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Absence of Positive Eigenvalues in a Class
of Multiparticle Quantum Systems

Barry Simon

I. Introduction

One of the hardest questions in the spectral analysis of Schrodinger
Hamiltonians is that of controlling the presence of eigenvalues embedded
in the continuous spectrum. While the problem is of limited physical
interest, it is of technical importance in scattering theory. Its difficulty
is illustrated by three classes of examples:

1) Two-body systems (with center of mass removed) with a potential
behaving like r~'sinr as r > o0 are known which possess positive eigen-
values [24, 25, 16].

2) Multiparticle systems which are the special type consisting of one
particle of infinite mass together with two clusters which do not interact
with one another can have negative energy embedded eigenvalues, e.g.

~A4,—4,-2/r;—2/r, on I[*R°.

3) There are multiparticle systems with a symmetry so that eigenvalue
with one set of quantum numbers are embedded in a continuum with a
different set of quantum numbers [15, 6, 17, 18].

Previous study of this question has responded to examples of type (2)
and_(3) by concentrating on proving the absence of positive energy
eigenvalues and we will restrict ourselves to this question. For two-body
systems with center of mass removed (equivalently one-body systems),
the question has been more or less answered in that there are theorems
which guarantee the absence of positive energy eigenvalues in a large
number of cases and which only break down at the point where counter
examples of type (1) exist. The earliest results of this genre are due to
Kato [11]; the strongest results, due to Weidmann [25], are for central
potentials although there are almost as strong results for general potentials
due to Agmon [1,2] and Simon [16]. Much less is known in the multi-
particle case. The earliest result which is for the special case of atomic
Hamiltonians is due to Weidmann [26]. Later Weidmann [27] introduced
a virial theorem technique; the main applications he made of this
technique was to prove:

a) repulsive potential have no positive eigenvalues (see also Lavine

[12);
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b) if all the two-body potentials are homogeneous with a common
degree —a(0<a < 2), there are no positive eigenvalues;

¢) if each two-body potential is a Yukawa potential, there are no
eigenvalues in (a, c0) where a > 0 depends on the coupling constants and
rate of fall off of the potentials (see also Alberverio [5]). Among other
things, we will extend results (b) and (c) in this paper to (b'). If each
two-body potential, V¥, is homogeneous with some degree
—p:j(0 < B;;<2) there are no positive eigenvalues. (c) If each V}; is a
Yukawa potential, there are no positive eigenvalues.

Our result depends on employing two sets of ideas which have
appeared recently in the study of N-body Schrédinger operators.
The first is the powerful technique of dilatation analyticity introduced
by Combes [9], developed by Balslev and Combes [7] and further
extended and exploited by Simon [20,17,19]. The applicability of
dilatation analytic ideas to the study of positive eigenvalues already
appears in [17, 19,22] where it is proved that local, central, dilatation
analytic potentials in the two-body case cannot have positive eigenvalues
(by appealing to the Agmon-Simon theorem) and where it is shown how to
recover Weidmann’s result (b) when o« = 1. E. Balslev (private communi-
cation) has remarked that this later argument can be easily extended
to the case O<a 1.

The second set of ideas is that eigenfunctions can often be proved
to fall off exponentially. This was proved by O’Connor for discrete
eigenvalues in great generality [13]. (Earlier results exist due to Ahlrichs
[4] and Schnol [14]). For dilatation analytic systems, this result has been
extended to embedded eigenvalues at non-threshold points by Combes
[10] and Thomas [22]. All these results prove fall off in the weak sense
that ¥ e D(expalx|) for some a>0 but in many cases, one can prove
pointwise exponential bounds [21].

In any proof of the absence of positive eigenvalues, there must
appear a distinction between positive (embedded) eigenvalues and
negative embedded eigenvalues [because of examples (2) and (3)]. If
(by induction) we know there are no positivite thresholds, then a dis-
tinction appears naturally in the dilatation analytic framework if we can
rotate the essential spectrum through an angle of 7 at which point all the
negative eigenvalues become embedded (or reembedded) in continuous
spectrum. Positive eigenvalues are also distinguished from resonances
by this mechanism. In fact, one has the following situation. Consider a
Hamiltonian H(i%). It can have positive eigenvalues, negative eigenvalues
or resonance eigenvalues. The negative eigenvalues are “covered” by
essential spectrum as @ passes through in/2, the resonances are covered
as 0 varies through some critical value 8, but the positive eigenvalues
persist when 6 passes through 0 because of a mechanism associated
with the self-adjointness of H(0). Thus, of all the eigenvalues of H(iF), only
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the positive eigenvalues persist for 8 running through a (closed) strip
of width =.

The ability to rotate the essential spectrum by an angle of = or
greater is dependent on the potentials being from a special class:

Definition. A quadratic form ¥ on I*(IR%) is said to be in class £, ,
if F and only if:

1) V is symmetric and Q(V)> Q(H,) where Hy=—4 and Q is the
quadratic form domain.

2) (Hy+1)"'"2 V(Hy + 1)~ '/ is compact.

3) Let U(6) be the group of dilatations and define F() = (H, + 1)~ /2
U@ VU(@B) ' (Hy+ 1)~ for 8 R. F(6) has an extension to the strip
{0]|Im 6| < n/2} which is regular (continuous and analytic on the interior).
Throughout we use ideas from [7, 19] freely. We also define:

Definition. A quadratic form on L?*(IR%) is called local if it is the form
of a multiplication operator.

