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POPUC
Numerical range

1. Introduction

In 1813, Jean–Victor Poncelet [55] proved a remarkable theorem (see Halbeisen–
Hunderbüler [44] for a simple proof) that says if K is an ellipse inside another ellipse, 
Q, so that there is a triangle with vertices in Q and sides tangent to K, then there are 
infinitely many such triangles, indeed, so many that their vertices fill Q and their tangent 
points fill K. There has been a huge literature motivated by this gem of projective ge-
ometry, even a recent book [22]. Our paper studies three different related developments.

Marden’s 1948 book [49, Ch. 1, §4], Geometry of Polynomials, popularized a theorem 
which he traces back to an 1864 paper of Jörg Siebeck [57].

Theorem A. Let {wj}pj=1 be the vertices of a convex polygon in C ordered clockwise. Let 
mj ∈ R, and let

M(z) =
p∑

j=1

mj

z − wj
(1.1)

Then the zero’s of M are the foci of a curve of class p −1 which intersects each of the 
line segments wjwk; j, k = 1, . . . , p; j �= k at the point dividing the line in ratio mj/mk.

In this brief introduction, we are not going to try to give you the rather complicated 
definitions of the foci of a curve or of class nor will we use these notions later in this 
paper (but see [48,66]). We state this theorem to emphasize there is a n–gon version, 
that M and its zeros play a special role and that the ratios mj/mj+1 occur.

The second set of results concern Blaschke products. Starting in 2002, Daepp, Gorkin 
and collaborators wrote a series of papers [14,15,17,36–38] considering finite Blaschke 
products3 of the form (for {zj}nj=1 ⊂ D := {z ∈ C : |z| < 1}, maybe not be all distinct)

B(z) =
n∏

j=1

z − zj
1 − z̄jz

(1.2)

These are precisely the Schur functions (analytic maps of D to itself) which are analytic 
in a neighborhood of D, of magnitude 1 on ∂D, with n zeros (they actually consider zB
and sometimes divide their basic function by z; we prefer to take this B and sometime 
multiply it by z). Since |zB(z)| < 1 on D and |zB(z)| = 1 on ∂D, by the Cauchy–Riemann 
equations, the map eiθ �→ eiθB(eiθ) is strictly increasing in θ and by the argument 

3 When we want to specify n, we will refer to (1.2) as n fold Blaschke products.
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principle is n +1 to 1 so, for each λ ∈ ∂D, there exist n +1 solutions, wj ; j = 1, . . . , n +1, 
of wB(w) = λ̄ (they take λ; it will be clear later why we prefer λ̄ as our label). We label 
the wj with increasing arguments where arguments are taken in [0, 2π).

The main result in this approach is

Theorem B. For any {zj}nj=1 ⊂ D and any λ ∈ ∂D, there exist mj(λ) > 0 with ∑n+1
j=1 mj(λ) = 1 so that

n+1∑
j=1

mj(λ)
z − wj

= B(z)
zB(z) − λ̄

(1.3)

The right side of this expression is a rational function of z which is z−1 + O(|z|−2)
at infinity and with poles exactly at the wj so the left side is just a partial fraction 
expansion and 

∑n+1
j=1 mj(λ) = 1 follows from the asymptotics at infinity. The main issue 

is the proof of Daepp et al. [14] that mj > 0 and they proved this by finding an explicit 
formula for the mj in terms of the z’s and w’s,

mj =
[
1 +

n+1∑
k=1

1 − |zk|2
|wj − zk|2

]−1

(1.4)

It is left unmentioned that there is a probability measure and what its significance is. It 
has been noted (see, for example, footnote 5 on page 107 in [39]) that there is a converse 
of sorts to this result, that is, for every {mj}n+1

j=1 with mj > 0 and 
∑n+1

j=1 mj = 1, there 
is a Blaschke product so that (1.3) holds.

The following theorem is natural to state in this B(z) language

Theorem C. Fix λ �= μ both in ∂D and let {wj}n+1
j=1 (resp. {uj}n+1

j=1 ) be the solutions of 
zB(z) = λ̄ (resp. zB(z) = μ̄). Then the w′s and u′s interlace. Conversely, if one is given 
such interlacing sets, there is a unique n fold Blaschke product so that the w’s and u’s 
are the solutions of a zB(z) equation.

This result was first proven by Gao and Wu [27] in the Sn framework below and the 
w’s and u’s enter as vertices of Poncelet (n + 1)–gons. Their proof is long and involves 
lots of manipulations of determinants. The later, much shorter proof, of Daepp, Gorkin 
and Voss [17] constructs some rational Herglotz functions with given interlacing zeros 
and poles. We have a simple third proof. For reasons that will become obvious later, for 
now, we’ll call this Wendroff’s Theorem for Blaschke products. Parameter counting for 
this theorem is a little subtle. The set of w’s and u’s lie in a 2n + 2 real dimensional 
manifold while it appears the equivalent set is only the n zj ’s in D which is only 2n real 
parameters. But to get the w’s and u’s one needs two additional free parameters, namely 
λ and μ. Conversely these parameters are determined by the w’s and u’s since
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λ = −
n+1∏
j=1

(−w̄j) μ = −
n+1∏
j=1

(−ūj) (1.5)

The final theme concerns a class of finite dimensional matrices, now called Sn, studied 
in a series of independent papers by Gau–Wu [24–30], also [76], and by Mirman [50–54]
both series starting in 1998. Recall that an operator on a Hilbert space is called a con-
traction if its norm is at most 1. It is called completely non–unitary if it has no invariant 
subspace on which it is unitary, which in the finite dimensional case, is equivalent to 
there being no eigenvector with eigenvalue λ obeying |λ| = 1. In the finite dimensional 
case, the defect index of a contraction, A, is defined to be the dimension of the range 
of 1−A∗A. The space Sn is the set of completely non–unitary contractions on Cn with 
defect index 1. One important theorem is

Theorem D. For any {zj}nj=1 ⊂ D (maybe not different), there is an operator A ∈ Sn

whose eigenvalues (counting algebraic multiplicity) are the zj. Any two elements in Sn

are unitarily equivalent if and only if they have the same eigenvalues and multiplicities.

Recall that if A is an operator on a Hilbert space, H, then N(A), the numerical range
of an operator, A, on H is the set of values 〈ϕ, Aϕ〉 where we run through all ϕ ∈ H with 
‖ϕ‖ = 1 (not ≤ 1!). It is a subtle fact that N(A) is a convex subset of C and an easy 
fact that it is compact when H is finite dimensional. See [5,41,43] for more on numerical 
ranges. It is not hard to show that if A is normal, then (the closure of) N(A) is the closed 
convex hull of the spectrum, so, in the finite dimensional normal case, N(A) is the convex 
hull of the eigenvalues and so a convex polygon. In particular, if A is a k dimensional 
unitary operator with simple spectrum, then N(A) is a convex k–gon inscribed in ∂D.

Let H ⊂ K be two Hilbert spaces and P the orthogonal projection from K onto 
H. If A ∈ L(H), B ∈ L(K), we are interested in the relation A = PBP � H. If that 
holds we say that A is a compression of B and that B is a dilation of A. In case 
dim(K) < ∞, we call dim(K) −dim(H) the rank of the dilation. There is a huge literature 
on dilations, much of it involving families rather than single operators, for example, see 
[70,71]. Our usage limiting to a single operator and not demanding An = PBnP �
H (for n = 1, . . . ) is more common; see, for example, the Wikipedia article https://
en .wikipedia .org /wiki /Dilation _(operator _theory).

Given a contraction, A on H, one is interested in finding K and B ∈ L(K) so that B
is a unitary dilation of A. It is easy to construct such a dilation on K = H ⊕ H, so if 
dim(H) = n, a rank n unitary dilation, but one can show there is a one parameter family 
of rank one unitary dilations, {Bλ}λ∈∂D of any A ∈ Sn. For different λ, the eigenvalues 
are different and every point on the circle is an eigenvalue of exactly one Bλ.

The big theorem in these papers of Gau–Wu and Mirman is

Theorem E. Let A ∈ Sn and {Bλ}λ∈∂D its rank one unitary dilations. For each fixed λ, 
N(Bλ) is a solid n + 1–gon with vertices {wj}n+1

j=1 on ∂D. Each edge of this polygon is 

https://en.wikipedia.org/wiki/Dilation_(operator_theory)
https://en.wikipedia.org/wiki/Dilation_(operator_theory)
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tangent to N(A) at a single point and as λ moves through all of ∂D, these tangent points 
trace out the entire boundary of N(A). Moreover

N(A) =
⋂

λ∈∂D

N(Bλ) (1.6)

If, for a fixed λ, one forms

M(z) =
n+1∑
j=1

mj

z − wj
(1.7)

for suitable mj, then the zeros of M are precisely the eigenvalues of A.

Remark. It was a conjecture of Halmos [42], proven by Choi–Li [13], that a formula like 
(1.6) holds for any contraction if the intersection is over all dilations of rank at most n.

We are not the first people to realize the relations between these themes; indeed, 
there is a very recent book on the subject [16] entitled: Finding Ellipses: What Blaschke 
Products, Poncelet’s Theorem and the Numerical Range Know about Each Other. The 
point of our paper is that while the authors of these works didn’t know it, they were 
discussing aspects of the theory of orthogonal polynomials on the unit circle (OPUC). 
Our realization of this additional connection will allow us to give new proofs and some-
times extend these results. These proofs are often quite simple (if one knows the OPUC 
background [60,61,59]!) and sometimes quite illuminating. For example, we’ll see that 
the left side of (1.3) is the matrix element of the resolvent of a unitary operator and the 
right side a Cramer’s rule ratio of determinants! Moreover, as we’ll explain, this formula, 
which is one of the main results of the 2002 paper of Daepp, Gorkin and Mortini [14], 
can be viewed as a special case of a general OPUC result of Khrushchev [46] published 
the year before!

We will also find that these lovely earlier ideas provide new results in the theory of 
OPUC of interest within that literature.

Because this paper is aimed at two disparate audiences (namely workers on the themes 
above and workers in OPUC) with rather different backgrounds, the presentation is more 
discursive than it might be if directed only at experts in a single area. In particular, 
Section 2 which officially sets notation and terminology presents a lot of results in OPUC 
with references to proofs. Section 3 states our main results. Some of these results will rely 
on a new theorem presented in Section 4 on GGT matrices. Sections 5–7 recover results 
on Sn and Sections 8–9 on Blaschke products. Section 10 discusses two new variants of 
Wendroff’s Theorem connected to Theorem C and the final three sections have additional 
remarks and results.

B.S. would like to thank Fritz Gesztesy and Lance Littlejohn for the invitation to visit 
Baylor where our collaboration was begun.
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2. OPUC on one toe

A probability measure, dμ on ∂D is called non-trivial if it is not supported on a finite 
set of points. That is true if and only if L2(∂D, dμ) is infinite dimensional and, in turn, is 
true if and only if {zj}∞j=0 are linearly independent as functions in that L2 space. In that 
case, by using Gram–Schmidt on this set, we can define monic orthogonal polynomials, 
Φn(z; dμ), and orthonormal polynomials, ϕn(z; dμ) = Φn(z; dμ)/‖Φn‖. Usually, we’ll 
drop the “dμ” unless it is needed for clarity.

The now standard reference for OPUC is Simon [60,61]; older references are parts of 
the books of Szegő [69], Geronimus [33] and Freud [21]. A summary of the high points 
is [59] which was named after a story from the Talmud. This even briefer summary is 
to set notation and terminology and emphasize those aspects of the theory we’ll need. 
We note that large swathes of the standard theory concern asymptotics of the Φ ’s and 
the relation of the Verblunsky coefficients to qualitative properties of the measure, none 
of which are relevant to our study here which concerns only {Φn}Nn=0 for fixed finite N . 
We note that there are issues we hope to study elsewhere of the large N behavior of the 
numerical range where these ideas may be important.

