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Jacob S. Christiansen · Barry Simon ·
Maxim Zinchenko

Received: 31 May 2009 / Revised: 9 October 2009 / Accepted: 10 November 2009 /
Published online: 13 April 2010
© Springer Science+Business Media, LLC 2010

Abstract Let e ⊂ R be a finite union of disjoint closed intervals. We study mea-
sures whose essential support is e and whose discrete eigenvalues obey a 1/2-power
condition. We show that a Szegő condition is equivalent to

lim sup
a1 · · ·an

cap(e)n
> 0

(this includes prior results of Widom and Peherstorfer–Yuditskii). Using Remling’s
extension of the Denisov–Rakhmanov theorem and an analysis of Jost functions, we
provide a new proof of Szegő asymptotics, including L2 asymptotics on the spectrum.
We make heavy use of the covering map formalism of Sodin–Yuditskii as presented
in our first paper in this series.
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1 Introduction

In this paper, we study Jacobi matrices, J , and asymptotics of the associated orthog-
onal polynomials (OPRL), where σess(J ) is a finite gap set, e. By this we mean that e

is a finite union of disjoint closed intervals,

e =
�+1⋃

j=1

[αj ,βj ], α1 < β1 < α2 < · · · < β�+1. (1.1)

� counts the number of gaps, that is, bounded open intervals in R \ e.
We recall that a Jacobi matrix is a tridiagonal matrix which we label

J =

⎛

⎜⎜⎜⎝

b1 a1 0 . . .

a1 b2 a2 . . .

0 a2 b3 . . .
...

...
...

. . .

⎞

⎟⎟⎟⎠ . (1.2)

The Jacobi parameters {an, bn}∞n=1 have an > 0 and bn ∈ R. There is a one-to-one cor-
respondence between probability measures dμ of compact support on R and bounded
Jacobi matrices where dμ is the spectral measure for J and the vector (1,0, . . . )t .
Moreover, dμ determines J via recursion relations for the orthonormal polynomials
pn(x), which are (a0 ≡ 0):

xpn(x) = an+1pn+1(x) + bn+1pn(x) + anpn−1(x). (1.3)

See [9, 23, 26, 33] for background on OPRL.
This paper is the second in a series—the first, [2], henceforth called paper I, stud-

ied the isospectral torus, an �-dimensional family of two-sided almost periodic Jacobi
matrices with essential spectrum e, about which we’ll say more later in this introduc-
tion. We note for now that these matrices have periodic coefficients if and only if
the harmonic measures of the intervals [αj ,βj ] are all rational (i.e., if dρe is the
potential theoretic equilibrium measure for e, then each ρe([αj ,βj ]) is rational; for
background on potential theory in spectral analysis, see [25, 29]). We’ll call this the
periodic case.

In the current paper, we want to study Szegő’s theorem for the general finite gap
case. Of course, the phrase “Szegő’s theorem” can be ambiguous, since Szegő was
so prolific, but by this we mean a set of results concerned with leading asymptotics
in the theory of orthogonal polynomials on the unit circle (OPUC). Even here there
is ambiguity, since some of the results can be interpreted in terms of Toeplitz deter-
minants and there are several related objects. Indeed, we’ll distinguish between what
we call Szegő’s theorem and Szegő asymptotics.

In the OPUC case, the recursion parameters {αn}∞n=0 lie in D = {z | |z| < 1} and
are called Verblunsky coefficients. We use ϕn(z) for the orthonormal polynomials
and write the measure dμ as

dμ(θ) = w(θ)
dθ

2π
+ dμs(θ), (1.4)
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where dμs is dθ/2π -singular. One also defines ρn = (1−|αn|2)1/2 (see [9, 22–24, 33]
for background on OPUC).

Then what we’ll call Szegő’s theorem for OPUC says that

lim
N→∞

N∏

n=0

ρn = exp

(∫ 2π

0
log

(
w(θ)

) dθ

2π

)
. (1.5)

Notice that since ρn ≤ 1, the limit on the left always exists, although it may be 0. By
Jensen’s inequality, the integral on the right is nonpositive, but may diverge to −∞,
in which case we interpret the exponential as 0. It is easy to see that the left side is
nonzero if and only if

∑∞
n=0|αn|2 < ∞. Thus, (1.5) implies

∞∑

n=0

|αn|2 < ∞ ⇔
∫

log
(
w(θ)

) dθ

2π
> −∞. (1.6)

By Szegő asymptotics, we mean the fact that when both conditions in (1.6) hold,
there is an explicit nonvanishing function G on C \ D so that for z in that set,

lim
n→∞ z−nϕn(z) = G(z). (1.7)

In terms of the conventional Szegő function,

D(z) = exp

(∫
eiθ + z

eiθ − z
log

(
w(θ)

) dθ

2π

)
, z ∈ D, (1.8)

we have G(z) = D(1/z̄)
−1

.
Analogs of Szegő’s theorem for OPRL, where e is a single interval (typically

e = [−1,1] or [−2,2]), were found initially by Szegő [32], with important devel-
opments by Shohat [20] and Nevai [13]. These works suppose no or finitely many
eigenvalues outside e. The natural condition on eigenvalues (see (1.10) and (1.13) be-
low) was found by Killip–Simon [11] and Peherstorfer–Yuditskii [15]. The best form
of Szegő’s theorem (with a Szegő condition; see below) is:

Theorem 1.1 (Simon–Zlatoš) Let J be a Jacobi matrix with essential spectrum
[−2,2], {an, bn}∞n=1 its Jacobi parameters, {xk} a listing of its eigenvalues outside
[−2,2], and

dμ(x) = w(x)dx + dμs(x) (1.9)

its spectral measure. Define

E (J ) =
∑

k

(|xk| − 2
)1/2 (1.10)

and

An = a1 · · ·an, Ā = lim supAn, A = lim infAn. (1.11)

Consider the three conditions:
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(i) Szegő condition

∫ 2

−2
log

(
w(x)

)(
4 − |x|2)−1/2

dx > −∞; (1.12)

(ii) Blaschke condition

E (J ) < ∞; (1.13)

(iii) Widom condition

0 < A ≤ Ā < ∞. (1.14)

Then any two of (i)–(iii) imply the third, and if they hold, the following have limits as
N → ∞:

AN,

N∑

n=1

bn,

N∑

n=1

(an − 1) (1.15)

and
∞∑

n=1

|an − 1|2 + |bn|2 < ∞. (1.16)

Before leaving our summary of the case e = [−2,2], we note that Damanik–Simon
[5] have proven Szegő asymptotics in some cases where the Szegő condition fails.
This will not concern us here but will be studied in the finite gap case in paper III [3].

In Sect. 4, we prove a precise analog of the statement “any two of (i)–(iii) imply
the third” for general finite gap sets e. We note that for the periodic case, this is a
prior result of Damanik–Killip–Simon [4]. There are also prior results for the general
finite gap case in Widom [34], Aptekarev [1], and Peherstorfer–Yuditskii [16, 17];
see Sect. 4 for more details.

The limit results, (1.15) and (1.16), need modification, however. First, even in
the general one-interval case, one needs a1 · · ·an/Cn for a suitable constant C. The
theory of regular measures [25, 29] says the right value of C must be cap(e), the log-
arithmic capacity of e—a result that, in this context, goes back at least to Widom [34]
who also discovered that a1 · · ·an/ cap(e)n doesn’t have a limit but is only asymptot-
ically almost periodic.

