- [11] S. Molchanov and B. Vainberg, Transition from a network of thin fibers to the quantum graphs: an explicitly solvable model. In G. Berkolaiko, R. Carlson, S. A. Fulling, and P. Kuchment (eds.), *Quantum graphs and their applications*. Proceedings of the AMS-IMS-SIAM Joint Summer Research Conference held in Snowbird, UT, June 19–23, 2005. Contemporary Mathematics, 415. American Mathematical Society, Providence, R.I., 2006, 227–239. MR 2277619 Zbl 1317.35046
- K. Pankrashkin, Spectra of Schrödinger operators on equilateral quantum graphs. *Lett. Math. Phys.* 77 (2006), no. 2, 139–154. MR 2251302
 Zbl 1113.81056
- [13] O. Post, Equilateral quantum graphs and boundary triples. In [4] (2008), 469–490. MR 2459887 Zbl 1153.81499
- [14] O. Post, First order approach and index theorems for discrete and metric graphs. Ann. Henri Poincaré 10 (2009), no. 5, 823–866. MR 2533873 Zbl 1206.81044
- [15] O. Post, Spectral analysis on graph-like spaces. Lecture Notes in Mathematics, 2039. Springer, Berlin etc., 2012. ISBN 978-3-642-23839-0 MR 2934267
 Zbl 1247.58001
- [16] O. Post, Boundary pairs associated with quadratic forms. *Math. Nachr.* 289 (2016), no. 8-9, 1052–1099. MR 3512049 Zbl 06607012
- [17] T. Shirai, The spectrum of infinite regular line graphs. *Trans. Amer. Math. Soc.* 352 (2000), no. 1, 115–132. MR 1665338 Zbl 0931.05048

A Cayley–Hamiltonian theorem for periodic finite band matrices

Barry Simon

I hope Pavel Exner will enjoy this birthday bouquet.

1 Introduction – The magic formula

Let J be a doubly infinite, self-adjoint, tridiagonal Jacobi matrix (i.e., $J_{jk} = 0$ if |j - k| > 1 and $J_{jj+1} > 0$) that is periodic, i.e., if

$$(Su)_j = u_{j+1},\tag{1}$$

then for some $n \in \mathbb{Z}_+$, $S^n J = JS^n$. There is a huge literature on this subject – see Simon [7], Chapter 5.

(J - E)u = 0 is a second order difference equation, so there is a linear map $T(E) : \mathbb{C}^2 \to \mathbb{C}^2$ so that if u_0, u_1 are given, then $T(E) \begin{pmatrix} u_0 \\ u_1 \end{pmatrix} = \begin{pmatrix} u_n \\ u_{n+1} \end{pmatrix}$ for the solution of (J - E)u = 0. $\Delta(E) = \operatorname{Tr}(M(E))$ is called the *discriminant* of J. We note that $\det(T(E)) = 1$ so T(E) has eigenvalues λ and λ^{-1} and $\Delta(E) = \lambda + \lambda^{-1}$. If $\Delta(E) \in (-2, 2)$, then $\lambda = e^{i\theta}$ for some θ in $\pm(0, \pi)$ and then Ju = Eu has Floquet solutions, u^{\pm} obeying $u_{j+nk}^{\pm} = e^{\pm ik\theta}u_j^{\pm}$. These are bounded and these are only bounded solutions if $\Delta(E) \in [-2, 2]$. Thus $\operatorname{spec}(J) = \Delta^{-1}([-2, 2])$. One often writes this relation as

$$\Delta(E) = 2\cos(\theta). \tag{2}$$

In [2], Damanik, Killip and Simon emphasized and exploited the operator form of (2), namely

$$\Delta(J) = S^n + S^{-n}.\tag{3}$$

This follows from (2) and the view of J as a direct integral. More importantly, what they called the "magic formula", [2] shows that a two sided, not *a priori* periodic, Jacobi matrix, which obeys (3), is periodic and in the isospectral torus of J.

A Laurent matrix is a finite band doubly infinite matrix that is constant along diagonals, so a polynomial in S and S^{-1} . $S^n + S^{-n}$ is an example of such a matrix. The current paper had its genesis in a question asked me by Jonathan Breuer and Maurice Duits. They asked if K is finite band and periodic but not tridiagonal if there is a polynomial Q so that Q(K) is a Laurent matrix. They guessed that Q might be connected to the trace of a transfer matrix.

B. Simon

While I don't have a formal example where I can prove there is no such Q, I have found a related result which strongly suggests that, in general, the answer is no. I found an object which replaces Δ for more general K which is width 2m + 1 (i.e., $K_{jk} = 0$ if |j - k| > m), self-adjoint and non-degenerate in the sense that for all j, $K_{jj+m} \neq 0$. Namely we prove the existence of a polynomial, p(x, y), in x and y of degree 2m in y, so that $p(K, S^n) = 0$. In the Jacobi case,

$$p(x, y) = y^2 - y\Delta(x) + 1$$

so that $p(J, S^n) = 0$ is equivalent to (3).