On L2(∂D, dμ), one can define the antiunitary maps

τn(f)(eiθ) = einθf(eiθ) (2.1)

which takes zk to zn−k. Let Pn be the n + 1 dimensional space of complex polynomials 
of degree at most n. Then τn maps Pn to itself and has the form:

τn(Pn(z)) = znPn

(
1
z̄

)
(2.2)

so it just reverses the coefficients of Pn and complex conjugates them. We will follow the 
awful, but unfortunately universal, convention of usually writing P ∗

n instead of τn(Pn)
hoping the implicit n is clear so for example one writes

(zΦn)∗ = Φ∗
n

where the ∗ on the left is τn+1 while the one on the right is τn!
This map is important because of the second part of the elementary

Proposition 2.1. In Pn

(a) Any f orthogonal to {zj}n−1
j=0 is a multiple of Φn

(b) Any f orthogonal to {zj}nj=1 is a multiple of Φ∗
n

Because we will need ideas in its proof later we’ll give the simple proof of the basic 
Szegő recursion
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Theorem 2.2. Let dμ be a non–trivial probability measure on ∂D. Then for each n =
0, 1, . . . there exists αn(dμ) ∈ D so that

Φn+1(z) = zΦn(z) − αnΦ∗
n(z) (2.3)

Proof. Because they are monic, Φn+1(z) −zΦn(z) is a polynomial of degree n which it is 
easy to see is orthogonal to {zj}nj=1 and so a multiple of Φ∗

n which proves that (2.3) holds 
for some αn ∈ C. By moving the second term on the right to the left and noting that the 
two terms now on the left are orthogonal one sees that ‖Φn+1‖2 + ‖zΦn‖2 = |αn|2‖Φ∗

n‖2

so one has that

‖Φn+1‖ = ρn‖Φn‖; ρn ≡
√

1 − |αn|2 (2.4)

proving that |αn| < 1. �
The αn are called Verblunsky coefficients. The strange sign and complex conjugate in 

(2.3) are picked so that Theorem 2.6 below is true. Taking z = 0 in (2.3) and noting that 
Φn monic implies that Φ∗

n(0) = 1, we see that

αn = −Φn+1(0) (2.5)

(2.4) implies the important

‖Φn‖ = ρ0 . . . ρn−1 (2.6)

Applying τn+1 to (2.3) we get Φ∗
n+1(z) = Φ∗

n(z) −αnzΦn(z). This equation and (2.3)
can be inverted to give what are called inverse Szegő recursion, which we’ll write for the 
normalized OPUC:

zϕn(z) = ρ−1
n (ϕn+1(z) + ᾱnϕ

∗
n+1(z)) (2.7)

ϕ∗
n(z) = ρ−1

n (ϕ∗
n+1(z) + αnϕn+1(z)) (2.8)

An important basic fact about zeros of OPUC is the following (which the reader is right 
to suspect is connected to Theorem D!) is

Theorem 2.3 (Wendroff’s Theorem for OPUC). All the zeros of Φn(z) lie in D. Con-
versely, given any labelled set of n, not necessarily distinct, points in D, there exists a 
measure so that those points are exactly the zeros (counting multiplicity) of the associated 
Φn(z). Any two such measures have the same {αj}n−1

j=0 and so also the same {ϕj}nj=0.

Remarks. 1. The first statement goes back to Szegő’s basic 1920-21 OPUC paper [68]. 
[60] has at least six proofs of this statement: [60, proofs of Theorem 1.7.1 containing 
equations (1.7.22), (1.7.43), (1.7.45), (1.7.46), (1.7.47) and (1.7.51)]. More generally, 
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Fejér [20] proved for any measure of compact support in C whose support doesn’t lie in 
a line that the zeros of all its OPs lie in the interior of the convex hull of the support.

2. The full result goes back to Geronimus [32] in 1946 long before the proofs of 
Theorem D.

3. The name comes from a theorem for orthogonal polynomials on the real line (OPRL) 
proven in Wendroff [74] in 1961: given 2n+1 distinct points in R thought of as an n point 
set interlacing an n + 1 point set, there is a probability measure on R with all moments 
finite so that the two sets are the zeros of the OPRL Pn and Pn+1 and all such measures 
have the same first 2n +1 Jacobi parameters (i.e., coefficients of the three terms recurrence 
relation) and {pj}n+1

j=0 , [60, Subsection 1.2.6]. The OPRL result without proof appears 
in a footnote of Geronimus’ paper and [60] tried to push the name Geronimus–Wendroff 
Theorem for both results but the literature seems to have stuck with Wendroff which 
we’ll follow in this paper for theorems of this type including new ones. Theorem C has 
the flavor of Wendroff’s OPRL result and we’ll see it can be viewed as an analog for 
paraorthogonal polynomials.

4. The uniqueness part, namely that Φn determines the {αj}n−1
j=0 comes from (2.5)

which determines αn−1, and, then from inverse recursion for the Φ’s, we get Φn−1 and 
so by iteration all the {αj}n−1

j=0 .
5. One way to show existence is a calculation [60, Proof of Theorem 1.7.5] that proves 

that if Qn has all its zeros in D, and if dμ(θ) = c dθ/|Q(eiθ)|2 (where c is a normalization 
constant) then Qn is orthogonal in L2(dμ) to Pn−1 and so is the monic OPUC as required. 
This is the measure with Qn as monic OPUC that has αj = 0 if j ≥ n.

Two classes of functions (discussed in detail in [60, Section 1.3]) are Carathéodory 
functions (analytic function on D which obey Re(F (z)) > 0; F (0) = 1) and Schur 
functions (analytic functions on D which obey |f(z)| < 1). Given a probability measure, 
dμ, on ∂D, we define two associated functions on D:

F (z) =
ˆ

eiθ + z

eiθ − z
dμ(θ); F (z) = 1 + zf(z)

1 − zf(z) (2.9)

called the Carathéodory function and Schur function of dμ.
Schur associated a set of parameters to any Schur function via f0 ≡ f and

γn(f) = fn(0); fn(z) = γn + zfn+1(z)
1 − γ̄nfn+1(z)

(2.10)

If f is a finite degree m Blaschke product, then γm ∈ ∂D and the process terminates. 
If not (in which case we call f a non–trivial Schur function), we can define the Schur 
iterates, fn, and Schur parameters, γn(f) ∈ D, for all n.

Theorem 2.4 (Schur’s Theorem (1917)). There is a one–one correspondence between 
non–trivial Schur functions and sequences {γn}∞n=1 in D given by the map from f to its 
Schur parameters.
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This was proven by Schur [56]; see [60, Section 1.3.6].

Theorem 2.5 (Verblunsky’s Theorem (1935)). There is a one–one correspondence between 
non–trivial probability measures on ∂D and sequences {αn}∞n=0 in D given by the map 
from a measure to its OPUC and the Verblunsky coefficients defined via Szegő recursion.

This was proven by Verblunsky [73] using an equivalent definition of his coefficients. 
[60] has four proofs of this result (see [60, Theorems 1.7.11, 3.1.3, 4.1.5 and 4.2.8]).

Theorem 2.6 (Geronimus’ Theorem (1944)). Let dμ be a non–trivial probability measure 
on ∂D and f its Schur function. Then

αn(dμ) = γn(f) (2.11)

This theorem is due to Geronimus [31]. [60] has five proofs of this result (see [60, 
Theorems 3.1.4, 3.2.7, 3.2.10, 3.4.3 and 4.5.9]). This theorem explains why one writes 
Szegő recursion with the complex conjugate and minus sign on α.

Let dμ be a non–trivial probability measure with Verblunsky coefficients {αn}∞n=0. The 
second kind polynomials for dμ, written {Ψn}∞n=0, are the OPUC for the measure whose 
Verblunsky coefficients are {−αn}∞n=0. The following was given explicitly in Geronimus 
[31,32] and earlier implicitly in Verblunsky [73].

Theorem 2.7. Let dμn be the measure with Verblunsky coefficients

αj(dμn) =
{

αj(dμ), if j ≤ n− 1
0, if j ≥ n

(2.12)

Then the Carathéodory function, Fn of dμn is Ψ∗
n/Φ∗

n, and the Carathéodory function, 
F, of dμ is limn→∞ Fn uniformly on compact subsets of D.

The proof (see [60, (3.2.21)]) depends on the formula

Ψ∗
k(z)Φk(z) + Φ∗

k(z)Ψk(z) = 2zk
k−1∏
j=0

ρ2
j (2.13)

In 2001, Khrushchev [46] found a new approach to Rahkmanoff’s Theorem (which 
gives a sufficient condition for the Verblunsky coefficients to be asymptotically vanishing) 
with lots of other interesting stuff. A basic result he needed was the following

Theorem 2.8 (Khrushchev’s formula). Let f be the Schur function of some non–trivial 
probability measure, dμ, on the unit circle and let fn be its nth Schur iterate. Let 
Bn(z) = Φn(z)/Φ∗

n(z). Then the Schur function of the probability measure |ϕn(eiθ)|2dμ
is fn(z)Bn(z).
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[60,61] have three proofs of this: Khrushchev’s original proof [61, Theorem 9.2.2], 
a proof using second kind polynomials [60, Corollary 4.4.2] and a proof using rank two 
perturbations of CMV matrices [60, Theorem 4.5.10].

This formula is an OPUC analog of the fact that the Green’s function for a whole line 
Schrödinger operator is the product of two suitably normalized Weyl solutions.

We let Pn be the projection in L2(dμ) onto Pn−1, the polynomials of degree at most 
n − 1. We use the subscript n because operators on Pn−1 are represented by n × n

matrices. Given a non-trivial measure, let Mz be multiplication on by z on L2(∂D, dμ). 
By a compressed multiplication operator, we mean the compression of the unitary Mz to 
polynomials of degree at most n − 1, i.e. A = PnMzPn restricted to Pn−1. We’ll write 
Aμ when we want to be explicit about the measure.

Theorem 2.9. Aμ depends only on the Verblunsky coefficients {αj(dμ)}n−1
j=0 . That is

Aμ = Aν ⇐⇒ ∀0≤j≤n−1αj(dμ) = αj(dν) (2.14)

Remarks. 1. We don’t merely mean unitarily equivalent. These are operators on an 
explicit space of polynomials and we mean equality. That said, we’ll see shortly that if we 
only know that Aμ is unitarily equivalent to Aν , it is still true that ∀0≤j≤n−1αj(dμ) =
αj(dν).

2. While this result is not unexpected, we sketch the proof since we don’t know any 
precise references.

Proof. If the relevant Verblunsky coefficients are equal, then they define the same set of 
{ϕj}n−1

j=0 and {ϕ∗
j}n−1

j=0 and the first is an orthonormal basis. Moreover, they both have

Aϕj =
{

ρjϕj+1 + ᾱjϕ
∗
j if 0 ≤ j ≤ n− 2

ᾱjϕ
∗
j if j = n− 1

(2.15)

and so they are equal.
Conversely, for any μ, we have that Qμ((Aμ)n−11) = Φn−1(·; μ) where Qμ is the 

projection onto the orthogonal complement of {(Aμ)j1}n−2
j=1 so, by Wendroff’s Theorem 

for OPUC, equality of the A’s implies equality of the αj’s for 0 ≤ j ≤ n − 2. Then (2.15)
for j = n − 1 implies the equality of the αn−1’s. �

Fix z0. When does (Aμ − z0)q = 0 have a non–zero solution q ∈ Pn−1? Clearly, only 
if (z − z0)q(z), which is a degree n polynomial, is killed by Pn, i.e. if (z − z0)q(z) is a 
multiple of Φn(z) and this happens if and only if Φn(z0) = 0. Thus the eigenvalues are 
precisely the zeros of Φn. A closer look shows that all the eigenvalues have geometric 
multiplicity 1 and algebraic multiplicity the order of the zero. Thus:

Theorem 2.10. The eigenvalues of A are the zeros of Φn including up to algebraic mul-
tiplicity. Thus
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det(z −A) = Φn(z) (2.16)

In particular, since for an n × n matrix, C, det(−C) = (−1)n det(C), we have that, by 
(2.5)

det(A) = (−1)n+1ᾱn−1 (2.17)

This implies that if Aμ is unitarily equivalent to Aν , then μ and ν have the same Φn

and so, by Wendroff’s Theorem, the same {αj}n−1
j=0 .

Suppose now that dμ is a trivial measure on ∂D, say with n +1 pure points, {wj}n+1
j=1 . 

Then {zk}nk=0 are still independent, so one can use Gram–Schmidt to form {Φj}nj=0. As 
the norm minimizer, one also has that

Φn+1 =
n+1∏
j=1

(z − wj) (2.18)

Since this has norm 0, one expects (see (2.6)) and indeed finds that Φn+1 is given by 
Szegő recursion but with |αn| = 1. That is, trivial measures are described by sets of 
n + 1 Verblunsky coefficients, the first n in D and the last in ∂D. The corresponding 
multiplication operators are precisely the n +1–dimensional unitaries with a cyclic vector. 
Moreover, the Schur and Geronimus Theorems extend. The Schur function of such an 
n + 1 point measure is, up to a leading phase factor, an n–fold Blaschke product (whose 
zeros are those of Φn) and which has n +1 Schur parameters, n in D and the last in ∂D.