These limit results are expressed most naturally in terms of the isospectral torus
associated to e. For any Jacobi matrix obeying the analogs of (i)–(iii), there is an
element {ãn, b̃n}∞n=1 of the isospectral torus so that

lim
n→∞|an − ãn| + |bn − b̃n| = 0. (1.17)

This result, which goes back to Aptekarev [1] and Peherstorfer–Yuditskii [16, 17]
using variational methods, will be proven with our techniques in Sect. 6, where we’ll
also prove that lim(a1 · · ·an/ã1 · · · ãn) exists and is nonzero. (In paper I, we proved
that in the isospectral torus, ã1 · · · ãn/ cap(e)n is almost periodic in n.)

An interesting open question concerns the analog of (1.16):
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Open Question 1 Is
∑∞

n=1|an − ãn|2 +|bn − b̃n|2 < ∞ when the analogs of (i)–(iii)
hold?

In Sect. 7, we’ll prove an analog of Szegő asymptotics, namely, away from the
interval [α1, β�+1], the ratio pn(z)/p̃n(z) has a nonzero limit where p̃n are the OPRL
for {ãn, b̃n}∞n=1.

Let us next summarize some of the techniques we’ll use below, in part to standard-
ize some notation. Coefficient stripping plays an important role in the analysis: if J

has Jacobi parameters {ak, bk}∞k=1, then the n-times stripped Jacobi matrix J (n) is the
one with parameters {an+k, bn+k}∞k=1, that is, with

ak

(
J (n)

) = ak+n(J ), bk

(
J (n)

) = bn+k(J ). (1.18)

If the m-function of J is defined on C+ = {z | Im z > 0} by

m(z,J ) = 〈
δ1, (J − z)−1δ1

〉 =
∫

dμ(x)

x − z
, (1.19)

then we have the coefficient stripping relation that goes back to Jacobi and Stieltjes,

m(z,J )−1 = −z + b1 − a2
1m

(
z, J (1)

)
. (1.20)

We’ll make heavy use of the covering space formalism introduced in spectral the-
ory by Sodin–Yuditskii [28] and presented with our notation in paper I. x(z) is the
unique meromorphic map of D to C ∪ {∞} \ e which is locally one-to-one with

x(z) = x∞
z

+ O(1) (1.21)

near z = 0 and x∞ > 0.
There is a (Fuchsian) group � of Möbius transformations of D onto itself so that

x(z) = x(w) ⇔ ∃γ ∈ � so that γ (z) = w. (1.22)

A natural fundamental set F is defined as follows:

F int = {z | |z| < |γ (z)|, all γ �= 1, γ ∈ �}. (1.23)

∂F int ∩ D is then 2� orthocircles, � in each half-plane. F is F int union the � ortho-
circles in C+. x is then one-to-one and onto from F to C ∪ {∞} \ e.

L, the set of limit points of �, is defined as {γ (0) | γ ∈ �} ∩ ∂D. x can be mero-
morphically extended from D to all of C ∪ {∞} \ L, or alternatively, there is a map
x� : C∪{∞}\ L to S , the two-sheeted Riemann surface of [∏�+1

j=1(z−αj )(z−βj )]1/2.
All this is described in more detail in paper I of this series.

That paper also discusses Blaschke products B(z,w) of the Blaschke factors at
{γ (w)}γ∈� . B(z) ≡ B(z,0) is related to the potential theoretic Green’s function
Ge(x) for e by

∣∣B(z)
∣∣ = e−Ge(x(z)), (1.24)
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which, in particular, implies that near z = 0,

B(z) = cap(e)

x∞
z + O

(
z2). (1.25)

Finally, we use heavily the pullback of m to D via

M(z) = −m
(
x(z)

)
. (1.26)

We end this introduction with a sketch of the contents of this paper. Our approach
to Szegő’s theorem is a synthesis of the covering map method and the approach of
Killip–Simon [11], Simon–Zlatoš [27], and Simon [21] used for e = [−2,2]. As such,
step-by-step sum rules are critical. These are found in Sect. 2. One disappointment
is that we have thus far not succeeded in finding an analog of what has come to be
called the Killip–Simon theorem (from [11]). This result gives necessary and suffi-
cient conditions for the case e = [−2,2] that

∑∞
n=1(an − 1)2 + b2

n < ∞.

Open Question 2 Is there a Killip–Simon theorem for the general finite gap Jacobi
matrix?

We note that Damanik–Killip–Simon [4] have found an analog for the case where
each band has harmonic measure exactly (� + 1)−1.

Section 3 provides a technical interlude on eigenvalue limit theorems needed in
the later sections. Section 4 proves a Szegő-type theorem for general finite gap e.
Section 5 defines Jost functions and Jost solutions. Section 6 proves the existence
of the claimed {ãn, b̃n}∞n=1 in the isospectral torus and asymptotics of Jost solutions.
Section 7 proves asymptotic formulae for the orthogonal polynomials away from the
convex hull of e (i.e., the interval [α1, β�+1]), and Sect. 8 L2 asymptotics on e.

The idea that we use in Sects. 6 and 7 of first proving Jost asymptotics and us-
ing that to get Szegő asymptotics is borrowed from an analog for e = [−2,2] of
Damanik–Simon [5]. But Sect. 7 has a simplification of their equivalence argument
that is an improvement even for e = [−2,2]. Most of the results in Sects. 6–8 are
explicit or implicit in Peherstorfer–Yuditskii [16, 17]. We claim two novelties here.
First, the underlying mechanism of our proof of asymptotics is different from their
variational approach. Instead, we use a recent theorem of Remling [18] about ap-
proach to the isospectral torus, together with an analysis of automorphic characters
of Jost functions. Second, by using ideas in a different paper of Peherstorfer–Yuditskii
[15], we can clarify the L2-convergence result of Sect. 8.

2 Step-by-Step Sum Rules

As noted in the introduction, a key to the approach to Szegő-type theorems for e =
[−2,2] that we’ll follow is step-by-step sum rules. Our goal in this section is to prove
those for a general finite gap e. In Theorem 7.5 of paper I, we proved such results
for measures in the isospectral torus, and our discussion here will closely follow the
proof there. The major change is that there, with finitely many eigenvalues in R \ e,
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we could use finite Blaschke products. Here, because we do not wish to suppose a
priori a 1/2-power condition on the eigenvalues, we’ll need the alternating Blaschke
products of Theorem 4.9 of paper I. Here is the result:

Theorem 2.1 (Nonlocal step-by-step sum rule) Let J be a Jacobi matrix with
σess(J ) = e. Let J (1) be the once-stripped Jacobi matrix, and let {pj }∞j=1 be the points
in F that are mapped by the covering map x to the eigenvalues of J , and {zj }∞j=1 the

corresponding points for the eigenvalues of J (1). Let B∞ be the alternating Blaschke
product with poles at {γ (pj )}∞j=1;γ∈�

and zeros at {γ (zj )}∞j=1;γ∈�
. Let B(z) be the

Blaschke product with zeros at {γ (0)}γ∈� . Let M(z) be the m-function, (1.26), for J ,
and M(1)(z) the one for J (1). Then

(a) limr↑1 M(reiθ ) ≡ M(eiθ ) and limr↑1 M(1)(reiθ ) ≡ M(1)(eiθ ) exist for dθ/2π -
a.e. θ .

(b) Up to sets of dθ/2π measure zero,
{
θ | ImM

(
eiθ

) �= 0
} = {

θ | ImM(1)
(
eiθ

) �= 0
}
. (2.1)

(c)

log

(
ImM(eiθ )

ImM(1)(eiθ )

)
∈

⋂

p<∞
Lp

(
∂D,

dθ

2π

)
. (2.2)

(d) We have

a1M(z) = B(z)B∞(z) exp

(∫
eiθ + z

eiθ − z
log

(
ImM(eiθ )

ImM(1)(eiθ )

)
dθ

4π

)
. (2.3)

Remarks (1) We’ve labeled the p’s and z’s to be infinite in number, although there
may be only finitely many. Moreover, we need to group them into not one sequence
but potentially 2� + 2 if each of the points in {αj ,βj }�+1

j=1 is a limit point of eigenval-
ues in R \ e. Once this is done, one forms an alternating Blaschke product for each
sequence (the p’s and z’s in each sequence alternate along a boundary arc of F or
on (0,1) or (−1,0)), and then takes the product of these 2� + 2 alternating Blaschke
products.