We prove this theorem and begin the exploration of this object in Section 1. That a scalar polynomial vanishes when the variable is replaced by an operator is the essence of the Cayley–Hamiltonian theorem which says that a matrix obeys its secular equation. This was proven in 1853 by Hamilton [4] for the two special cases of three-dimensional rotations and for multiplication by quaternions and stated in general by Cayley [1] in 1858 who proved it only for 2×2 matrices although he said he'd done the calculation for 3×3 matrices. In 1878, Frobenius [3] proved the general result and attributed it to Cayley. We regard our main result, Theorem 2.1, as a form of the Cayley–Hamiltonian Theorem.

The magic formula had important precursors in two interesting papers of Naĭman, namely [5] and [6]. These papers are also connected to our work here.

It is a pleasure to present this paper to Pavel Exner for his 70th birthday. I have long enjoyed his contributions to areas of common interest. I recall with fondness the visit he arranged for me in Prague. He was a model organizer of an ICMP. And he is an all around sweet guy. Happy birthday, Pavel.

2 Main result

By a width 2m + 1 matrix, $m \in \{1, 2, ...\}$, we mean a doubly infinite matrix, K, with $K_{jk} = 0$ if |j - k| > m. If $\sup |K_{jk}| < \infty$, K defines a bounded operator on $\ell^2(\mathbb{Z})$ which we also denote by K. We say that K is *non-degenerate* if $K_{jj\pm m} \neq 0$ for all j. K is periodic (with period n) if $S^n K = KS^n$, where S is the unitary operator given by (1).

We consider width 2m + 1, non-degenerate, period-*n* self-adjoint matrices. In that case, for any *E*, because *K* is non-degenerate, Ku = Eu, as a finite difference equation, has a unique solution for each choice of $\{u_j\}_{j=0}^{2m-1}$. T(E) will be defined as the map from $\{u_j\}_{j=0}^{2m-1}$ to $\{u_j\}_{j=n}^{n+2m-1}$ – it is a $2m \times 2m$, degree *n* matrix. If $T(E)u = \lambda u$ for $\lambda \in \mathbb{C}$, Ku = Eu has a Floquet solution with $u_{kn+j} = \lambda^k u_j$. If T(E) is diagonalizable, the set of Floquet solutions is a basis for all solutions of Ku = Eu. If T(E) has Jordan anomalies (see [8] for background on linear algebra), there is a basis of modified Floquet solutions with some polynomial growth on top of the exponential λ^k .

 $p(E, \lambda) = \det(\lambda \mathbf{1} - T(E)).$

The values of λ are determined by

Since

$$\det(\lambda \mathbf{1} - T(E)) = \lambda^{2m} \det(\mathbf{1} - \lambda^{-1}T(E))$$
$$= \lambda^{2m} \Big(\sum_{j=0}^{2m} (-\lambda)^j \operatorname{Tr} \Big(\bigwedge^j (T(E)) \Big) \Big)$$
$$= \sum_{i=0}^{2m} \lambda^j p_i(E),$$
(4)

where \bigwedge^{j} is given by multilinear algebra (Section 1.3 of [8]) with $\bigwedge^{0}(T(E)) = 1$ on \mathbb{C} so its trace is 1. Thus in (4),

$$p_{2m}(E) = 1, \quad p_j(E) = (-1)^j \operatorname{Tr}\left(\bigwedge^{2m-j} (T(E))\right)$$
 (5)

and p_i is of degree at most (2m - j)n in E.

Since S^n and K are commuting bounded normal operators, they have a joint spectral resolution which is supported precisely on the solutions of $p(E, \lambda) = 0$ with $|\lambda| = 1$ because it is well known that the spectrum is precisely the set of energies with polynomially bounded solutions. By the spectral theorem (equivalently, a direct integral analysis), we thus have the main result of this note:

Theorem 2.1. Let K be a self-adjoint, non-degenerate, width 2m + 1, period n matrix. Then for p given by (4)/(5), we have that

$$p(K, S^n) = 0. (6)$$

We end with a number of comments.