This motivates, the following: Suppose, we are given a non–trivial measure with 
Verblunsky coefficients, {αj}∞j=0, and we consider, Φn(z). Given λ ∈ ∂D, we define 
the paraorthogonal polynomial (POPUC) by

Φn+1(z;λ) = zΦn(z) − λ̄Φ∗
n(z) (2.19)

The definition goes back to Delsarte–Genin [19] and Jones et al. [45]; among later papers, 
we mention [7,9–11,18,34,58,63,75]. One can show that the n + 1 point measure, dνλ, 
whose first n Verblunsky coefficients are the first n αj and with αn = λ has Φn+1(z; λ)
as its n + 1-st monic OPUC (which has norm 0!). We’ll use Uλ as multiplication by z
on L2(∂D, dνλ). This L2 space has dimension n + 1 and can be viewed as the space of 
polynomials of degree at most n. It will be useful to sometimes view it as an n +1 ×n +1
matrix in some convenient basis – most often the normalized OPUC but sometimes the 
eigenvectors.

Theorem 2.11. Fix {αj}n−1
j=0 all in D and let A be the corresponding compressed multi-

plication operator. The POPUC of degree n + 1 are in one to one correspondence with 
the rank one unitary dilations of A. The eigenvalues of the unitary, Uλ, associated to 
Φn+1(z; λ) are the zeros of that polynomial so that
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det(z − Uλ) = Φn+1(z;λ) (2.20)

In particular,

det(Uλ) = (−1)n λ (2.21)

We note that since Φ∗
n(0) = 1, the constant term in Φn+1(z) is −λ̄ so we have that

λ = (−1)n
n+1∏
j=0

wj (2.22)

and we note that

Φ∗
n+1(z, λ) = −λΦn+1(z, λ) (2.23)

We will need an explicit matrix representation for Mz and so Aμ which [60] calls the 
GGT representation after Geroniums [31], Gragg [40] and Teplyaev [72]. We note there 
is another matrix representation called the CMV representation (after [8]) discussed in 
[60, Section 4.2] which has advantages for the study of Mz on its infinite dimensional 
space but for our needs on the n × n operator, Aμ, the GGT representation is simpler 
and more natural.

{ϕj}n−1
j=0 is an orthonormal basis for Pn−1 and the matrix elements of Aμ in that basis 

are

Gk� = 〈ϕk, zϕ�〉; k, � = 0, . . . , n− 1 (2.24)

Their explicit calculation is (see [60, (4.15)]) with α−1 = −1

Gk� =

⎧⎪⎨
⎪⎩

−α�αk−1
∏�−1

j=k ρj 0 ≤ k ≤ �

ρ� k = � + 1
0 k ≥ � + 2

(2.25)

In [60], this is calculated using 〈Φ∗
n, P 〉 = ‖Φn‖2P (0) if degP ≤ n. An easier al-

ternative taken from [6] is to use Szegő recursion and inverse Szegő recursion in the 
form

zϕn(z) = ρnϕn+1(z) + ᾱnϕ
∗
n(z) (2.26)

ϕ∗
j (z) = ρj−1ϕ

∗
j−1(z) − αj−1ϕj(z) (2.27)

so
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zϕn(z) = ρnϕn+1(z) − ᾱnαn−1ϕn(z) + ᾱnρn−1ϕ
∗
n−1(z)

= ρnϕn+1(z) − ᾱnαn−1ϕn(z) − ᾱnρn−1αn−2ϕn−1(z)

+ ᾱnρn−1ρn−2ϕ
∗
n−2(z) (2.28)

which upon iterating (using that ϕ∗
0 = 1 = ϕ0) yields

zϕn(z) = ρnϕn+1(z) +
n∑

k=0

Gknϕk(z) (2.29)

with G given by (2.25). In other words,

G({αj}n−1
j=0 ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

ᾱ0 ᾱ1ρ0 ᾱ2ρ0ρ1 . . . ᾱn−1ρ0 . . . ρn−2
ρ0 −ᾱ1α0 −ᾱ2α0ρ1 . . . −ᾱn−1α0ρ1 . . . ρn−2
0 ρ1 −ᾱ2α1 . . . −ᾱn−1α1ρ2 . . . ρn−2
...

...
...

. . .
...

0 0 0 . . . −ᾱn−1αn−2

⎞
⎟⎟⎟⎟⎟⎟⎠

(2.30)

We call the GGT representation of a compressed multiplication operator a GGT 
contraction. The GGT representation of the matrix associated to a POPUC we’ll call a 
GGT unitary.

3. Main results

Here are the main results of this paper. We begin with three theorems that capture 
the main structure theorem for Sn (Theorem D).

Theorem 1. Every compressed multiplication operator lies in Sn.

Theorem 2. Every element in Sn is unitarily equivalent to a compressed multiplication 
operator.

Theorem 3. For any set of n elements (with multiplicity) in D, there is a compressed 
multiplication operator with those eigenvalues. Two compressed multiplication operators 
with the same characteristic polynomial are unitarily equivalent.

Thus, we can parametrize equivalence classes of Sn by two sets of n elements from D:

(i) eigenvalues of a representative A ∈ Sn of the equivalence class, or
(ii) Verblunsky coefficients {αj}n−1

j=0 , associated to the compressed multiplication oper-
ator.
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Theorem 1 will be easy and we’ll see that given the first two theorems, Theorem 3 is 
essentially a restatement of Wendroff’s Theorem. Thus the key will be Theorem 2. We 
will have two proofs, neither so short. The one in Section 5 will rely on turning a GGT 
unitary on its head, i.e. noting that a GGT unitary flipped along the secondary diagonal 
is again a GGT unitary but with different Verblunsky coefficients. We’ll develop this 
idea in Section 4. Our second proof of Theorem 2 in Section 6 will involve constructing 
an orthonormal basis for the space on which A ∈ Sn acts that will show it is acting 
as a compressed multiplication operator. Our construction of this basis is motivated by 
inverse Szegő recursion.

Arlinskǐi has four papers [1–4], one with coauthors, that are related to the above 
three theorems. These papers deal with a related, but different, class of operators which 
he calls truncated CMV matrices. He gets these by starting with a finite or infinite 
unitary CMV matrix and stripping off their first row and column. If the original unitary 
is a finite n + 1 × n + 1 matrix, this is related to, but distinct from, our compressed 
multiplication operators in CMV basis. It is cleaner if one describes the difference in 
GGT basis. Then he gets his operators by removing the first row and column and we 
remove the last row and column. For his objects, he has analogs of Theorems 1 and 2. 
He also has a theorem like Theorem 3 except that, because truncated CMV matrices 
whose Verblunsky coefficients are related up to an overall phase factor are unitarily 
equivalent, the uniqueness result is a little more involved. Because of our Theorem 4.2, 
one can establish a simple unitary equivalence between truncated CMV matrices and 
compressed multiplication operators and then obtain our Theorems 1-3 from his theorems 
or vice–versa. We note that although he doesn’t seem to know about the earlier work 
around Theorem D, like us, he has an OPUC proof of it.

Next, in Section 7, we’ll turn to the study of the numerical range of compressed 
multiplication operators and prove two theorems.

For each λ ∈ ∂D, let Uλ be the associated unitary, Φn+1 the associated POPUC, 
{wj}n+1

j=1 the zeros of Φn+1, cyclically ordered, ηj the associated normalized eigenvectors, 
so ηj(z) = N−1

j Φn+1(z)/(z − wj) and dμ the spectral measure

dμ =
n+1∑
j=1

|〈ηj , 1〉|2δwj
(3.1)

Let mj = |〈ηj , ϕn〉|2 > 0 (since deg(ηj) = n) so 
∑n+1

j=1 mj = 1 (since ‖ϕn‖ = 1). Let A
be the dimension n compressed multiplication operator and wn+2 ≡ w1.

Theorem 4. For j = 1, . . . , n + 1, the line from wj to wj+1 intersects N(A) in a single 
point, ζj, and |ζj−wj |/|ζj−wj+1| = mj/mj+1. In particular, 

∏n+1
j=1 |ζj−wj | =

∏n+1
j=1 |ζj−

wj+1|.

Remark. If the line is between wj and wk, the corresponding point also lies in N(A) but 
it is not, in general, the only point in N(A).
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Theorem 5. For each λ, we have that N(Uλ) is a solid (n +1)-gon whose sides are tangent 
to N(A). ∂N(A) is a strictly convex analytic curve and one has that

N(A) = ∩λ∈∂DN(Uλ) (3.2)

The proofs, which rely on operator theory, will not be difficult.
With the above definition of the mj, the spectral measure for ϕn and the operator Uλ

is

dν =
n+1∑
j=1

mj δwj
(3.3)

Theorem 6. Fix a degree n + 1 POPUC and let dν be the measure constructed above. 
Then one has that

ˆ 1
z − eiθ

dν(θ) = Φn(z)
zΦn(z) − λ̄Φ∗

n(z)
= Φn(z)

Φn+1(z, λ) (3.4)

Conversely, let dν be an n +1 point probability measure on ∂D. Then (3.4) holds for the 
POPUC defined by dν.

If {zj}nj=1 are the zeros of Φn, then Φn(z)/Φ∗
n(z) =

∏n
j=1

z−zj
1−z̄jz

, so Theorem 6 is 
the Blaschke product theorem of Daepp et al. (1.3) and its converse as discussed after 
(1.4) with a very different proof of the positivity of the mj and of the formula. As 
we’ll discuss this result can be proven from Khrushchev’s formula by taking limits to 
extend his formula to trivial measures. It can also be obtained from general formulae 
for M–functions in [60]. We will give two simple direct proofs. From the OPUC point of 
view, the picture isn’t complete until we find the Verblunsky coefficients for the trivial 
measure dν.

Theorem 7. Let {αj}n−1
j=0 be the Verblunsky coefficients for the spectral measure, dμ, of 

(3.1), that is the measure for which ϕj are the OPUC. Then the Verblunsky coefficients 
{αj(dν)}n−1

j=0 for the measure, dν of (3.3) are given by

αj(dν) = −λᾱn−1−j , j = 0, . . . , n− 1; αn(dν) = λ (3.5)

The λ = 1 case of this result is implicit in a remark on rank two decoupling of CMV 
matrices in [60] but we’ll give two more direct proofs: one using the results from Section 4
on turning a CMV matrix on its head and one proof using Geronimus’ Theorem and 
Szegő recursion. Theorems 6 and 7 will be proven in Sections 8 and 9.

Section 10 has two Wendroff type theorems (Section 10 will discuss previous literature 
related to this result but we note here that Theorem 8 appears previously in [35]).
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Theorem 8 (Wendroff’s Theorem for (P)OPUC). The zero’s of POPUC’s for two values 
of λ interlace. Conversely, given two sets of n + 1 interlacing points on ∂D, there exist 
unique {αj}n−1

j=0 in D and λ, μ in ∂D so these are zeros of the associated POPUCs.

We put the (P) in “(P)OPUC” because, as we’ll discuss, there is a rather different 
Wendroff type theorem for POPUC in the literature which only involves some POPUC 
parameters whereas we discuss both the POPUC parameter and the OPUC parameters.

Theorem 9 (Wendroff’s Theorem for Second Kind POPUC). Let {wj}n+1
j=1 be the zeros 

of a POPUC, Φn+1, ordered clockwise, and {yj}n+1
j=1 be the zeros of associated second 

kind POPUC, Ψn+1, also ordered clockwise, so that y1 is the first zero after w1 going 
clockwise. Then the w’s and y’s strictly interlace and one has that

n+1∏
j=1

yj = −
n+1∏
j=1

wj (3.6)

Conversely, if {wj}n+1
j=1 and {yj}n+1

j=1 are strictly interlacing and obey (3.6), then there is 
a unique set of Verblunsky coefficients α0, . . . , αn−1 ∈ D and λ ∈ ∂D so that {wj}n+1

j=1 is 
the set of zeros of the associated POPUC and {yj}n+1

j=1 the zeros of the associated second 
kind POPUC.

Recall that for OPUC, second kind OPUC were defined by putting a minus sign 
in front of all the Verblunsky coefficients. We define the second kind POPUC by also 
putting a minus sign in front of the λ parameter unlike the convention in [63]. Theorem 8
is equivalent to the result of Gau–Wu quoted as Theorem C. We have a new proof. The 
first halves of both of our Wendroff type theorems are already in the OPUC literature; 
we’ll say more about that in Section 10.