(2) ImM and ImM(1) have the same sign at each point of ∂D, positive or negative,
depending on whether x maps to an upper or lower lip of e.

(3) We’ve written (c) and (d) assuming that the set in (2.1) is all of ∂D (up to sets
of Lebesgue measure zero). A more proper version is that |M(reiθ )|2 has a limit as
r ↑ 1 which, when multiplied by a2

1 , is the ratio ImM/ ImM(1) at points in the set in
(2.1). It is that boundary value that enters in (2.2) and (2.3).

Proof We follow the arguments used for Theorem 7.5 of paper I. For z ∈ D, not a
pole or zero of M , let

h(z) = a1M(z)

B(z)B∞(z)
. (2.4)

At the poles and zeros of M, h(z) has removable singularities and no zero values, so
h is nonvanishing and analytic in all of D.
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All of M, B , and B∞ are positive on (0, ε) for ε small, so one can choose a branch
of log(h(z)) which has Im(log(h(z))) = 0 on (0, ε). Since ImM > 0 on C+ ∩ F and
ImM < 0 on C− ∩ F , with this choice,

∣∣ arg
(
M(z)

)∣∣ ≤ π on F . (2.5)

By (4.84) in Theorem 4.9 of paper I, there is a constant C so that

∣∣ arg
(
B∞(z)B(z)

)∣∣ ≤ C on F . (2.6)

As in the proof of Theorem 7.5 of paper I, this plus the fact that h(z) is character
automorphic implies that

sup
0<r<1

∫ ∣∣ Im
(
log

(
h
(
reiθ

)))∣∣p dθ

2π
< ∞. (2.7)

Thus, by the M. Riesz theorem,

log(h) ∈
⋂

p<∞
Hp(D). (2.8)

This implies that log(h), and so M, has boundary values and

log
∣∣M

(
eiθ

)∣∣ ∈
⋂

p<∞
Lp

(
∂D,

dθ

2π

)
. (2.9)

Taking boundary values in (see (1.20))

M(z)−1 = x(z) − b1 − a2
1M(1)(z) (2.10)

shows that (2.1) holds, and on the set where ImM �= 0,

∣∣a1M
(
eiθ

)∣∣2 = ImM(eiθ )

ImM(1)(eiθ )
. (2.11)

This and (2.9) imply (2.2), and (2.3) is just the Poisson representation for log(h(z)). �

The main use we’ll make of (2.3) is to divide by B(z) and take z → 0 using (1.21)
and (1.25). The result is:

Theorem 2.2 (Step-by-step C0 sum rule)

a1

cap(e)
= B∞(0) exp

(∫ 2π

0
log

(
ImM(eiθ )

ImM(1)(eiθ )

)
dθ

4π

)
. (2.12)
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3 Fun and Games with Eigenvalues

Sum rules include eigenvalue sums—it appears somewhat hidden in (2.12) as B∞(0).
Since, in exploiting sum rules, we’ll be looking at the behavior of sums over families,
often with infinitely many elements, we’ll need control on such sums. This was true
already in the single interval case as studied by [11, 27], but there the main tool
needed was a simple variational principle. Eigenvalues above or below the essential
spectrum are given by a linear variational principle. This is not true for eigenvalues in
gaps, and so we’ll need some extra techniques, which we put in the current section.
We note that there are still limitations on what can be done in gaps. For example,
for perturbations of elements of the finite gap isospectral torus, there is a 1/2 critical
Lieb–Thirring bound at the external edges [7] but not yet one known for internal gap
edges [10].

We begin with two results about the relation of eigenvalues of J and J (n), the
n-times stripped Jacobi matrix of (1.18).

Theorem 3.1 Let J be a Jacobi matrix with σess(J ) = e. Let c ∈ (βj ,αj+1), one
of the gaps of R \ e. Suppose f is defined, positive, and monotone on (βj , c) with
limx↓βj

f (x) = 0. Let c > x1(J ) > x2(J ) > · · · > βj be the eigenvalues of J in

(βj , c). Then the eigenvalues of J and J (1) strictly interlace, that is, either

x1(J ) > x1
(
J (1)

)
> x2(J ) > x2

(
J (1)

)
> · · · (3.1)

or

x1
(
J (1)

)
> x1(J ) > x2

(
J (1)

)
> x2(J ) > · · · . (3.2)

In particular,
∑∞

k=1[f (xk(J )) − f (xk(J
(1)))] is always conditionally convergent.

Remarks (1) For simplicity of notation, we stated this and the following theorem for
(βj , c), but a similar result holds for (c,αj+1) and also for (−∞, α1) and (β�+1,∞).

(2) By iteration, we also get convergence of
∑∞

k=1[f (xk(J )) − f (xk(J
(n)))] for

each n.

Proof By the fact that xk(J ) are the poles of m(z) in (βj , c) and xk(J
(1)) the zeros,

and since d
dz

m(z) = ∫
dμ(x)

(x−z)2 > 0 for z ∈ (βj , c), we see the interlacing, which im-
plies (3.1) (if m(c) ≤ 0) or (3.2) (if m(c) > 0). The conditional convergence of the
sum is standard for alternating sums. �

Theorem 3.2 Under the hypotheses of Theorem 3.1, if

S ≡ sup
n

∣∣∣∣∣

∞∑

k=1

f
(
xk(J )

) − f
(
xk

(
J (n)

))
∣∣∣∣∣ < ∞, (3.3)

then
∞∑

k=1

f
(
xk(J )

)
< ∞. (3.4)
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Proof We will need the fact proven below (in Theorem 3.4) that for each j ∈
{1, . . . , �} and ε > 0, there is an N so that for n ≥ N , J (n) has either 0 or 1 eigenvalue
in (βj + ε,αj+1 − ε).

So for n ≥ N we may have x1(J
(n)) > βj + ε, but xk(J

(n)) ≤ βj + ε for all k ≥ 2.
Hence, for n ≥ N ,

∑

{k |βj +ε<xk(J )<c}

[
f

(
xk(J )

) − f (βj + ε)
]

≤ f (c) +
∑

{k |βj +ε<xk(J )<c}

[
f

(
xk(J )

) − f
(
xk

(
J (n)

))]
. (3.5)

Recall now that J (n) can be obtained by decoupling J with a rank 2 perturbation
(which is the sum of a positive and a negative rank 1 perturbation) and removing the
finite block. Therefore, if we pick ε > 0 so small that x3(J ) > βj + ε, it follows that
xk(J ) > xk(J

(n)) for all k ≥ 2 (when n ≥ N ). This implies that

∑

{k |βj +ε<xk(J )<c}

[
f

(
xk(J )

) − f
(
xk

(
J (n)

))] ≤ S. (3.6)

So, for sufficiently small ε0 and ε1 < ε0,

∑

{k |βj +ε0<xk(J )<c}

[
f

(
xk(J )

) − f (βj + ε1)
] ≤ f (c) + S. (3.7)

Taking ε1 ↓ 0 and then ε0 ↓ 0 yields (3.4). �

The following lemma is well known, used for example in Denisov [6]:

Lemma 3.3 Let A be a bounded operator with

γ = inf
(
σess(A)

)
. (3.8)

Let Pn be a family of orthogonal projections with

s-limPn = 0. (3.9)

Then for any ε, we can find N so that for n ≥ N ,

σ
(
PnAPn � ran(Pn)

) ⊂ [γ − ε,∞). (3.10)

Proof Since (3.8) holds, for any ε, we can write

A = Aε + Bε, (3.11)

where Aε ≥ γ − ε/2, and Bε is finite rank, and so compact.
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By (3.9), PnBεPn → 0 in ‖·‖, so we can find N so that, for n ≥ N , ‖PnBεPn‖ ≤
ε/2. Then for each n ≥ N ,

PnAPn ≥ Pn

(
γ − ε

2
− ε

2

)
Pn ≥ (γ − ε)Pn, (3.12)

proving (3.10). �

Theorem 3.4 Let J be a bounded Jacobi matrix with (α,β) ∩ σess(J ) = ∅. Let J (n)

be the n-times stripped Jacobi matrix. Then for any ε, we can find N so that, for
n ≥ N , J (n) has at most one eigenvalue in (α + ε,β − ε).