526

- (1) We used the self-adjointness of *K* to be able to exploit the spectral theorem. But just as the Cayley–Hamilton Theorem for finite matrices holds in the non-self-adjoint case, it seems likely that Theorem 2.1 is valid for general non-degenerate, periodic *K*, even if not self-adjoint.
- (2) Since $K_{jj-m} \neq 0$, the transfer matrix, T(E) is invertible and thus det(T(E)) has no zeros. Since it is a polynomial, it must be constant, that is $p_0(E)$ is a constant. It is thus of much smaller degree than the bound, 2mn, obtained by counting powers of E.
- (3) In many cases of interest, T(E) will be symplectic, i.e., there exists an antisymmetric Q on \mathbb{C}^{2m} with $Q^2 = -1$ so that $T(E)^t QT(E) = Q$. Such a T(E) has $T(E)^{-1}$ and $T(E)^t$ similar, so the eigenvalues $\{\lambda_j\}_{j=1}^{2m}$ can be ordered so that $\lambda_{2m+1-j} = \lambda_j^{-1}, j = 1, ..., m$. It follows that $\det(T(E)) = 1$ but even more, we have that

$$\operatorname{Tr}\left(\bigwedge^{k}(T(E))\right) = \sum_{j_{1} < \dots < j_{k}} \lambda_{j_{1}} \dots \lambda_{j_{k}}$$
$$= \sum_{j_{1} < \dots < j_{2m-k}} \lambda_{j_{1}}^{-1} \dots \lambda_{j_{2m-k}}^{-1} \qquad (7)$$
$$= \sum_{j_{1} < \dots < j_{2m-k}} \lambda_{j_{1}} \dots \lambda_{j_{2m-k}} \qquad (8)$$
$$= \operatorname{Tr}\left(\bigwedge^{2m-k}(T(E))\right)$$

and $p_{2m-k}(E) = p_k(E)$. In the above, (7) follows from the fact that the product of all the λ 's is 1, and we can sum over the complements of all *k*-sets. (8) then uses the fact that $\lambda_{2m+1-j} = \lambda_j^{-1}$, j = 1, ..., m.

- (4) One can ask whether there is a magic formula in this case, i.e., does $p(\tilde{K}, S^n) = 0$ imply that \tilde{K} is periodic and isospectral to K. There is already one subtlety one faces at the start. If \tilde{K} is not supposed *a priori n*-periodic, then $S^{nj} p_j(\tilde{K})$ may not equal $p_j(\tilde{K})S^{nj}$ so there is a question of what $p(\tilde{K}, S^n) = 0$ means. Even if one supposes that $\tilde{K}S^n = S^n \tilde{K}$, $p(\tilde{K}, S^n) = 0$ and the spectral theorem only implies that $\text{spec}(\tilde{K}) \subset \text{spec}(K)$, so there is more to be proven. Indeed, the isospectral set in this case remains to be explored.
- (5) It seems unlikely that there is another independent relation besides (6) between a polynomial in K and Laurent polynomial in S. In general one cannot hope that $p(K, S^n) = 0$ yields a polynomial in one variable so that Q(K) is a Laurent polynomial in S^n but it remains to find an explicit example where one can prove that the Breuer-Duits question has a negative answer.

There are lots of interesting open questions connected to our main result, Theorem 2.1.

Acknowledgement. Research supported in part by NSF grant DMS-1265592 and in part by Israeli BSF Grant No. 2014337.

References

- [1] A. Cayley, A memoir on the theory of matrices. *Philos. Trans. Roy. Soc. London* **148** (1858), 17–37.
- [2] D. Damanik, R. Killip, and B. Simon, Perturbations of orthogonal polynomials with periodic recursion coefficients. *Ann. of Math.* (2) **171** (2010), no. 3, 1931–2010. MR 2680401 Zbl 1194.47031
- [3] F. G. Frobenius, Über lineare Substitutionen und bilineare Formen. J. Reine Angew. Math. 84 (1878), 1–63.
- [4] W. R. Hamilton, *Lectures on quaternions*. Hodges and Smith, Dublin, 1853.
- [5] P. B. Naĭman, On the theory of periodic and limit-periodic Jacobian matrices. Dokl. Akad. Nauk SSSR 143 (1962), 277–279. In Russian. English translation, Soviet Math. Dokl. 3 (1962), 383–385. MR 0142558 Zbl 0118.11003
- [6] P. B. Naĭman On the spectral analysis of non-Hermitian periodic Jacobi matrices. *Dopovidi Akad. Nauk Ukraïn. RSR* 1963 (1963), 1307–1311. In Ukrainian. MR 0164980 Zbl 0125.00801
- [7] B. Simon, *Szego's theorem and its descendants*. Spectral theory for L^2 perturbations of orthogonal polynomials. M. B. Porter Lectures. Princeton University Press, Princeton, N.J., 2011. ISBN 978-0-691-14704-8 MR 2743058 Zbl 1230.33001
- [8] B. Simon, A comprehensive course in analysis. Part 4. Operator theory. American Mathematical Society, Providence, R.I., 2015. ISBN 978-1-4704-1103-9 MR3364494 Zbl 1334.00003

528