Section 11 discusses a theorem of Gau-Wu [25] about zeros of derivatives of polyno-
mials all of whose zeros are on ∂D and the question of Gorkin–Skubak [37] asking when 
a finite subset of D is the set of zeros of the derivative of a polynomial all of whose zeros 
lie on ∂D.

Section 12 discusses Poncelet’s Theorem. Theorem A shows that the eigenvalues of 
A ∈ Sn are the foci of a curve containing set ∂N(A). While we don’t have an OPUC 
way to understand the eigenvalues as foci, Section 13 explains two other ways of going 
from N(A) to the eigenvalues.

4. Turning a unitary GGT matrix on its head

In this section we answer a question about unitary n × n GGT matrices that will 
be relevant to one of our proofs of Theorem 2 and 7 (although the later will need 
(n + 1) × (n + 1) matrices). We begin with
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Theorem 4.1. Let U be an n × n unitary matrix with cyclic vector ψ0. Then there is 
a unique basis {ej}nj=1 in which U is a GGT unitary G({αj}n−1

j=0 ) and ψ0 = e1. The 
{αj}n−1

j=0 are uniquely determined by the pair U, ψ0.

Remarks. 1. We emphasize that the {αj}n−1
j=0 are not unitary invariants of U alone but 

of U and its cyclic vector. The unitary invariants of U are the n eigenvalues so n real 
parameters, but the α′s are n − 1 in D and one in ∂D (since αn−1 ∈ ∂D) and so 2n − 1
real parameters. To determine G, all that matters from the cyclic vector is the spectral 
measure, so n −1 independent real weights leading to the correct parameter count. That 
the eigenvalues of U aren’t enough to determine the α’s is indicated by the form of the 
Wendroff type theorems in Section 10.

2. While we won’t need it below, there are explicit formulae for the weights of the 
spectral measure dμ =

∑n
j=1 qjδwj

for U and ψ0 in terms of the OPUC {ϕj}n−1
j=0 (which 

are determined by {αj}n−2
j=0 ). Namely qj = 1/λn−1(wj); λn−1(w) =

∑n−1
j=0 |ϕj(w)|2. The 

λ are called Christoffel numbers. This formula goes back to Jones et al. [45] (see [60, 
Theorem 2.2.12] for a quick proof) although it is just the POPUC analog of well–known 
formulae for OPRL known under the name Gauss quadrature or Gauss–Jacobi quadra-
ture.

Proof. The pair U, ψ0 determine the spectral measure and so a set of n +1 monic OPUC 
whose last element is a POPUC and whose first n elements normalized are the basis 
obtained by using Gram–Schmidt on {Ukψ}n−1

k=0 . The representation in this matrix is 
precisely the claimed GGT matrix. Uniqueness is easy. �

Here is the main result of this section:

Theorem 4.2. Let U be an n × n unitary matrix with cyclic vector ψ0 with det(U) =
(−1)n+1. Then there is a unique basis {ej}nj=1 in which U is a GGT unitary G({βj}n−1

j=0 )
and ψ0 = en. The {βj}n−1

j=0 are uniquely determined by the pair U, ψ0 and the β’s are 
related to the α’s of Theorem 4.1 by

βj = ᾱn−2−j , j = 0, . . . , n− 2; βn−1 = −1 (4.1)

Remarks. 1. At first sight, it may be puzzling that U is unitarily equivalent to GGT 
matrices with, in general, two different Verblunsky coefficients. After all, Wendroff’s The-
orem for OPUC implies that a GGT contraction determines uniquely all its Verblunsky 
coefficients but as pointed out in Remark 1 to Theorem 4.1 this is not true for GGT 
unitaries as this theorem dramatically demonstrates.

2. The intuition is simple. A look at (2.30) shows that when αn−1 = −1, there is a 
covariance under reflection about the reverse main diagonal so long as one relabels the 
α’s via (4.1).
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The covariance under reflection suggests we want to reverse the order of the GGT 
basis. That has the advantage of taking e1 to en as we want but such a reversal not only 
reflects, it also gives a transpose so the following is critical

Lemma 4.3. Given any set of Verblunsky coefficients {αj}n−1
j=0 , with αj ∈ D, j =

0, . . . , n − 2, and αn−1 ∈ D, the matrix representation of A, the associated compressed 
multiplication operator, in the basis {χj}n−1

j=0 where χj = ϕj is the transpose of the GGT 
matrix.

Remark. It is perhaps surprising a finite GGT matrix is unitarily equivalent to its trans-
pose. Using the so called AGR factorization (see [64]) one can write the unitary operator 
explicitly. If U1 . . . Un is the AGR factorization and Wj = Uj . . . Un and W = Wn . . .W2, 
then one can show that WGW−1 = Gt.

Proof. Clearly

〈χj , zχk〉 =
ˆ

χ̄j(eiθ)eiθχk(eiθ) dμ(θ)

=
ˆ

ϕj(eiθ)eiθϕ̄k(eiθ) dμ(θ)

= Gkj � (4.2)

Proof of Theorem 4.2. As in the proof of Theorem 4.1, realize the space on which U acts 
as L2(∂D, dμ) where dμ is the spectral measure for ψ0 and U . Let ϕj , j = 0, . . . , n − 1
be the orthonormal polynomials for dμ, so, in particular, ψ0 = ϕ0. Let ej = ϕ̄n−j so 
en = ψ0. By either the explicit formulae, (2.25) for Gk� or the form of the matrix (2.30), 
one sees that the transpose of G({αj}n−1

j=0 ) in a basis run backwards is G({βj}n−1
j=0 ) with 

β given by (4.1). Given Lemma 4.3, we see that the matrix of U in basis {ej}nj=1 is 
G({βj}n−1

j=0 ) as claimed. �
We supposed that det(U) = (−1)n+1 for simplicity of calculation (which implies that 

αn−1 = −1). It is easy to see that, more generally, one has that

Theorem 4.4. Let U be an n × n unitary matrix with cyclic vector ψ0. Then there is 
a unique basis {ej}nj=1 in which U is a GGT unitary G({βj}n−1

j=0 ) and ψ0 = en. The 
{βj}n−1

j=0 are uniquely determined by the pair U, ψ0 and the β’s are related to the α’s of 
Theorem 4.2 by

βj = −αn−1ᾱn−2−j , j = 0, . . . , n− 2; βn−1 = αn−1 (4.3)
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5. Sn = compressed multiplication via GGT matrices

In this Section, we give our first proof of Theorem 2. Let A ∈ Sn. Pick once and for 
all a unit vector xn−1 ∈ ran(1 −A∗A). Then there exists some ρn−1 ∈ (0, 1] such that

A∗A = 1 − ρ2
n−1〈xn−1, ·〉xn−1 (5.1)

(for now, ρn−1 is just some number in (0, 1] but eventually we will see that it is the same 
as a ρn−1 associated to OPUC and defined in (2.4)). By using the polar decomposition, 
we can write A = UB where U is unitary with det(U) = (−1)n+1 and B is diagonal in 
a basis including xn−1 as its last element so that B has 1’s along diagonal except for 
the last diagonal element which is some complex number a with |a|2 + ρ2

n−1 = 1. To 
see this start with A = V |A| as polar decomposition, and shift to a basis where |A| is 
diagonal. Then pick U = V D where D is diagonal and unitary with ones along diagonal 
except for the last slot whose phase is picked to arrange det(U) = (−1)n+1 and then 
take B = D∗|A|.

Lemma 5.1. For any A obeying (5.1), with the above decomposition A = UB, we have 
that xn−1 is cyclic for U if and only if A has no eigenvalue of magnitude 1.

Proof. If xn−1 was not cyclic for U , let K be the orthogonal complement of the cyclic 
subspace generated by U and xn−1. Then U−1 is a polynomial in U (look at the secular 
equation) so U∗ leaves K⊥ invariant and thus U leaves K invariant. Since K is orthogonal 
to xn−1, we have that B � K = 1. It follows that any eigenvector of U � K is an eigenvector 
of A with the same eigenvalue so A has eigenvalues of magnitude 1 as claimed.

Conversely, if Aη = λη with ‖η‖ = |λ| = 1, then ‖Aη‖ = ‖η‖ so η is orthogonal 
to xn−1, implying that Bη = η, and is thus also an eigenvector of U . It follows that 
〈η, Ukxn−1〉 = 〈(U∗)kη, xn−1〉 = 0 so η is orthogonal to the cyclic subspace of U and 
xn−1 so xn−1 is not cyclic for U . �
First Proof of Theorem 2. Let A ∈ Sn. Then, as above A = UB where, by Lemma 5.1, 
U has xn−1 as cyclic vector. By Theorem 4.2, U is a GGT unitary where βn−1 = −1
and B is diagonal with 1’s along the diagonal except for a in the lower right corner. It 
follows that in this basis A is a GGT contraction with Verblunsky coefficients

γj =
{

βj , if 0 ≤ j ≤ n− 2
−a, if j = n− 1

(5.2)

Thus A is a compressed multiplication operator. �
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6. Sn = compressed multiplication via inverse Szegő recursion

In this Section, we give our second proof of Theorem 2. Let A ∈ Sn. We will carefully 
pick a basis {xj}n−1

j=0 with xn−1 a unit vector as in Section 5, for which

A∗A = 1 − ρ2
n−1xn−1x

∗
n−1 (6.1)

and show that this basis is the basis of OPUC for a compressed multiplication operator. 
Our motivation for the construction is inverse Szegő recursion.

In (6.1), the unit vector xn−1 ∈ Hn, the space on which A, which we’ll now denote 
by An, acts, so xn−1 ∈ ran(1 −A∗

nAn), and ρn−1 ∈ (0, 1].
Suppose that n ≥ 2 (Theorem 2 is trivial when n = 1). Let Hn−1 be the n − 1–

dimensional orthogonal complement of xn−1 so

Hn−1 = ker(1 −A∗
nAn) (6.2)

and let Pn−1 be the projection on Hn−1.
Since An is an isometry on Hn−1, An[Hn−1], the image of Hn−1 under An has dimen-

sion n − 1 so we can pick a unit vector yn−1 ∈ An[Hn−1]⊥ unique up to overall phase 
factor. For now we won’t specify that phase but we will later (essentially so that if xn−1
is ϕn−1, then yn−1 is ϕ∗

n−1). Let Qn−1 be the projection onto An[Hn−1].

Proposition 6.1. First, Qn−1xn−1 �= 0. Secondly there exists an−1 ∈ C so that

ρ2
n−1 + |an−1|2 = 1 (6.3)

Anxn−1 = an−1yn−1 (6.4)

Thirdly, there exists a unique unit vector xn−2 ∈ Hn−1 so that Anxn−2 is a positive 
multiple of Qn−1xn−1. One has that

Anxn−2 = ρ−1
n−2[xn−1 + an−2yn−1] (6.5)

for some ρn−2 ∈ (0, 1] and an−2 ∈ C where

ρ2
n−2 + |an−2|2 = 1 (6.6)

Let An−1 = Pn−1AnPn−1 as an operator on Hn−1. Then An−1 ∈ Sn−1 with

1 −A∗
n−1An−1 = ρ2

n−2〈xn−2, ·〉xn−2 (6.7)

Proof. If Qn−1xn−1 = 0, then An leaves Hn−1 invariant. Since An is an isometry on that 
space, the restriction of An to that invariant subspace would be unitary which means that 
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An would have eigenvalues of magnitude one contradicting the hypothesis that A ∈ Sn

(it is interesting that this is how the eigenvalue condition enters in the proof!).
By (6.1), if u ∈ Hn−1, then 〈Anu, Anxn−1〉 = 〈u, xn−1〉 = 0 so Anxn−1 ∈ An[Hn−1]⊥

proving (6.4). Formula (6.1), which says that ‖Anxn−1‖2 = 1 − ρ2
n−1 then implies (6.3).

Since is An is an isometry on Hn−1, there is a unique vector u ∈ Hn−1 so that 
Anu = Qn−1xn−1 and one has that ρn−2 ≡ ‖u‖ ∈ (0, 1]. Let xn−2 = ρ−1

n−2u and note 
that (1−Qn−1)xn−1 = −an−2yn−1 for some an−2 ∈ C. This proves (6.5). Writing (6.5)
as

xn−1 = ρn−2Anxn−2 − an−2yn−1 (6.8)

and noting that yn−1 is orthogonal to Axn−2 implies (6.6).
Since An is an isometry on Hn−1, it maps the orthogonal complement of u in Hn−1

into Hn−1 so An−1 is an isometry on that orthogonal complement which proves (6.7). 
Moreover, if An−1v = cv with v a unit vector and |c| = 1, then ‖Pn−1Anv‖ = 1 ≥ ‖Anv‖
so Pn−1Anv = Anv and v is an eigenvector of An and there is a contradiction, i.e. 
An−1 ∈ Sn−1. �

If n ≥ 2, we define, consistently with viewing An−1 ∈ Sn−1, Hn−2 to be the comple-
ment of xn−2 in Hn−1, i.e.