Proof Let Pn be the projection onto span{δj }∞j=n+1, so

J (n) = PnJPn � ran(Pn). (3.13)

Let γ = 1
2 (α + β) and A = (J − γ )2, A(n) = PnAPn � ran(Pn). By the spectral map-

ping theorem,

inf
(
σess(A)

) ≥
[

1

2
(β − α)

]2

, (3.14)

so, by the lemma, for any ε′, there is N so that for n ≥ N ,

infσ
(
A(n)

) ≥
[

1

2
(β − α)

]2

− ε′ =
[

1

2
(β − α) − ε

]2

, (3.15)

where ε′ is chosen so that (3.15) holds.
Since

A(n) − (
J (n) − γ

)2 = Pn(J − γ )(1 − Pn)(J − γ )Pn (3.16)

is rank one, (J (n) − γ )2 has at most one eigenvalue (which is simple) below
[ 1

2 (β −α)− ε]2, which proves the claimed result by the spectral mapping theorem. �

Next, we turn to estimating eigenvalue sums like

E (J ) =
∑

x∈σ(J )\e
dist(x, e)1/2 (3.17)

with a goal of showing, for example, that if E (J ) is finite, then so is supn E (J (n)).

Definition Let A be a bounded self-adjoint operator with (a, b) ∩ σess(A) = ∅. We
set

Σ(a,b)(A) =
∑

x∈σ(A)∩(a,b)

dist
(
x,R \ (a, b)

)1/2
, (3.18)

where the sum includes x as many times as the multiplicity of that eigenvalue.
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Theorem 3.5 Let A be a bounded self-adjoint operator with (a, b) ∩ σess(A) = ∅
and Σ(a,b)(A) < ∞. Then

(i) If B is another bounded self-adjoint operator with rank(B − A) = r < ∞, then

Σ(a,b)(B) ≤ Σ(a,b)(A) + r

(
b − a

2

)1/2

. (3.19)

(ii) If P is an orthogonal projection so that rank(PA(1 − P)) = r < ∞ and B =
PAP � ran(P ), then (3.19) holds.

Proof For simplicity of notation, we can suppose A has both a and b as limit points of
eigenvalues (from above and below, respectively). It is easy to modify the arguments
if there are only finitely many eigenvalues.

(i) By induction, it suffices to prove this for r = 1. Label the eigenvalues of A in
(a, b), counting multiplicity, by

a < · · · ≤ x−2(A) ≤ x−1(A) <
1

2
(a + b) ≤ x0(A) ≤ x1(A) ≤ · · · < b. (3.20)

For A’s with a cyclic vector ϕ, and B = A+λ(ϕ, · )ϕ, it is well known that eigenval-
ues of A and B strictly interlace. By writing A as a direct sum of its restriction to the
cyclic subspace for ϕ and the restriction to the orthogonal complement, we can label
all the eigenvalues of B in such a way that

xk(A) ≤ xk+1(B) ≤ xk+1(A). (3.21)

With that labeling,

∞∑

k=1

dist
(
xk(B),R \ (a, b)

)1/2 ≤
∞∑

k=0

dist
(
xk(A),R \ (a, b)

)1/2
, (3.22)

∞∑

k=1

dist
(
x−k(B),R \ (a, b)

)1/2 ≤
∞∑

k=1

dist
(
x−k(A),R \ (a, b)

)1/2
, (3.23)

so that

Σ(a,b)(B) ≤ dist
(
x0(B),R \ (a, b)

)1/2 + Σ(a,b)(A), (3.24)

which implies (3.19) for r = 1.
(ii) By scaling and adding a constant to A, we can suppose b = −a = 1. For C ≥ 0

with σess(C) ⊂ [1,‖C‖], let

Σ̃(C) =
∑

x∈σ(C)∩[0,1)

(
1 − √

x
)1/2

, (3.25)

so that

Σ(−1,1)(A) = Σ̃
(
A2). (3.26)
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By mimicking the proof of (i), we see

rank(D − C) = r, D ≥ 0 ⇒ Σ̃(D) ≤ Σ̃(C) + r. (3.27)

Notice, next, that by the min-max principle, xk(PCP � ran(P )) ≥ xk(C), so that

Σ̃
(
PCP � ran(P )

) ≤ Σ̃(C). (3.28)

Notice also that

PA2P − (PAP)2 = PA(1 − P)AP (3.29)

is at most rank r . Thus,

Σ(−1,1)

(
PAP � ran(P )

) = Σ̃
((

PAP � ran(P )
)2) (by (3.26))

≤ r + Σ̃
(
PA2P � ran(P )

)
(by (3.27))

≤ r + Σ̃(A2) (by (3.28))

= r + Σ(−1,1)(A) (by (3.26)). �

We also want to know that one can make the eigenvalue sum small, uniformly
in B , by summing only over eigenvalues sufficiently near a or b. Thus, we prove (for
simplicity, we state the result for a; a similar result holds for b):

Theorem 3.6 Let (a, b) ∩ σess(A) = ∅, Σ(a,b)(A) < ∞, and suppose B is related to
A as in either (i) or (ii) of Theorem 3.5. Then for any δ < 1

4 (b − a),

∑

xk(B)∈(a,a+δ)

(
xk(B) − a

)1/2 ≤ rδ1/2 +
∑

xk(A)∈(a,a+2δ)

(
xk(A) − a

)1/2
. (3.30)

Proof We have

LHS of (3.30) ≤ Σ(a,a+2δ)(B)

≤ Σ(a,a+2δ)(A) + rδ1/2 (by Theorem 3.5)

= RHS of (3.30). �

As a corollary, we have (since J (n) = PnJPn � ran(Pn) with rank((1 − Pn) ×
JPn) = 1):

Theorem 3.7 Let J be a Jacobi matrix with σess(J ) = e. Given (3.17), let E (J ) be
finite and let J (n) be the n-times stripped Jacobi matrix. Then:

(i)
E
(
J (n)

) ≤ E (J ) + � max
j=1,...,�

(
1

2
|αj+1 − βj |

)1/2

. (3.31)
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(ii) For any j ∈ {1, . . . , � + 1} and ε > 0, there is a δ > 0 so that for all n,

∑

xk(J
(n))∈(βj ,βj +δ)

(
xk

(
J (n)

) − βj

)1/2 ≤ 1

2
ε, (3.32)

∑

xk(J
(n))∈(αj −δ,αj )

(
αj − xk(J

(n))
)1/2 ≤ 1

2
ε. (3.33)

Proof (i) By the min-max principle for eigenvalues above and below the essential
spectrum, the sums for eigenvalues below α1 or above β�+1 get smaller. In each gap,
we use Theorem 3.5(ii). This yields (3.31) as r = 1.