Itis a pleasure to thank L. Thomas for a most valuable conversation and for permission
to quote his results, to thank E.Balslev for an unpublished remark, to thank N.Kuiper
for the hospitality of I.H.E.S. and D.Kastler for the hospitality of C.N.R.S., Marseille.

II. Statement of the Main Result

Our main theorem whose proof appears in § IV is:

o N N

Theorem 1. Let H=—3 (2u) ' 4;+ Y V; on L*R") with
i=1 i<j=1

each V,; a local potential in class #,,. Let H be the operator on [*(R>¥~3)

obtained by removing the center of mass motion from H (ie. H=T®1

+1Q®H with T=—(Q2ZXZp,) *4g). Then H has no positive eigenvalues.

Remark. Locality is critical for the result to be true [17]. As immediate
Corollaries, we have:

Theorem 2. If V,;(r) is homogeneous of order —B;; with 0< B;; <2,
then H has no positive eigenvalues. In particular, purely Coulombic
Hamiltonians have no positive energy eigenvalues.

Proof. If V;; is homogeneous of order — f;; then
U@) V,u@) ' =e %,
so ¥;;(0) is entire. In particular ¥;€ &, ,.
Theorem 3. If each V; is of the form

Vin=r" ! g e " dv (@)

where each v;; is a finite measure, then H has no positive eigenvalues.
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Proof. Clearly
(ue) v,u® 1= et 39 exp(—ae’r) dv; ()
0

is in I? 4 (L®), if |arge®| = |Im 6| < =/2.

Remark. We are in the rather strange situation of being able to
prove non-existence of positive eigenvalues for Yukawa potentials but
not for exponential potentials!

III. Exponential Fall Off of Eigenfunctions at Complex 6

As preparation for the proof of the main theorem, we now study the
analytic continuation of eigenfunctions associated with positive eigen-
values. As an inductive hypothesis, we will suppose throughout that there
are no positive thresholds. We also suppose that the hypotheses of
Theorem 1 hold.

Lemma t. Suppose that HY = EY with E>0. Then U(®) ¥ has a
continuation in the region B={0||Im6| < n/2}, continuous in B, analytic
in its interior.

Proof. By standard dilatation analytic theory, E is an eigenvalue of
H(6) for all 6 B and the eigenprojections are finite rank and analytic
in 9 (see e.g. [3]). By a lemma of O’Connor [13], the corresponding
eigenfunction have the same analyticity properties. [J

Lemma 2. Under the same hypotheses as Lemmal, U@)y falls off
exponentially for any 0 with 1m0 % 0 in the sense that there exists a b>0

so that:
§ lexp(®r) (UO) w) (N> d*N Pr<co.

Remarks. 1) It is easy to extend this result to real § by a Phragmon-
Lindelof argument, see Thomas [22].

2) One can obtain explicit lower bounds on b.

Proof. This is a result of Thomas [22]. The proof is so short, we
sketch it for the reader’s convenience. For 6 € B and for each a e R3V~ 3,

let: ) .
H@,0)=e**(H@) e "* *=e"2t(—iV—a)+ V(0)

where t(p) is the free kinetic energy as a quadratic form in p. Clearly,
H(8, o) is an analytic family or type (B) as a function of «. Thus the eigen-
value E extends to an analytic function and the corresponding eigen-
projections, P(«) are analytic. By the usual dilatation analytic argument,
E(x)=E for all real o and thus for all « and P(x)=¢€*"*P(0) e"*"* for «
real. By O’Connor’s Lemma [13], U(6) y is an analytic vector for érx
which implies that U(6) y € D(exp(br)) for some b. [J
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IV. Proof of Theorem 1

By induction, we can suppose that H has no strictly positive thresholds,
since the only threshold when N =2 is at 0. Suppose E>0and Hy =E p.
We will show that y = 0. Fix g € C5(R*¥~3\{0}), a function with compact
support away from r =0; say suppg C {r||r|= R >0}. For ze [0, c0), let

F(2)=2*N [ g(r) p(zr) dr
=2N2{g, U(lnz) y) .
By Lemma 1, F(z) has a continuation in the region
D = {z||argz| < /2,|z| > 0}

Moreover
IF@)I <2V g] sup |U(lnz) )|

=232 g |UGin/2) v
where the equality sup [|[U(lnz)y| = |U(in/2) | follows from the
zeD

unitarity of U(f) when 6 € R and a Phragmon-Lindel6f theorem (see [3]).
Moreover

IF(LiB)=<IBPY 'ik lgNU(£i5) w(Br)l dr
= lﬂl“’l |£R lg@) =P U (£ i5) w(Br)| dr

= e PPRIBNE [ lg(n| U(n ) [ U(£'5) w] ()] dr
<e PPRIBPNg| i U(£'D) v

The last norm is finite by Lemma 2.

Thus F is a polynomially bounded function in the right half plane,
falling off exponentially along the imaginary axis. By a theorem of
Carlson [8] (see also Titchmarsh [23]), F=0. Thus F(1)={g,p) =0.
Since the set of allowable g’s is dense, p=0. []
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