Hn−2 = ker(1 −A∗
n−1An−1) (6.9)

and Qn−2, an operator on Hn−1, the projection onto An−1[Hn−2]. If n = 2, then we take 
Q0 = 0.

Proposition 6.2. One can choose a unit vector yn−2 ∈ Hn−1 with Qn−2yn−2 = 0 (i.e. 
yn−2 ∈ Hn−1 ∩ [An−1[Hn−2]]⊥) so that

Axn−2 = ρn−2xn−1 + an−2yn−2 (6.10)

〈yn−1, yn−2〉 = ρn−2 > 0 (6.11)

Remarks. 1. (6.10) is, of course, (direct) Szegő recursion (2.3) and, as noted, (6.5) is 
inverse Szegő recursion, (2.7). We note that (6.11) is motivated by [60, (1.5.61)] while 
(6.12) below is its ∗ dual and (6.15) below is a special case of [60, (1.5.60)].

2. This also holds when n = 2. Hn−1 is then one dimensional so yn−1 is a multiple of 
xn−1 since they are both vectors in Hn−1.

Proof. We start taking the inner product of Anxn−2 with (6.8) which given that Axn−2 ⊥
yn−1 and ‖Anxn−2‖ = 1 implies that

〈Axn−2, xn−1〉 = ρn−2 (6.12)
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Since 1 − Pn−1 = 〈xn−1, ·〉xn−1, where Pn−1 be the projection on Hn−1, this implies 
that

(1 − Pn−1)Axn−2 = ρn−2xn−1 (6.13)

On the other hand, let w ≡ Pn−1Axn−2 and let u ∈ Hn−2. Since An preserves inner 
products on Hn−1, we see that 〈Anu, Anxn−2〉 = 0. Since Anu ∈ Hn−1, we see that 
Pn−1Anu = Anu. Thus

〈Anu,w〉 = 〈Anu, Pn−1Anxn−2〉 = 〈Pn−1Anu,Anxn−2〉

= 〈Anu,Anxn−2〉 = 0

Since w ∈ Hn−1, we conclude that w is a multiple of yn−2. Therefore, for some b, we 
have that

Axn−2 = (1 − Pn−1)Axn−2 + Pn−1Axn−2 = ρn−2xn−1 + byn−2 (6.14)

Since yn−2 ⊥ xn−1, we have that b2 + ρ2
n−1 = 1, so we can pick the phase of yn−2 so 

that (6.10) holds.
With this choice, we need to prove (6.11). Actually, if an−2 = 0 the above argument 

doesn’t fix the phase of yn−2 so in that case we will show that (6.11) can be used 
to determine the phase. Taking the inner product of (6.8) with yn−1 and using that 
yn−1 ⊥ Axn−2 we get that

〈yn−1, xn−1〉 = −an−2 (6.15)

Taking the inner product of (6.10) with yn−1 and again using yn−1 ⊥ Axn−2 we get that

0 = ρn−2〈yn−1, xn−1〉 + an−2〈yn−1, yn−2〉 (6.16)

Multiplying (6.15) by ρn−2 we conclude that

an−2〈yn−1, yn−2〉 = an−2ρn−2 (6.17)

which implies (6.11) if an−1 �= 0.
If an−2 = 0, i.e. ρn−2 = 1, then by (6.15), yn−1 ⊥ xn−1 and, thus, yn−1 ∈ Hn−1. 

Since it is orthogonal to An[Hn−1], it is also orthogonal to An[Hn−2] and thus we can 
pick yn−1 = yn so that (6.11) holds. �
Second Proof of Theorem 2. By iterating the above construction, having made a choice 
of phase for xn−1 and yn−1, we get H1 ⊂ H2 ⊂ · · · ⊂ Hn with dim(Hj) = j and 
xj , yj ∈ Hj+1, j = 0, 1, . . . , n −1. Moreover xj ⊥ Hj so {xj}n−1

j=0 is an orthonormal basis.
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Changing the choice of phase of yn−1 by replacing it by eiθyn−1 replaces each yj by 
eiθyj (same θ) since we rely on 〈yj , yj−1〉 > 0. Moreover, x0, y0 ∈ H1, a one dimensional 
space, so we can choose eiθ so that y0 = x0. We make that choice once and for all, which 
changes the phases of the aj and then we let αj = āj .

By construction, we have for j = 0, . . . , n − 2

Axj = ρjxj+1 + ᾱjyj (6.18)

xj+1 = ρjAxj − ᾱjyj+1 (6.19)

and by (6.4) that

Axn−1 = ᾱn−1yn−1 (6.20)

Multiplying (6.18) by ρj and substituting in (6.19) gives

xj+1 = ρ2
jxj+1 + ρjᾱjyj − ᾱjyj+1 (6.21)

Since 1 − ρ2
j = αjᾱj , if αj �= 0, we can divide it out and get

yj+1 = ρjyj − αjxj+1 (6.22)

If αj = 0, we saw that yj+1 = yj so (6.22) still holds.
We thus have (6.18)/(6.20)/(6.22) which are the same as (2.26)/(2.27) which can be 

used with x0 = y0 to show that, in {xj}n−1
j=0 basis, A is given by a GGT matrix proving 

Theorem 2. �
Proof of Theorem 3. The result is essentially a restatement of Wendroff Theorem for 
OPUC. Given the eigenvalues {zj}nj=1, take Φn(z) =

∏n
j=1(z−zj). By Wendroff’s Theo-

rem, this is an OPUC for measure and if A is the corresponding compressed multiplication 
operator, then its eigenvalues are the zeros of Φn, so the required set. In fact, one proof 
of Wendroff’s theorem [60, Theorem 1.7.5] shows that one can take the measure to be 
dθ/|ϕn|2, the so-called Bernstein–Szegő measure associated to ϕn.

By Theorem 2.10, two compressed multiplication operators with the same eigenvalues 
have the same Φn and are the exact same operator acting on Pn−1. Thus, they are 
unitarily equivalent. �
7. The numerical range

In this section, we prove Theorems 4 and 5. Since we’ve seen that Sn agrees with 
compressed multiplication operators, we suppose A acts on Pn−1 as a compressed mul-
tiplication operators with Verblunsky coefficients {αj}n−1

j=0 . We will realize the unitary 
operators {Uλ}λ∈∂D associated to the degree n +1 POPUC as operators on Pn. We have 
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{ϕj}nj=0 as an orthonormal basis for Pn in L2(∂D, dμλ) for the measures, dμλ, associated 
to each of Uλ. For ψ ∈ Pn, we have that

ψ ∈ Pn−1 ⇐⇒ 〈ϕn, ψ〉 = 0 (7.1)

Szegő recursion says that

Aϕj =
{

ρjϕj+1 + ᾱjϕ
∗
j , j = 0, . . . , n− 2

ᾱjϕ
∗
j , j = n− 1

(7.2)

while

Uλϕj =
{

ρjϕj+1 + ᾱjϕ
∗
j , j = 0, . . . , n− 1

λ̄jϕ
∗
j , j = n

(7.3)

Uλ has eigenvalues at those {wj}n+1
j=1 , labelled so that 0 ≤ argwj < argwj+1 < 2π, j =

1, . . . , n, with Φn+1(wj) = 0, where Φn+1(z) = zΦn(z) − λ̄Φ∗
n(z). The eigenvectors are

ηj(z) = N−1
j Φn+1(z)/(z − wj) = N−1

j

∏
k 	=j

(z − wk) (7.4)

where Nj > 0 is a normalization factor. Of course Φn+1, wj , ηj , Nj are all λ dependent 
but we suppress this dependence unless we need to be explicit.

We define

mj(λ) = |〈ϕn, ηj〉|2 (7.5)

the Fourier coefficients of ϕn in the orthonormal basis {ηj}n+1
j=1 so

mj(λ) > 0,
n+1∑
j=1

mj(λ) = 1 (7.6)

The spectral measure for ϕn and Uλ is

dνλ(z) =
n+1∑
j=1

mjδwj
= |ϕn(z)|2dμλ(z) (7.7)

where

dμλ(z) =
n+1∑

qjδwj
; qj = 1/

n+1∑
|ϕk(wj)|2 (7.8)
j=1 k=0
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(the Christoffel numbers, q−1
j , here sum to n + 1 while in Section 4, they only summed 

to n because there we were discussing n ×n unitaries whereas here our unitary operators 
are (n + 1) × (n + 1)).

We won’t need them but we note there are explicit formulae for Nj and mj , viz

Nj = q
1/2
j

∏
k 	=j

|wj − wk|; mj = qj |ϕn(wj)|2 (7.9)

We will need that these and the wj are real analytic in λ although one can also get that 
from eigenvalue perturbation theory [65].

Lemma 7.1. Up to phase factor, the span of ηj and ηk, j �= k has a unique unit vector, 
ψ, in Pn−1 and it is given by

ψ = [〈ϕn, ηj〉ηk − 〈ϕn, ηk〉ηj ]/
√

mj + mk (7.10)

One has that

ζjk := 〈ψ,Uλψ〉 = 〈ψ,Aψ〉 = mjzk + mkzj
mj + mk

(7.11)

Proof. (7.10) is a consequence of (7.1). (7.11) for Uλ follows from the Fourier expansion 
for Uλ and that this equals 〈ψ, Aψ〉 follows from A = PnUλPn. �
Theorem 7.2 (=Theorem 4). For any j, k ∈ {1, . . . , n + 1}, j �= k, the point, ζ, on the 
line between wj and wk with

|ζ − wj |/|ζ − wk| = mj/mk (7.12)

lies in N(A). For k = j +1 (or j = n +1, k = 1), this is the only point on the line which 
lies in N(A) and that line is tangent to ∂N(A) at the point ζ.

Remark. The polygon with vertices {wj}n+1
j=1 is ∂N(Uλ) and circumscribes N(A), so it 

is a kind of Poncelet polygon.

Proof. Given the formula (7.11) for ζ, (7.12) is a direct calculation. Since ψ ∈ Pn−1, we 
have that ζ ∈ N(A).

Since Uλ is normal, N(Uλ) is the convex hull of the eigenvalues {wj}n+1
j=1 and 

〈ψ, Uλψ〉 =
∑n+1

j=1 wj |〈ψ, ηj〉|2 is in the segment from wj to wj+1 if and only if ψ is 
the space spanned by ηj and ηj+1. Thus the only point on that line in N(A) comes from 
ψ given by (7.10) with 〈ψ, Aψ〉 given by (7.11). Since N(A) ⊂ N(Uλ), N(A) lies on one 
side of the line segments and therefore the line segment is tangent. �
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Theorem 7.3 (=Theorem 5). ∂N(A) is a real analytic curve. Each ζ ∈ ∂N(A) is a 
tangent point of an edge of some N(Uλ). Moreover

N(A) = ∩λ∈∂DN(Uλ) (7.13)

Proof. As noted above, the wj and mj are real analytic functions of λ̄, so ζ is real 
analytic. Since ∂N(A) is a convex curve, there is, in the sense of a line with the curve 
on one side of the line, a tangent at each point (although, a priori, it might not be 
unique). This tangent must meet ∂D at a point which is a zero of some Φn+1(z; λ) and 
so the tangent is an edge of that N(Uλ). That means that the function ζ fills out the 
entire set ∂N(A). The analyticity then implies uniqueness of tangent and so proves strict 
convexity. Thus, we need only prove (7.13).

Since A is a restriction of each Uλ, we have that N(A) ⊂ N(Uλ), so the ⊆ of (7.13)
is immediate.

Pick ξ ∈ N(A)int, the interior of N(A) (which is non–empty by the strict convexity). 
Let u /∈ N(A). The line segment from ξ to u meets ∂N(A) in a unique point, ζ. ζ lies on 
the edge of some ∂N(Uλ). Since this edge is tangent to ∂N(A), it must be distinct from 
the line from ξ to u which implies that u /∈ N(Uλ). Thus N(A)c ⊂ ∪N(Uλ)c proving the 
⊇ half of (7.13). �
8. The Schur functions associated to OPUC

In this section and the next, we will prove Theorems 6 and 7 and the following related 
result

Theorem 8.1. Fix Verblunsky coefficients {αj}n−1
j=0 and corresponding OPUC {Φj}nj=0. 