(ii) We prove (3.32); the proof of (3.33) is similar. Take δ0 < 1
4 (αj+1 −βj ) so that

∑

xk(J )∈(βj ,βj +2δ0)

(
xk(J ) − βj

)1/2
<

1

4
ε. (3.34)

Then pick δ < δ0 so that δ1/2 < 1
4ε. (3.30) implies (3.32). �

Theorem 3.8 Let J, J̃ be two Jacobi matrices with σess(J ) = σess(J̃ ) = e and
E (J ), E (J̃ ) < ∞. For m,q ≥ 0, let Jm,q be the Jacobi matrix with

an(Jm,q) =
{

an(J ), n = 1, . . . ,m,

an−m+q(J̃ ), n = m + 1, . . . ,
(3.35)

bn(Jm,q) =
{

bn(J ), n = 1, . . . ,m,

bn−m+q(J̃ ), n = m + 1, . . . .
(3.36)

Then for a constant K independent of m and q ,

E (Jm,q) ≤ E (J ) + E (J̃ ) + K, (3.37)

and for any j ∈ {1, . . . , � + 1} and ε > 0, there is a δ > 0 so that for all m,q ,

∑

xk(Jm,q )∈(βj ,βj +δ)

(
xk(Jm,q) − βj

)1/2
<

1

2
ε. (3.38)

A similar result holds near αj .

Proof Let Qm be the projection onto span{δj }mj=1 and Pm = 1 − Qm. Then

Jm,q − QmJQm − PmJ̃ (q)Pm is rank two. Thus, for j = 1, . . . , � and γ =
maxj=1,...,�(

1
2 |αj+1 − βj |)1/2,

Σ(βj ,αj+1)(Jm,q) ≤ 2γ + Σ(βj ,αj+1)(QmJQm) + Σ(βj ,αj+1)

(
PmJ̃ (q)Pm

)

≤ 4γ + Σ(βj ,αj+1)(J ) + Σ(βj ,αj+1)

(
J̃ (q)

)

≤ 5γ + Σ(βj ,αj+1)(J ) + Σ(βj ,αj+1)(J̃ ).
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For eigenvalues below α1 (or above β�+1), we use the fact that |an(Jm,q)| ≤ ‖J‖
to see that ‖Jm,q‖ ≤ 2‖J‖ + ‖J̃‖ (a crude over-estimate). Hence we can do a similar
bound on some Σ(κ,α1)(Jm,q) with κ independent of m and q .

The passage from the proof of (3.37) to the proof of (3.38) is similar to the argu-
ment in the proof of Theorem 3.7. �

It is a well-known phenomenon that, under strong limits, spectrum can get lost
(e.g., if Jn is a Jacobi matrix which is the free J0, except that for m ∈ (n2 −n,n2 +n),
bm = −2, then Jn

s−→ J0 but Jn has more and more eigenvalues in (−4,−2)). We
are going to be interested in situations where this doesn’t happen, which is the last
subject we consider in this section.

Theorem 3.9 Let J be a Jacobi matrix with σess(J ) = e. Suppose that J (nk) → J̃ in
the sense that for each m ≥ 1,

ank+m → ãm, bnk+m → b̃m. (3.39)

Then J̃ has at most one eigenvalue in (βj ,αj+1), and for each δ small and nk large,
J (nk) has the same number of eigenvalues in (βj + δ,αj+1 − δ) as J̃ . In fact, if J̃ has
an eigenvalue λ̃ there, the eigenvalue of J (nk) in that interval converges to λ̃.

Proof If λ̃ is an eigenvalue of J̃ in (βj ,αj+1) with J̃ ũ = λ̃ũ (and ‖ũ‖ = 1), then
εnk

≡ ‖(J (nk) − λ̃)ũ‖ → 0. Thus, (λ̃−εnk
, λ̃+εnk

)∩σ(J (nk)) �= ∅. Since the interval
for small enough εnk

is disjoint from σess(J
(nk)), we conclude that there is at least one

eigenvalue λnk
in the interval, and clearly, λnk

→ λ̃.
This fact plus Theorem 3.4 implies that J̃ has at most one eigenvalue in (βj ,αj+1).
Suppose next that J (nk)unk

= λnk
unk

with ‖unk
‖ = 1 and λnk

→ λ̃ ∈ (βj ,αj+1).
Given v ∈ �2(N) and nk , define

(
v(nk)

)
m

=
{

0, m ≤ nk,

vm−nk
, m > nk.

(3.40)

Then

[
Jv(nk) − (

J (nk)v
)(nk)

]
m

=
{

0, m �= nk,

ank
v1, m = nk.

(3.41)

We conclude that
∥∥(J − λnk

)u(nk)
nk

∥∥ = ank

∣∣(unk
)1

∣∣. (3.42)

If (unk
)1 → 0, this implies λ̃ ∈ σess(J ) since u

(nk)
nk

w−→ 0. But that is impossible,
so (unk

)1 � 0. By compactness of the unit ball in the weak topology, we conclude
unk

has a weak limit point ũ with (ũ)1 �= 0, so ũ �≡ 0. But (J̃ − λ̃)ũ = 0, so λ̃ ∈ σ(J̃ ).
We have thus proven the final sentence in the theorem, given Theorem 3.4, which

says J (nk) for k large has at most one eigenvalue in (βj + δ,αj+1 − δ). �
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The final theorem of this section deals with a specialized situation that we’ll need
later.

Theorem 3.10 Let J be a Jacobi matrix with σess(J ) = e. Suppose that, as nk → ∞,
(3.39) holds for some two-sided J̃ and all m ∈ Z. Let Jk be defined by

an(Jk) =
{

am, m ≤ nk,

ãm−nk
, m > nk,

(3.43)

bm(Jk) =
{

bm, m ≤ nk,

b̃m−nk
, m > nk.

(3.44)

Then for any δ > 0, with {βj + δ,αj+1 − δ} /∈ σ(J ), all the eigenvalues of Jk in
(βj + δ,αj+1 − δ) for k large are near eigenvalues of J in that interval, and these
eigenvalues converge to those for J . Moreover, there is exactly one eigenvalue of Jk

near a single eigenvalue of J in that interval.

Proof We follow the first part of the proof of the last theorem until the analysis of
Jkuk = λkuk with λk → λ∞ ∈ (βj + δ,αj − δ). If we prove that λ∞ ∈ σ(J ) and uk

converges in norm to the corresponding eigenvector, we are done, for we immediately
get existence of eigenvalues near λ∞, and uniqueness follows from the orthogonality
of eigenvectors and the norm convergence.

Define ũk ∈ �2(Z) by

(ũk)m =
{

(uk)m+nk
, m > −nk,

0, m ≤ −nk,
(3.45)

and suppose ũk has a nonzero weak limit ũ∞. Then (J̃ −λ∞)ũ∞ = 0, so λ∞ ∈ σ(J̃ ).
As σ(J̃ ) ⊂ σess(J ) = e by approximate eigenvector arguments (see, e.g., [12]), we ar-
rive at a contradiction. Thus, ũk converges weakly to zero. This implies that its projec-
tion P ũk onto �2(N) converges to zero in norm since otherwise ‖(J̃ −λ∞)P ũk‖ → 0
which is again impossible because λ∞ /∈ σ(J̃ ).

