer. Since S is the disjoint union of n2 squares of 
side 1/n, we can find some square, So, of side 1/n so that 

<0(Xs")>A0 > (M -SWn- 

Let A, be the square of side r + 2 centered at the origin. For any square, 
M.,, of side 1/n, with M. c S, we claim that 

(8) < 0 (XMV)>A1 > (M S)U-2 

(8) comes from translation covariance, the monotonicity of equation (1) and 
the fact that we can find A' c A, so that the geometric relation of M, inside 
A' is identical to that of S, inside A0. By approximating with Riemann sums, 

(9) <0(f)>A, > (M - e) fd2x 

if suppf c S, and f > 0. Pick a = (r + 2V/2). Given any x and A with x e Ay 
dist (x, aA) > a, we can fit the square A' of side (r + 2) and center x inside 
A. (7) follows from equations (1) and (9). D 

Appendix B: Non-unique vacuums and spontaneous magnetization 

As a typical application of our main theorem (together with correlation 
inequalities), we have: 

PROPOSITION 2. Let Q(X) -aX4 + bX2 with a > 0. If < >Qo. does not 
have a unique vacuum, then 

limp l <0(O)>Q-tX,- > ? = <0(0)>Q, x 

Remarks 1. The existence of the limit on the left is proved in [7]. 
2. Consider the following four meanings of "dynamical instability" in 

the Q(0)2 theory: 
(a) < >Qc. does not have a unique vacuum. 
(b) < >Qo. does not have a mass gap. 
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(c) limal o1 <0(?)>Q-PX,- > ?. 

(d) The pressure caQ(p) is not differentiable at , = 0. 

Combining Proposition 2 with results of [18], we have 

(a) (c) (d) (b) . 

Proof: On account of Lemma 2, if < >Q,OO does not have a unique vacuum, 
then lim <O K (x)0(O)>QO _ C2 > 0. But by the Griffiths inequalities (see [7]) 
<K(x)0(0)>Q-ux is monotone increasing in ft. Thus limx MOO <K(x)0(O)>Q-,, > C2 
if ,i > 0. By the theorem 

lim M. <O(x)0(0)>Qpx = (<K(O)>Q-PX)2 if I > 0 
PRINCETON UNIVERSITY 
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