Let

Bn(z) = Φn(z)
Φ∗

n(z) (8.1)

Then Bn is a Schur function and for any λ ∈ ∂D, the Schur iterates of λBn are 
λBn−1, λBn−2, . . . , λB0 = λ and the Schur parameters are

γj(λBn) =
{

−λᾱn−1−j , j = 0, . . . , n− 1
λ, j = n

(8.2)

The Carathéodory function for the associated measure is

Fn(z) = −Φn+1(z;−λ)
Φn+1(z;λ) (8.3)

The measure associated to λBn is the measure dνλ of (7.7).
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In this section, we’ll prove this theorem and use it to give the first proof of Theorem 7. 
In the next section, we’ll use it to give one proof of Theorem 6. In that section we’ll also 
give GGT matrix proofs of Theorems 6 and 7. Formulae like (8.2) are implicit in the 
work of Khrushchev [46]. We’ll say more about his work and its relation to the first proof 
of Theorem 7 in the next Section.

Start of Proof of Theorem 8.1. If eiθ ∈ ∂D, the have that |Φn(eiθ)| = |Φ∗
n(eiθ)|. More-

over, since Φn has all of its zeros in D, Φ∗
n has none, so Bn(z) is analytic in D with 

|Bn(eiθ)| = 1 for eiθ ∈ ∂D. By the maximum principle, Bn is a Schur function; indeed, 
up to a phase factor, it is the Blaschke product of the zeros of Φn.

By Szegő recursion, (2.3) and the result of applying τn+1 to it, we have that

λBn(z) = λ
zΦn−1(z) − ᾱn−1Φ∗

n−1(z)
Φ∗

n−1(z) − αn−1zΦn−1(z)

= −λᾱn−1 + z(λBn−1(z))
1 − λ̄αn−1z(λBn−1(z))

(8.4)

which precisely says that γ0(λBn) = −λᾱn−1 and that λBn−1 is the first Schur iterate. 
By the obvious repetition, we get (8.2) and the claimed full list of Blaschke iterates.

To get (8.3), we note that

Fn(z) = 1 + zλBn(z)
1 − zλBn(z)

= zΦn(z) + λ̄Φ∗
n(z)

−(zΦn(z) − λ̄Φ∗
n(z))

(8.5)

proving (8.3). This proves the entire theorem except for the identification of the measure 
to which we now turn. �

We have just shown that the Carathéodory function of dν, the measure with Schur 
function λBn is

F (z) = 1 + λzBn(z)
1 − λzBn(z) = −zϕn(z) + λ̄ϕ∗

n(z)
zϕn(z) − λ̄ϕ∗

n(z)
(8.6)

On the other hand, the Carathéodory function of the measure defined by Φn+1(z; λ)
is, by [60, (3.2.4)],

G(z) =
Ψ∗

n+1(z)
Φ∗

n+1(z)
= −Ψn+1(z)

Φn+1(z)
(8.7)

where we used (2.23). Here Ψn+1(z; λ) ≡ zΨn(z) + λ̄Ψ∗
n(z) with Ψn the second kind 

OPUC; see Theorem 2.7.
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Lemma 8.2. Fix λ and z0 in ∂D. Suppose that Φn+1(z0; λ) = 0. Then

1
Ψn+1(z0)

= ϕn(z0)
2z0

∏n−1
j=0 ρj

(8.8)

Proof. By (2.13), we have that

Ψ∗
n(z0)Φn(z0) + Φ∗

n(z0)Ψn(z0) = 2zn0
n−1∏
j=0

ρ2
j (8.9)

By hypothesis, we have that Φn(z0) = z0λΦ∗
n(z0), so (8.9) becomes

z0Φn(z0)∗Ψn+1(z0) = 2zn0
n−1∏
j=0

ρ2
j (8.10)

Since Φ∗
n(z0) = zn0ϕn(z0)

∏n−1
j=0 ρj we get (8.8). �

End of the Proof of Theorem 8.1. Let z0 be a zero of the POPUC Φn+1(z; λ). It suffices 
to show that for any such z0, one has that

lim
ε↓0

F ((1 − ε)z0)/G((1 − ε)z0) = |ϕn(z0)|2 (8.11)

We note that by (8.6) and (8.7), we have that

F (z)
G(z) = zΦn(z) + λ̄Φ∗

n(z)
Ψn+1(z)

(8.12)

The right side of (8.12) has a limit at z0 which is 2z0Φn(z0)/Ψn+1(z0). By (8.8), this 
is |ϕn(z0)|2. �
9. M-functions of POPUC

In this section, we’ll begin with a proof of Theorem 6 following up on the last section 
and then provide a totally different approach to proving Theorems 6 and 7 using GGT 
matrices. Finally, we’ll discuss the relation of these theorems to earlier work on OPUC.

We’ll call a function like
ˆ 1

z − eiθ
dν(θ) (9.1)

which appears on the left side of (3.4) an M -function in analogy with the Weyl m-function 
of OPRL and the theory of second order ODEs (although those functions have (x −z)−1, 
not (z − x)−1 where x is the variable of integration).
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First Proof of Theorem 6. Since w+z
w−z = 1 − 2z 1

z−w , we have that

F (z) = 1 − 2zM(z) ⇒ M(z) = 1 − F (z)
2z (9.2)

where F , the Carathéodory of dν, is given by (8.6). (9.2) and (8.5) imply (3.4).
This provides a relation between a POPUC and the measure, dν, associated to it. 

Given a Blaschke product or the POPUC associated to it (the one with the same zeros), 
one sees from this that the combination on the right of (1.3) or (3.4) has the form on 
the left of these equations. Conversely, given a set of n +1 points on ∂D and probability 
weights, we can form the associated measure ν and its M -function M as in (9.1). By (2.9)
and (9.2), M can be expressed in terms of a Schur function. It remains to use Theorem 8.1
to show that M has the form of the right hand side of (1.3), or equivalently, of (3.4). �

The following direct proof of (3.4) does not rely on identifying a Schur function. We 
regard it as the simplest proof of (1.3). After we’d found this proof, we found almost the 
identical argument in [35, Section 2.2].

Second Proof of Theorem 6. Let Uλ be given by Theorem 2.11. Then by the spectral 
theorem and the definition of dν, we have that

ˆ 1
z − eiθ

dν(θ) = 〈ϕn, (z − Uλ)−1ϕn〉 (9.3)

In the GGT representation, ϕn is the vector (0, 0, . . . , 1)t, so Cramer’s rule says that

〈ϕn, (z − Uλ)−1ϕn〉 =
det(z − Gn({α}n−1

j=0 ))
det(z − Gn+1({αj}n−1

j=0 ∪ {λ}))
(9.4)

since the result of dropping the last row and column of GGT matrix is a GGT matrix 
of one degree less. By (2.20), the denominator of (9.4) is Φn+1(z; λ) and by (2.16), the 
numerator is Φn(z). These facts imply (3.4). Once one has this, the rest of the proof is 
the same as the last paragraph of the first proof. �
Second Proof of Theorem 7. Except for replacing n by n +1 and αn−1 by λ, this is just 
Theorem 4.4. �

Finally, we turn to the connection of Theorems 6, 7 and 8.1 to earlier work of 
Khrushchev [46] and Simon [60]. When λ = 1, (8.2), proven as we do using Szegő recur-
sion, is in Khrushchev’s paper. He uses it in part to prove what [61, Theorem 9.2.4] calls 
Khrushchev’s formula that if dη is a non–trivial probability measure, then the Schur func-
tion of |ϕn(eiθ)|2 dη(θ) is fn(z)Bn(z) where fn is the nth Schur iterate of the Schur func-
tion of dη, i.e. the Schur function with Schur parameters γj(fn) = αn+j(dη), j = 0, 1, . . . , 
and Bn is given by (8.1).
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If now, we take αn → λ ∈ ∂D, the measure dη converges to the measure we called 
dμλ, so |ϕn(eiθ)|2dη converges to the measure that we called dνλ and the Khrushchev 
formula in the limit says that the Schur function of that measure is λBn which is the 
final assertion in Theorem 8.1 which we saw above is the essence of the first proof of 
Theorem 6.

In [60, Section 4.4], Simon, using rank two perturbation theory computed matrix 
elements of (C−z)−1, where C is the CMV matrix, which can be used to also find matrix 
elements of (G − z)−1 which provides another proof of Theorem 6.

10. Wendroff type theorems

Simon [63] has three theorems about zero interlacing involving POPUC which he 
proves using rank one perturbation theory (recently Castillo–Petronilho [12] have ex-
tended some of these results and recast them).

(1) (proven earlier by Cantero et al. [8]; see also [35]). If λ, μ ∈ ∂D are different, then 
the zeros of Φn+1(z; λ) and Φn+1(z; μ) strictly interlace.

(2) (proven independently by Wong [75]) If λ ∈ ∂D, then the zeros of the first and 
second kind POPUC, Φn+1(z; λ) and Ψn+1(z; λ), strictly interlace (we remark that here 
we define Ψn+1(z; λ) to have all the opposite sign Verblunsky coefficients to Φn+1(z; λ), 
including changing αn = λ to αn = −λ, which [63,75] call Ψn+1(z; −λ)).

(3) (special case appeared earlier in Golinskii [34] and a refined version in [12]). If 
λ, μ ∈ ∂D, perhaps equal, the zeros of the POPUC Φn+1(z; λ) and Φn(z; μ) are either 
all distinct in which case Φn(z; μ) has exactly one zero in exactly n of the n +1 intervals 
obtained by removing the zeros of Φn+1(z; λ) from ∂D or else they have exactly one zero 
in common in which case Φn(z; μ) has no zero in the two intervals obtained by removing 
the zeros of Φn+1(z; λ) from ∂D closest to the common zero and exactly one zero in the 
other n − 1 intervals.

Wendroff type theorems mean suitable unique converses and, in this regard, parameter 
counting is important. The various parameters lie in real manifolds and if there is to be 
existence and uniqueness, the two manifolds must have the same real dimension.

In this regard (1) is fine. The set of possible zeros has real dimension 2n +2 and they 
are determined by n complex Verblunsky coefficients {αj}n−1

j=0 , λ and μ, also 2n + 2 real 
parameters. Indeed Theorem 8 is such a Wendroff theorem which we noted is essentially 
identical to a theorem of Gau-Wu [27] which we called Theorem C. It was later proven 
in a simpler way by Daepp et al. [17]. The Daepp et al. proof is essentially a POPUC 
analog of a standard proof of Wendroff for OPRL. Our proof (below) is new, albeit close 
to the earlier OPUC proof of Golinskii–Kudryavtsev [35], and we feel illuminating.

As stated, (2) doesn’t have the right parameter counting for a Wendroff theorem. 
The zeros are again 2n + 2 parameters but n complex Verblunsky coefficients {αj}n−1

j=0
and λ are only 2n +1 real parameters. That’s because there is a restriction on the zeros, 
namely (3.6). With this restriction, the set of zeros is only 2n +1 parameters so parameter 
counting is fine and there is a Wendroff theorem, Theorem 9, new here.
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The parameter counting is also wrong for there to be a strict converse in case (3). 
There are 2n + 1 real parameters for the zeros but n complex Verblunsky coefficients 
{αj}n−1

j=0 , λ and μ, are 2n + 2 real parameters. Indeed some simple examples when n = 1
show that, in general, there exists a one parameter family of choices for (α0, α1, λ, μ)
leading to zeros (w1, w2, y1). Nevertheless, Castillo et al. [11] do have a Wendroff type 
theorem in the context of (3)! They consider sequences of monic polynomials {Ξj}∞j=0
obeying a three term recurrence relation

Ξn+1(z) = (z + βn)Ξn(z) − γnΞn−1(z) (10.1)

with n = 1, 2, . . . with Ξ0 = 1 and Ξ1(z) = z + β0 for suitable βj ∈ ∂D, j ≥ 0 and 
γj ∈ C \ {0}, j ≥ 1. [11] show that, under suitable hypotheses, there exist Verblunsky 
coefficients {αj}∞j=0 ∈ D∞ and {λj}∞j=0 ∈ ∂D∞ so that Ξj are the associated POPUC 
but, when they exist, {αj}∞j=0 ∈ D∞ and {λj}∞j=0 ∈ ∂D∞ are not unique but depend on 
an arbitrary choice of λ0 ∈ ∂D. They proved that given sets of zeros as in case (3), there 
is a unique choice of {βj}nj=0 and {γj}nj=0 and so {Ξj}n−1

j=0 for which Ξn and Ξn+1 have 
the required zeros. Thus there is a kind of Wendroff theorem for the sequence of POPUC 
but the OPUC are not determined. In contradistinction, Theorem 8 does determine all 
the lower order OPUC from the two POPUC which is why we call it Wendroff’s Theorem 
for (P)OPUC.