Therefore, we conclude that ‖(J − λ∞)uk‖ → 0. Since λ∞ is a simple dis-
crete point of σ(J ), this can only happen if λ∞ is an eigenvalue of J and
‖(1 − P ′)uk‖ → 0, where P ′ is the projection onto the eigenvector of λ∞; that is, uk

converges to that eigenvector in norm. �

4 Szegő’s Theorem

Our goal in this section is the following. Let e be a finite gap set, J a bounded Ja-
cobi matrix with σess(J ) = e, and {an, bn}∞n=1 its Jacobi parameters. Let {xk} be the
eigenvalues of J outside e, and write

dμ(x) = w(x)dx + dμs(x), (4.1)

where dμ is the spectral measure for J .
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Next, define

An = a1 · · ·an

cap(e)n
, Ā = lim supAn, A= lim infAn. (4.2)

Consider the three conditions:

(i) Szegő condition
∫

e

log
(
w(x)

)
dist(x,R \ e)−1/2 dx > −∞; (4.3)

(ii) Blaschke condition

E (J ) =
∑

k

dist(xk, e)
1/2 < ∞; (4.4)

(iii) Widom condition

0 < A ≤ Ā < ∞. (4.5)

Theorem 4.1 Any two of (i)–(iii) imply the third.

Remarks (1) We’ll eventually prove more; for example, if (ii) holds, then (i) ⇔ Ā > 0;
and if either holds, then (iii) holds.

(2) This is a precise analog of a result for e = [−2,2] of Simon–Zlatoš [27] (cf.
Theorem 1.1) who relied in part on Killip–Simon [11] and Simon [21].

(3) For e = [−2,2], the relevance of (4.4) to Szegő-type theorems is a discovery
of Killip–Simon [11] and Peherstorfer–Yuditskii [15].

(4) When there are no eigenvalues, the implication (i) ⇒ (iii) is a result of Widom
[34]; see also Aptekarev [1]. Peherstorfer–Yuditskii [16] allowed infinitely many
bound states, and in [17], they proved (i) ⇒ (iii) if (ii) holds. The other parts of
Theorem 4.1 are new, although as noted to us by Peherstorfer and Yuditskii [14],
there is an argument to go from [16, 17] to (iii) ⇒ (i) if (ii) holds (see Remark (3)
following Theorem 4.5 below).

Recall that, given any pair of Baire measures, dμ, dν, on a compact Hausdorff
space, we define their relative entropy by

S(μ | ν) =
{

−∞ if dμ is not dν-a.c.,

− ∫
log(

dμ
dν

) dμ if dμ is dν-a.c.
(4.6)

It is a fundamental fact (see, e.g., [23, Theorem 2.3.4]) that S(μ | ν) is jointly concave
and jointly weakly upper semicontinuous in dμ and dν, and that

μ(X) = ν(X) = 1 ⇒ S(μ | ν) ≤ 0. (4.7)

S is relevant because we define

Z(J ) = −1

2
S(ρe | μJ ), (4.8)
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with dμJ the spectral measure of J and dρe the potential theoretic equilibrium mea-
sure for e. Then, by (4.7),

Z(J ) ≥ 0. (4.9)

More importantly,

(4.3) ⇔ Z(J ) < ∞. (4.10)

We have (4.10) because (see (4.31) and Theorem 4.4 of paper I) dρe is dx � e a.c. and

C1 dist(x,R \ e)−1/2 ≤ dρe

dx
≤ C2 dist(x,R \ e)−1/2 (4.11)

for 0 < C1 < C2 < ∞.
Given the connection (1.24) between Blaschke products and Ge, the potential the-

oretic Green’s function for e, and the symmetry of Blaschke products ((4.19) of pa-
per I), one can rewrite the step-by-step C0 sum rule, Theorem 2.2, as:

Theorem 4.2 For each n, Z(J ) < ∞ ⇔ Z(J (n)) < ∞, and in that case,

a1 · · ·an

cap(e)n
= Kn exp

[
Z

(
J (n)

) − Z(J )
]
, (4.12)

where

Kn = exp

(∑

k

[
Ge

(
xk(J )

) − Ge

(
xk

(
J (n)

))])
. (4.13)

Remark By Theorem 3.1 and the monotonicity of Ge near gap edges ((4.45) and
(4.46) of paper I), the sum in (4.13) is always conditionally convergent if ordered
properly.

Proof By iterating, it suffices to prove the result for n = 1. As noted, K1 is always
finite, and the remarks before the statement of the theorem show that for n = 1,
K1 = B∞(0). Thus, the step-by-step C0 sum rule says

a1

cap(e)
= K1 exp

(
1

2

∫ 2π

0
log

(
ImM(eiθ )

ImM(1)(eiθ )

)
dθ

2π

)
. (4.14)

Since M , and so ImM , is automorphic, Corollary 4.6 of paper I implies

∫ 2π

0
log

(
ImM(eiθ )

ImM(1)(eiθ )

)
dθ

2π
=

∫

e

log

(
w(x;J )

w(x;J (1))

)
dρe(x), (4.15)

where we use

w(x;J ) = 1

π
Imm(x + i0, J ). (4.16)

Thus,
∫

e

log
(
w

(
x;J (1)

))
dρe(x) > −∞ ⇔

∫

e

log
(
w(x;J )

)
dρe(x) > −∞, (4.17)
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showing Z(J (1)) < ∞ ⇔ Z(J ) < ∞. Moreover, if both are finite,

RHS of (4.15) = 2Z
(
J (1)

) − 2Z(J ). (4.18)

Equations (4.14)–(4.18) imply (4.12). �

Proposition 4.3 We have that

Kn ≤ Ane
Z(J ). (4.19)

In particular, for some constant C1,

A(J ) ≥ e−Z(J ) lim inf
[
exp

(−C1 E
(
J (n)

))]
(4.20)

and

lim supKn ≤ Ā(J )eZ(J ). (4.21)

Proof (4.19) is immediate from (4.12) if we note that Z(J (n)) ≥ 0 so that
exp(−Z(J (n))) ≤ 1. (4.20) follows from noting that Kn ≥ exp(−∑

k Ge(xk(J
(n))))

since Ge(xk(J )) ≥ 0 and then, that for some C1 (depending only on e),

Ge(x) ≤ C1 dist(x, e)1/2 (4.22)

by Theorem 4.4 of paper I. Finally, (4.21) is immediate by taking lim sup in (4.19). �

Proposition 4.4 Let Je be the Jacobi matrix with spectral measure dρe, and let
{a(e)

n , b
(e)
n }∞n=1 be its Jacobi parameters. Let Jn be the Jacobi matrix with parame-

ters

am(Jn) =
{

am, m = 1, . . . , n,

a
(e)
m−n, m > n,

(4.23)

bm(Jn) =
{

bm, m = 1, . . . , n,

b
(e)
m−n, m > n.