We now turn to the proof Theorem 8. We begin with uniqueness. Since

Φn+1(z, λ) = zΦn(z) − λ̄Φ∗
n(z); Φn+1(z, μ) = zΦn(z) − μ̄Φ∗

n(z) (10.2)

we have that

Φn(z) = λΦn+1(z;λ) − μΦn+1(z;μ)
(λ− μ)z (10.3)

If z1, z2, . . . , zn+1, w1, w2, . . . , wn+1 are all in ∂D and are the zeros of Φn+1(z, λ) and 
Φn+1(z, μ), then

Φn+1(z;λ) =
n+1∏
j=1

(z − zj); Φn+1(z;μ) =
n+1∏
j=1

(z − wj) (10.4)

so by (10.3), the z′s and w′s determine Φn(z) and so, by Wendroff’s Theorem for OPUC 
(Theorem 2.3), they determine {αj}n−1

j=0 . By (2.22), the zeros also determine λ and μ. 
Thus, we have the uniqueness claim.

For existence, we fix 2n + 2 points z1, z2, . . . , zn+1, w1, w2, . . . , wn+1 all in ∂D. For 
now, they need not be different or in any order but we do need λ and μ below to be 
unequal.
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Define

Qn+1(z) =
n+1∏
j=1

(z − zj); Rn+1(z) =
n+1∏
j=1

(z − wj) (10.5)

λ = −
n+1∏
j=1

(−z̄j) μ = −
n+1∏
j=1

(−w̄j) (10.6)

so that

Qn+1(0) = −λ̄; Qn+1(0) = −μ̄ (10.7)

We revert to τn notation for the ∗ map since we’ll be using it with different implicit 
n’s. We claim that

τn+1(Qn+1) = −λQn+1; τn+1(Rn+1) = −μRn+1 (10.8)

One way of seeing this is to note both sides have the same zeros, are polynomials of 
degree n + 1 and have the same leading coefficients. Another way is to note that

z

(
1
z
− z̄j

)
= 1 − zz̄j = −z̄j(z − zj)

Define now

Pn(z) = λQn+1(z) − μRn+1(z)
(λ− μ)z (10.9)

Of course, this is motivated by (10.3). We note that by (10.7) the numerator vanishes 
at z = 0 so Pn is a polynomial of degree n and the λ − μ in the denominator makes it a 
monic polynomial. We compute:

τn(Pn) = τn+1(zPn) = λ̄(−λ)Qn+1 − μ̄(−μ)Rn+1

λ̄− μ̄

= μλ
Qn+1 −Rn+1

λ− μ
(10.10)

where we used

1
λ̄− μ̄

= 1
1
λ − 1

μ

= −λ− μ

μλ

This implies, by direct computation from (10.9) and (10.10), that
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Lemma 10.1. We have that

zPn − λ̄τn(Pn) = Qn+1; zPn − μ̄τn(Pn) = Rn+1 (10.11)

Lemma 10.2. Let z0 ∈ ∂D. Then

Pn(z0) = 0 ⇐⇒ Qn+1(z0) = Rn+1(z0) = 0 (10.12)

Proof. Since z0 ∈ ∂D, one has that Pn(z0) = 0 ⇐⇒ τn(Pn)(z0) = 0. Given this, (10.12)
is immediate from (10.9), (10.10) and (10.11). �

With this algebra under our belt

Proof of Theorem 8. That the zero’s interlace follows from the fact that Bn(z) =
Φn(z)/Φ∗

n has a strictly increasing argument. Uniqueness is proven above.
Finally, given interlacing z’s and w’s, let z̃j be the roots of zn+1 − λ̄ and w̃j be the 

roots of zn+1 − μ̄. The P for this set of roots is clearly zn which has all its roots in D. 
One can continuously deform these sets keeping the corresponding λ and μ unchanged 
through strictly interlacing sets and so deform from zn to Pn. The zeros of Pn move 
continuously and, by Lemma 10.2 and strict interlacing, never go through ∂D. Thus Pn

has all its zeros inside D so, by Wendroff’s theorem for OPUC (Theorem 2.3), it is a Φn. 
By Lemma 10.1, Qn+1 and Rn+1 are the POPUC for the Φn. �

Theorem 8 appears already in Golinskii–Kudryavtsev [35, Theorem 3.2]. Our proof of 
uniqueness is essentially the same as theirs. Our proof of existence is related to theirs 
but instead of our perturbation argument above, they use a Theorem of Simon [61, 
Theorem 11.5.6]. We believe that the role of interlacing is clearer in our new argument 
than in this earlier argument of Simon.

We now turn to the proof of Theorem 9. We will need (8.7) which expresses the 
Carathéodory function, G(z), of the measure we called dμλ in terms of Φn+1(z; λ) and 
Ψn+1(z; λ). The Verblunsky coefficients of that measure are precisely what the second 
half of the Theorem claims are determined by the zeros obeying (3.6). The proof will 
depend on an analysis of what we’ll call “quasi-Carathéodory” functions (because the c’s 
below may not be positive). A degree n + 1 quasi-Carathéodory function is one of the 
form, given {zj}n+1

j=1 ⊂ ∂D:

f(z) =
n+1∑
j=1

cj
zj + z

zj − z
; cj ∈ R \ {0};

n+1∑
j=1

cj = 1 (10.13)

Proposition 10.3. Let f be a quasi-Carathéodory function (10.13) whose poles are written 
in cyclic order with zn+2 ≡ z1, cn+2 ≡ c1. Then

(a) f(z) is purely imaginary on the unit circle with the zj’s removed.
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(b) f(0) = 1; f(∞) = −1
(c) For each j = 1, . . . , n +1, if cj and cj+1 have the same (resp, different) signs, then 

f has an odd (resp. even) number of zeros (counting multiplicity) in the arc between zj
and zj+1.

Remark. If all cj ’s are of the same sign, by the pigeonhole principle, all the zeros of f lie 
on ∂D and there is a single zero in each arc between zj and zj+1. However, if we allow 
for a sign changes, it is easy to construct examples where not all the zeros of f lie on 
∂D and examples where all of them do.

Proof. (a) and (b) are immediate. (c) By noting that Im((1 +z)/(1 −z)) = 2Im(z)/|1 −z|2, 
one sees that if cj > 0, then f → i∞ as z approaches zj from larger argument. This 
implies that if cj and cj+1 has opposite (resp. same) signs, there must be an even (resp. 
odd) number of sign changes of Im(f) in the arc between zj and zj+1. �
Proposition 10.4. Let {zj}n+1

j=1 and {wj}n+1
j=1 be two sets of points, all distinct, on the unit 

circle for which (3.6) holds. Let

f(z) =
∏n+1

j=1 (1 − w̄jz)∏n+1
j=1 (1 − z̄jz)

(10.14)

Then f is a quasi-Carathéodory function.

Proof. We begin by noting that if |u| = 1, then

1 − ū(1/z̄) = (z − u)z−1 = −u(1 − ūz)z−1

which implies that

f

(
1
z̄

)
=

∏n+1
j=1 wj∏n+1
j=1 zj

f(z) = −f(z) (10.15)

by (3.6).
Thus f is imaginary on the circle away from the poles which implies, by a partial 

fraction expansion that

f(z) = c0 +
n+1∑
j=1

cj
zj + z

zj − z
; cj ∈ R \ {0}; c0 ∈ iR

Since f(0) = 1, we see that c0 +
∑n+1

j=1 cj = 1 which is real and so implies that c0 = 0. 
Thus f is a quasi-Carathéodory function. �
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Proof of Theorem 9. If zj and wj are the zero of a POPUC and its associated second 
kind POPUC, then 

∏n+1
j=1 zj = (−1)nλ̄ while 

∏n+1
j=1 wj = (−1)n(−λ̄) proving (3.6). By 

(8.7) and Proposition 10.3(c), there are an odd number of zeros in each of the n + 1
intervals, so one per interval and the zeros interlace. That proves the direct result.

For the converse, given interlacing zeros obeying (3.6), by Proposition 10.4, f given 
by (10.14) is a quasi-Carathéodory function. Since there are an odd number of zeros in 
each interval, the signs of the cj ’s are all the same. Since they sum to 1, they are all 
positive, so f is the Carathéodory function of a point measure whose POPUC has zeros 
at the poles of f , so the zj ’s. Moreover, the second kind POPUC has zeros at the zeros 
of f , so the w’s. �
11. Derivatives of POPUC

There is a classical connection relating zeros of a polynomial, P , and zeros of its 
derivative, P ′ to sums of the form (1.1) with all mj ’s equal because of the following 
basic relation.

Proposition 11.1. Let P (z) be a complex polynomial of degree k with distinct zeros 
{zj}kj=1. Then the zeros of P ′(z) are the same as the zeros of

M(z) ≡ 1
k

k∑
j=1

1
z − zj

(11.1)

Proof. Using P (z) = a 
∏k

j=1(z − zj) and taking logarithmic derivatives, one sees that

M(z) = P ′(z)
kP (z) (11.2)

Since the zeros of P are distinct, the zeros of M are precisely the zeros of P ′(z). �
Remark. Of course, (11.2) holds if some of the zeros of P are not distinct, at least away 
from zeros of P . But at multiple zeros of P , M has a pole even though P ′ vanishes.

Given the relation of sums like (11.1) and Poncelet type polygons that we studied in 
Section 7 and what Theorem 7.2 tells us when there are equal m’s, we are interested in 
polygons tangent at midpoints. In this regard, there are two classical results in the case 
of triangles

Theorem F (Steiner [67], 1829). Given a triangle, T in the complex plane with vertices 
{zj}3

j=1, there is a unique ellipse tangent to T at the midpoints of its sides and the foci 
of the ellipse are
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1
3(z1 + z2 + z3) ±

√(
1
3(z1 + z2 + z3)

)2

− 1
3(z1z2 + z1z3 + z2z3) (11.3)

Theorem G (Siebeck [57], 1864). The foci of the Steiner ellipse are the zeros of P ′ where 
P is the cubic polynomial with zeros at {zj}3

j=1

Remark. Of course, since P (z) = (z−z1)(z−z2)(z−z3), we have P ′(z) = az2+bz+c; a =
3, b = −2(z1 +z2 +z3), c = (z1z2 +z1z3 +z2z3) so this result is immediate. It was Siebeck 
who realized the special role of sums like (11.1) in studying the zeros of P ′.

There are two papers in the series discussed in Section 1 that deal with extending these 
results to k zeros on ∂D (for the case of three zeros, they always lie on a circle so there 
is no loss in supposing that z1, z2, z3 ∈ ∂D), namely Gau-Wu [25] and Gorkin–Shubak 
[37]. Even though all the results later in this section are more or less in these papers, 
we decided to include this subject for several reasons: first, we believe the results are 
interesting and deserve to be better known; second, we want to emphasize how simple 
the basic proofs are; finally, and most importantly, while Gorkin–Shubak [37] state the 
basic equation for determining when n points in D are the zeros of a derivative of a 
polynomial, P , whose zeros lie in ∂D (Theorem 11.3), they don’t analyze them nor note 
the different nature in the case n is odd vs. n even (Theorem 11.4 below is new).

The following is a variant of the main result in Gau–Wu [25]. Since the numerical 
range of an operator A in S2 is an ellipse (indeed, all operators on C2 have ellipses as 
their numerical range), the n = 2 case of this theorem provides a proof of Theorems F
and G.

Theorem 11.2. Let {zj}n+1
j=1 be n +1 distinct points in ∂D. Then up to unitary equivalence, 

there is a unique operator A ∈ Sn so that N(A) is tangent to the midpoints of the edges of 
the convex polygon with vertices {zj}n+1

j=1 . If P (z) =
∏n+1

j=1 (z−zj), then (n +1)−1P ′(z) is 
the characteristic polynomial for A and, in particular, the zeros of P ′ are the eigenvalues 
of A.