(4.24)

Then

An(J ) = exp

(∑

k

Ge

(
xk(Jn)

))
exp

(−Z(Jn)
)
. (4.25)

In particular, for some C1 (depending only on e),

An(J ) ≤ exp
(
C1 E (Jn) − Z(Jn)

)
. (4.26)

Proof Jn is defined so that

(Jn)
(n) = Je (4.27)
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and

An(Jn) = An(J ). (4.28)

Thus, since Z(Je) = 0 and Je has no eigenvalues outside e, (4.12) for Jn is (4.25).
Equation (4.26) is then immediate from (4.22). �

Theorem 4.5 If E (J ) < ∞, then

Ā(J ) > 0 ⇔ Z(J ) < ∞, (4.29)

and if these are true, the Widom condition holds:

0 < A(J ) ≤ Ā(J ) < ∞. (4.30)

Proof By (4.20) and Theorem 3.7,

E (J ),Z(J ) < ∞ ⇒ A(J ) > 0 ⇒ Ā(J ) > 0. (4.31)

By (4.26) and Theorem 3.8, going through a subsequence with Anj
(J ) → Ā(J ),

we see that

E (J ) < ∞, Ā(J ) > 0 ⇒ lim sup
[
exp

(−Z(Jnj
)
)]

> 0. (4.32)

Thus, for some subsequence,

lim infZ(Jnj
) < ∞. (4.33)

Since Jnj

s−→ J , the spectral measures converge weakly. Since S is upper semicon-

tinuous, Z = − 1
2S is lower semicontinuous, and thus,

Z(J ) ≤ lim infZ(Jnj
), (4.34)

so (4.33) implies Z(J ) < ∞. That is, we have proven

E (J ) < ∞, Ā(J ) > 0 ⇒ Z(J ) < ∞. (4.35)

If we have Z(J ) < ∞ and E (J ) < ∞, we get A(J ) > 0 by (4.31), and since
Z(Jn) ≥ 0, (4.26) implies

Ā(J ) ≤ lim sup
[
exp

(
C1 E (Jn)

)]
< ∞ (4.36)

by Theorem 3.8. �

Remarks (1) The above proof shows that even without Z(J ) < ∞, we have
E (J ) < ∞ ⇒ Ā(J ) < ∞.

(2) The proof borrows heavily from ideas of Killip–Simon [11] and Simon–Zlatoš
[27].

(3) As noted, E (J ),Z(J ) < ∞ ⇒ (4.30) is a prior result (using variational meth-
ods) of Peherstorfer–Yuditskii [16, 17]. Peherstorfer and Yuditskii [14] have pointed
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out that their results can be used to prove E (J ) < ∞, Ā(J ) > 0 ⇒ Z(J ) < ∞ by the
following argument: While it is not explicitly stated, [16, 17] prove that for any K ,
there is a constant C so that for all measures with Z(J ) < ∞ and E (J ) ≤ K ,

lim sup
n→∞

a1 · · ·an

cap(e)n
≤ Ce−Z(J ). (4.37)

Given dμ with Z(J ) = ∞ and E (J ) ≤ K , let dμ̃ε be the measure dμ+ε dx � e. Then
with dμε the normalized measure and an(ε) the corresponding a’s, (4.37) implies
(since Z(Jε) < ∞)

lim sup
a1(ε) · · ·an(ε)

cap(e)n
≤ Ce−Z(Jε). (4.38)

By the variational principle for a1 · · ·an = ‖Pn‖, we have

a1 · · ·an ≤ [
a1(ε) · · ·an(ε)

](
1 + ε|e|)1/2

. (4.39)

Since Z(Jε) − 1
2 log(1 + ε|e|) ↑ Z(J ), (4.38)–(4.39) imply that Ā(J ) = 0 if

Z(J ) = ∞. This argument for the classical Szegő case is in Garnett [8].

Theorem 4.6 Ā(J ),Z(J ) < ∞ ⇒ E (J ) < ∞.

Proof This is immediate from (4.21) and Theorem 3.2. �

Remark This argument follows ideas of Simon–Zlatoš [27].

Theorems 4.5 and 4.6 imply Theorem 4.1.

5 Jost Functions and Jost Solutions

In Sect. 8 of paper I, we defined the Szegő class for e, which we’ll denote Sz(e),
to be the set of probability measures dμ of the form (4.1) that obey (4.3) and (4.4).
As usual, we associate dμ with its Jacobi matrix and Jacobi parameters {an, bn}∞n=1,
which we will write as {an(μ), bn(μ)}∞n=1 if we need to be explicit about the mea-
sures. Of course, the a’s obey the Widom condition (4.5) for all measures in the Szegő
class.

In this section, we want to recall the definitions of Jost function and Jost solution
from Sects. 8 and 9 of paper I, extend some results on Jost solutions to the full Szegő
class, and state the main theorem that we’ll prove in the next section about their
asymptotics.

Jost functions require a reference measure, and we’ll use the one from paper I.
Let ζ̃j ∈ C̃+

j , the full orthocircle, be the point farthest from 0 on C̃+
j , and let

wj ∈ S , the Riemann surface for e, be given by wj = x�(ζ̃j ). Each wj lies in
Gj = π−1([βj ,αj+1]), so �w = (w1, . . . ,w�) ∈ G = G1 × · · · × G�, which can be
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associated with the isospectral torus. Our reference measure is the measure in Te

associated to �w. We denote it by

dνe(x) = ve(x) dx. (5.1)

We point out that while our choice of the reference measure is convenient, one can
take any other measure in the Szegő class to be the reference measure.

Given dμ ∈ Sz(e), let {xk} be the eigenvalues of J in R \ e, and define zk ∈ F by

x(zk) = xk. (5.2)

The Jost function is then defined on D by

u(z;μ) =
∏

k

B(z, zk) exp

(
1

4π

∫ 2π

0

eiθ + z

eiθ − z
log

(
ve(x(eiθ ))

w(x(eiθ ))

)
dθ

)
. (5.3)

Since (4.16) implies

ve(x(eiθ ))

w(x(eiθ ))
= ImMνe

(eiθ )

ImMμ(eiθ )
, (5.4)

we could use that ratio instead. By the Blaschke condition and Proposition 4.8 of pa-
per I, the product in (5.3) (which we’ll call the Blaschke part) converges. By (4.54) of
paper I and the Szegő condition for dμ and dνe, the log in (5.3) is in L1(∂D, dθ/2π).
We call the exponential in (5.3) the Szegő part. As proven in Theorem 8.2 of paper I,
u is a character automorphic function on D.

For any Jacobi matrix J with σess(J ) = e, we let M(n) be the m-function (1.26) of
the n-times stripped Jacobi matrix J (n) and define the Weyl solution by

Wn(z) = M(z)
(
a1M

(1)(z)
) · · · (an−1M

(n−1)(z)
)
. (5.5)

M(k) has poles at the inverse images of eigenvalues of J (k) and zeros at the inverse
images of eigenvalues of J (k+1), so there is a cancellation, and Wn can be defined as
meromorphic on D with poles exactly at the points ζ with x(ζ ) an eigenvalue of J .

The name, Weyl solution, comes from the fact that because m is a ratio of solutions
L2 at n = +∞, Wn obeys

Wn(z) = −〈
δn,

(
J − x(z)

)−1
δ1

〉
, (5.6)

so that for k ≥ 2,
[(

J − x(z)
)
W·(z)

]
k
= 0, (5.7)

where W·(z) is the vector (W1(z),W2(z), . . . ). That is,

anWn(z) + bn+1Wn+1(z) + an+1Wn+2(z) = x(z)Wn+1(z) (5.8)

for n = 1,2, . . . .
The Jost solution is defined by

un(z;μ) = u(z;μ)Wn(z). (5.9)
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Since u(z;μ) is n-independent, (5.8) holds for un also. Since u has zeros at the points
where M , and so Wn, has poles, un is analytic on D.

Theorem 5.1

anM
(n−1)(z) = B(z)

u(z;μn)

u(z;μn−1)
, (5.10)

where M(0) = M , dμ0 = dμ, and dμn, M(n) are associated to J (n), the n-times
stripped Jacobi matrix.

Proof This is a rewrite of (2.3) for J (n−1). �

Theorem 5.2 Let dμ ∈ Sz(e). Then

un(z;μ) = a−1
n B(z)nu(z;μn), (5.11)

where dμn is the spectral measure for J (n), the n-times stripped Jacobi matrix.