Proof. By Theorem 7.2, there is a unique operator A ∈ Sn with N(A) tangent at the 
midpoints of the polygon and its M–function has the form (11.1) with k = n + 1. By 
Theorem 6 and (11.2), we have that

P ′(z)
P (z) = Φn(z)

zΦn(z) − λ̄Φ∗
n(z)

(11.4)

so P ′(z) = Φn(z). By Theorems 2.10 and 2, Φn is the characteristic polynomial of A. �
Gorkin–Shubak [37] study the question of when {aj}nj=1 in D are the zeros of the 

derivative of a polynomial, P , all of whose zeros lie in ∂D. While they focus on the case 
n = 2, they state the following (in a version that doesn’t mention POPUC or OPUC!).
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Theorem 11.3. Let {aj}nj=1 be n not necessarily distinct points in D. Then there is a 
polynomial, P , with all of its zeros on ∂D so that P ′ has its zeros at {aj}nj=1 if and only 
if there is a λ ∈ ∂D so that

Φ′
n+1(z;λ) = (n + 1)Φn(z) (11.5)

where Φn(z) =
∏n

j=1(z − aj) and Φn+1(z; λ) is given by (2.19).

Proof. If (11.5) holds, then, clearly, {aj}nj=1 is the set of critical points of a polynomial 
whose zeros all lie on ∂D.

Conversely, let P be a monic polynomial whose zeros {zj}n+1
j=1 all lie in ∂D and so 

that P ′ vanishes at {aj}nj=1. By Theorem 6, we know that M(z) given by (11.1) (with 
k = n + 1) is the M–function associated to some n + 1–point measure dμ on ∂D with 
OPUC obeying (3.4) with dν = |ϕn|2dμ = (n + 1)−1 ∑n+1

j=1 δzj . Moreover, for some λ, zj
are the zeros of Φn+1(z; λ). Thus P (z) = Φn+1(z; λ) and, by (3.4) and (11.2),

1
n + 1

P ′(z)
Φn+1(z;λ) = Φn(z)

Φn+1(z;λ) (11.6)

so (11.5) holds. �
Now, given {aj}nj=1, a collection of points in D, let sk =

∑
ai1ai2 . . . aik , with the sum 

over all 
(
n
k

)
sets of distinct i1i2 . . . ik in {1, . . . n}, be the elementary symmetric functions, 

k = 1, . . . , n so that

Φn(z) ≡
n∏

j=1
(z − aj) = zn +

n−1∑
k=0

(−1)n−ksn−kz
k (11.7)

Theorem 11.4. (11.5) is equivalent to the equations

(n− j)sn−j + (−1)n−1λ̄(j + 1)s̄j+1 = 0, j = 0, . . . , n− 1 (11.8)

For n = 2k, even, there are k independent equations and in the 2n real dimensional 
manifold of (a1, . . . , an) ∈ Dn, the set obeying (11.5) has real dimension n + 1. For 
n = 2k + 1, odd, there are k + 1 equations and if sk+1 �= 0, we have that

λ = (−1)n−1s̄k/sk (11.9)

In the 2n real dimensional manifold of (a1, . . . , an) ∈ Dn, the set obeying (11.5) has real 
dimension n + 1.

Remarks. 1. It may be that the set of allowed a’s has some singular points but except 
for a lower dimensional set, it is a real analytic manifold.
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2. The case n = 2 is treated in detail in Gorkin–Shubak [37]. In that case, there is 
one equation where λ can be used to adjust the phase so that we get

|a1 + a2| = |a1a2| (11.10)

3. In terms of the operator, A ∈ Sn associated to Φn, the aj are eigenvalues and 
sk = Tr(∧k(A)) (see Simon [62] for discussion of ∧k(A)). In particular, (11.8) for j = 0
is

n det(a) + (−1)n−1λ̄Tr(A∗) = 0 (11.11)

4. The proof shows that the only possible singularities occur at points where two a’s 
are equal and, if n = 2k+1 is odd, where sk+1 = 0. It is an interesting question whether 
these singularities actually occur.

Proof. (11.5) is equivalent to

nΦn + λ̄(Φ∗
n)′ − zΦn = 0 (11.12)

Write Φn(z) = zn +
∑n−1

j=0 Ajz
j . Then (Φ∗

n)′(z) =
∑n

k=1 kAn−kz
k and (11.12) becomes 

(11.8).
It is well known that away from coincident points, the map (a1, . . . , an) �→ (s1, . . . , sn)

has a non–singular inverse. The equations (11.9) are the same for j and for n − 1 − j

but are clearly independent linear equations for j = 1, 2, . . . , 
[
n
2 + 1

]
. The dimension 

counting results follow. �
12. Poncelet’s theorem

That completes most of we want to say about using OPUC ideas to understand the 
topics discussed in Section 1. These final two sections make some brief comments about 
the relation of algebraic geometric ideas in the area where we have not succeeded in 
leveraging OPUC methods.

We begin with Poncelet’s Theorem. For the triangle case, the ideas of Section 7 are 
ideal. Given two points z1, z2 ∈ D, there is a unique monic polynomial, Φ2(z) = (z −
z1)(z − z2) with simple zeros at those two points (assuming z1 �= z2). As with all 2 × 2
matrices, the numerical range of the associated compressed multiplication operator, A, 
is an ellipse with foci at the eigenvalues z1, z2. We can form the unitaries associated to 
the various POPUC, Φ3(z; λ) as λ runs through ∂D. Their numerical ranges provide an 
infinity of Poncelet triangles with vertices on the unit circle and tangent to N(A).

Moreover, if the ellipse is made larger (with the same foci), it is easy to see that 
starting at w0 ∈ ∂D and forming three successive tangents to the large ellipse ending at 
successive points w1, w2, w3 don’t go as far around the circle as for the critical ellipse and 
so one gets less than a closed triangle. Similarly, for a smaller ellipse, the wj are further 
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along and so don’t give a closed triangle. Thus we only have a triangle for the critical 
ellipse which has an infinity of triangles. This proves Poncelet’s Theorem for triangles.

As we emphasized, the ideas of Section 7 give an analog of Poncelet’s theorem from 
triangles to other polygons, but not the analog that Poncelet considered, since in that 
case, in general, the numerical range is not an ellipse. That said, Mirman [50] and 
Gau–Wu [26] did use some of these ideas for a proof of the Poncelet ellipse theorem for 
higher degree polygons but they rely on a result of Kippenhahn [47] who considers the 
dual of the boundary, ∂N(A), of the numerical range of an n ×n matrix. He considers the 
projective dual of this boundary, essentially, the set of tangents to the curve and proves 
that in projective coordinates, this dual is a degree n real variety (or more properly the 
outer part of the variety).

The above argument for triangles extends to n-gons and shows that if we fix the foci 
of an ellipse in D and w0 ∈ ∂D, then there is a single eccentricity where the n touching 
tangents starting at w0 lead to a closed convex n-gon. This is perhaps best understood 
using the idea of a billiard trajectory as in [22, Chapter 15]. Indeed, given w0 ∈ ∂D and 
an ellipse E ⊂ D, there are two tangents to E that pass through w0. Let � be the tangent 
that intersects ∂D at w0 and a point w1 such that the path from w0 to w1 on ∂D in 
the counterclockwise direction is along the arc that is separated from E by �. Using this 
notation, let us define B(w0) = w1 and similarly define B on all of ∂D. We want to show 
that if the foci of an ellipse are given in D, then there is a unique eccentricity of the 
ellipse E with those foci such that the corresponding map B satisfies Bn(w0) = w0. This 
last condition can be rephrased as

n−1∑
j=0

(
arg(Bj+1(w0)) − arg(Bj(w0))

)
= 2π (12.1)

where each difference of arguments in this sum is taken in (0, 2π). Our above argument 
for triangles proves monotonicity in the left-hand side of (12.1) as a function of the 
eccentricity. We also saw above that there is a unique eccentricity e such that if the 
eccentricity of E is e, then B3(w0) = w0 and Poncelet’s Theorem implies that this value 
of e is independent of w0 ∈ ∂D. Monotonicity implies that if the eccentricity of E is 
smaller than e, then the left-hand side of (12.1) is strictly larger than 2π. Similarly, as 
the ellipse approaches touching the unit circle, it takes more than n iterations of B to get 
past the point on E closest to ∂D, so the left-hand side of (12.1) converges to something 
less than 2π. By continuity there is a unique eccentricity where the left-hand side of 
(12.1) is 2π. A priori, that eccentricity could be w0–dependent.

One can show there is an A ∈ Sn whose numerical range is tangent to this n-gon at 
the same tangent points. Given Kippenhahn’s result, the nfold agreement of the ellipse 
and ∂N(A) and a use of Bezout’s theorem proves that the two curves are the same, 
proving Poncelet’s theorem in this case.

It would be interesting to have an OPUC understanding of Kippenhahn’s Theorem.



A. Martínez–Finkelshtein et al. / Advances in Mathematics 349 (2019) 992–1035 1031
13. From the numerical range to the eigenvalues

In this final section, we want to discuss how for A ∈ Sn, N(A) determines the eigen-
values of A (and so, up to unitary equivalence, A). The results in Sections 1 and 3
provide two ways that we want to discuss first. Then we’ll turn to a potential method 
via algebraic geometry.

Here are the two methods:
(1) Given n and ∂N(A), draw two ngons with vertices in ∂D that circumscribe N(A)

and apply Theorem C/Theorem 8.
(2) Given n and ∂N(A), draw one such polygon. Use Theorem 4 to compute the mj

and then Theorem B/Theorem 6 to determine the zeros of Φn which are the eigenvalues.
There is another connection between eigenvalues and a curve related to N(A) that 

is related to the work of Kippenhahn [47] mentioned earlier and extended by Singer 
[66] and Langer–Singer [48]. There is a real projective curve, Γ, so that N(A) is the 
convex hull of Γ and the eigenvalues are exactly the (real) foci of Γ (foci are an involved 
construction from algebraic geometry that, for an ellipse, are the usual foci).

When we first learned of this result, we assumed that it must imply for the case of 
elliptical N(A), that the eigenvalues must be its two usual foci, obviously not both simple 
if n ≥ 3. This was wrong! Indeed, there has been a detailed study of ellipses in the case 
n = 4 by Fujimura [23] and Gorkin–Wagner [38] that shows in this case there is a third 
usually distinct eigenvalue.

The key point is that while ∂N(A) is included in Γ, Γ can have additional pieces inside 
N(A) (and if n ≥ 3, there are always such additional pieces). As we’ve seen, ∂N(A) is 
the envelope of the lines obtained by joining successive eigenvalues of the various rank 
one unitary dilations, Uλ. As proven by Singer [66, Prop. 3.1], Γ is the envelope of the 
complete graph on the eigenvalues of Uλ, i.e. all lines joining pairs of distinct eigenvalues. 
We illustrated this with a simple illuminating example. Once one picks the eigenvalues 
a, b, c ∈ D for A ∈ S3, one can form the various Φ4(z; λ) and the polygons associated to 
their zeros. We took examples with b = 0.8e34i and c = 0.57e4i (chosen by experimenting 
to get clean output). For one example, we picked a = 0.7i and for the second we chose 
a = −0.74949 · · · + i0.164697 . . . . The later was chosen using [38, Prop. 3.7] to give an 
elliptical N(A).

Fig. 1 shows the outer polygons when a = 0.7i (left) or for the elliptical case (right).
In conformance with the discussion in Section 7, one can see the convex ∂N(A) formed 

in each case. Fig. 2 shows the complete graphs of the eigenvalues of the Uλ when a = 0.7i
(left) and in the elliptical case (right).

One sees that there is an extra piece of Γ in the resulting envelope.
As shown in [38], in the elliptical case, the extra piece of Γ is the single point {a}. 

As can be seen by looking at the case where all eigenvalues of A are zero and the extra 
pieces are circles when n ≥ 4, this single point phenomena is only true for n = 3. In any 
event, one cannot use these ideas to go directly from N(A) as a set to the eigenvalues.
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Fig. 1. The outer polygons and the numerical range N(A) for A ∈ S3 determined by its two eigenvalues at 
0.8e34i and 0.57e4i, and the third one either at 0.7i (left) or at −0.74949 · · · + i0.164697 . . . (right). The 
eigenvalues are indicated by the fat dots in the interior of N(A).

Fig. 2. The complete graphs of the eigenvalues of the Uλ and the numerical range N(A) of two different 
A ∈ S3 from Fig. 1.
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[3] Y. Arlinskǐı, Schur parameters, Toeplitz matrices, and Kreın shorted operators, Integral Equations 
Operator Theory 71 (2011) 417–453.
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