Proof By (5.10) and (5.5),

anWn(z) = B(z)n
u(z;μn)

u(z;μ)
, (5.12)

which by (5.9) implies (5.11). �

The key asymptotic result of the next section is the following:

Theorem 5.3 Suppose dμ ∈ Sz(e) and that for some subsequence nj → ∞ and all
m ∈ Z,

anj +m(Jμ) → a�
m, bnj +m(Jμ) → b�

m (5.13)

for some point {a�
n, b

�
n}∞n=−∞ in the isospectral torus. If dμ� is the spectral measure

for the Jacobi matrix with parameters {a�
n, b

�
n}∞n=1, then

u(z;μnj
) → u(z;μ�) (5.14)

uniformly on compact subsets of D.

We note, as will be explained in the next section, that there is no loss in supposing
that the limit J � is in the isospectral torus. We’ll also show that Theorem 5.3 allows
the proof of (1.17) for a point J̃ in the isospectral torus.

6 Jost Asymptotics

In this section, we’ll prove Theorem 5.3; use this result to prove that for dμ ∈ Sz(e),
the Jacobi parameters an, bn are asymptotic to a fixed element of Te; and prove an
asymptotic formula for the Jost solution.



388 Constr Approx (2011) 33: 365–403

The key to our proof of the existence of an {ãn, b̃n}∞n=1 obeying (1.17) is the
Denisov–Rakhmanov–Remling theorem for e [18] which implies that any right limit
of J lies in the isospectral torus. Tracking the characters of the Jost functions will
determine exactly which right limits occur. This leads to a proof quite different from
the variational approach of [1, 16, 34].

We write

u(z;μ) = β(z;μ)ε(z;μ), (6.1)

where β is the Blaschke part and ε the Szegő part. We’ll prove (5.14) by proving
separately the convergence of the two parts.

Theorem 6.1 Under the hypotheses of Theorem 5.3, uniformly on compact subsets
of D,

β(z;μnj
) → β

(
z;μ�

)
. (6.2)

Proof By Theorem 3.7 of this paper and Proposition 4.8 of paper I (and its proof),
given a compact set K ⊂ D and ε > 0, we can find δ > 0 so that the product of the
contributions to β from x’s with dist(x, e) < δ are within ε of 1 for all z ∈ K . Thus,
it suffices to prove convergence of individual x’s for μnj

to those for μ�, and this
follows from Theorem 3.9. �

To control the Szegő part, we first need the following lemma of Simon–Zlatoš
[27]:

Theorem 6.2 (Simon and Zlatoš [27]) Let X be a compact Hausdorff measure space;
dρ, dμn, dμ∞ probability measures with dμn → dμ∞ weakly; and

dμn = fn dρ + dμn;s. (6.3)

Suppose that

S(ρ | μn) → S(ρ | μ∞) (6.4)

with all relative entropies finite. Then

log(fn) dρ
w−→ log(f∞) dρ. (6.5)

Proof If h is continuous and strictly positive, by upper semicontinuity,

lim supS(hρ | μn) ≤ S(hρ | μ∞) (6.6)

or

lim sup
∫

log
(
fnh

−1)hdρ ≤
∫

log
(
f∞h−1)hdρ, (6.7)

so that

lim sup
∫

log(fn)hdρ ≤
∫

log(f∞)hdρ. (6.8)
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For arbitrary continuous real-valued g, let h = 2‖g‖∞ ± g to get

lim
∫

log(fn)g dρ =
∫

log(f∞)g dρ. (6.9)

�

Proposition 6.3 To get

ε(z;μnj
) → ε

(
z;μ�

)
(6.10)

uniformly for z in compact subsets of D, it suffices to prove that

lim
j→∞S(ρe | μnj

) = S
(
ρe | μ�

)
. (6.11)

Proof By the definition of ε, it suffices that as measures on ∂D,

log

(
1

π

∣∣ ImMμnj

(
eiθ

)∣∣
)

dθ

2π

w−→ log

(
1

π

∣∣ ImMμ�

(
eiθ

)∣∣
)

dθ

2π
.

Given g ∈ C(∂D), define

g̃(eiθ ) =
∑

γ∈� g(γ (eiθ ))|γ ′(eiθ )|
∑

γ∈�|γ ′(eiθ )| (6.12)

and h on e by

h
(
x
(
eiθ

)) = 1

2

[
g̃
(
eiθ

) + g̃
(
e−iθ

)]
. (6.13)

Note that h is continuous on e since g̃ is continuous on ∂F ∩ ∂D by (3.4) of paper I.
By Corollary 4.6 of paper I,

∫ 2π

0
g
(
eiθ

)
log

(
1

π

∣∣ ImMμ

(
eiθ

)∣∣
)

dθ

2π
=

∫

e

h(x) log
(
wμ(x)

)
dρe(x), (6.14)

so the necessary weak convergence on ∂D is implied by weak convergence of
log(fnj

) dρe to log(f∞) dρe. This in turn follows from (6.11) and Theorem 6.2. �

Theorem 6.4 Under the hypotheses of Theorem 5.3, uniformly on compact subsets
of D,

ε(z;μnj
) → ε

(
z;μ�

)
. (6.15)

Proof By Proposition 6.3, it suffices to prove (6.11). Since μnj

w−→ μ�, upper semi-
continuity of S implies

lim supS(ρe | μnj
) ≤ S

(
ρe | μ�

)
. (6.16)



390 Constr Approx (2011) 33: 365–403

So it suffices to prove that

S ≡ lim infS(ρe | μnj
) ≥ S

(
ρe | μ�

)
. (6.17)

Pick a subsequence (that we’ll still denote by nj ) so that S(ρe | μnj
) → S and so

that τj → τ∞ for some τ∞ > 0, where

τj = a1 · · ·anj

cap(e)nj
. (6.18)

Note that by Theorem 4.1 and dμ ∈ Sz(e), the original τj ’s are bounded, so we can
pick such a convergent subsequence.

For k < �, let Jk,� be the Jacobi matrix obtained by starting with J (nk) and then
putting J � at sites beyond n�, that is,

am(Jk,�) =
{

ank+m, 1 ≤ m ≤ n� − nk,

a
�
m−n�+nk

, m > n� − nk,
(6.19)

bm(Jk,�) =
{

bnk+m, 1 ≤ m ≤ n� − nk,

b
�
m−n�+nk

, m > n� − nk.
(6.20)

Thus, (Jk,�)
(n�−nk) = J �, so the iterated step-by-step C0 sum rule says that

τ�

τk

= β(0;μ�)

β(0;μk,�)
exp

[
1

2
S(ρe | μk,�) − 1

2
S
(
ρe | μ�

)]
. (6.21)

We claim that

lim
�→∞β(0;μk,�) = β(0;μnk

). (6.22)

Accepting this for now, we take � → ∞ in (6.21), using the upper semicontinuity of
S(ρe | μ) in μ to get

exp

[
1

2
S(ρe | μnk

) − 1

2
S
(
ρe | μ�

)] ≥ τ∞
τk

β(0;μnk
)

β(0;μ�)
. (6.23)

Now take k → ∞ using the assumption that S(ρe | μnk
) → S. Since τ∞/τk → 1

and, by (6.2),

β(0;μnk
)

β(0;μ�)
→ 1,

we get (6.17).
Thus, we need only prove (6.22), which follows the proof of Theorem 6.1, but

using Theorems 3.8 and 3.10. �

Proof of Theorem 5.3 By (6.1), this follows from Theorems 6.1 and 6.4. �
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We can now prove (1.17).

Theorem 6.5 Let dμ ∈ Sz(e). Take dμ̃ to be the unique element in Te so that u(z;μ)

and u(z; μ̃) have the same automorphic character. Then

lim
n→∞|an − ãn| + |bn − b̃n| = 0. (6.24)

Remark The existence and uniqueness of dμ̃ ∈ Te follows from Theorem 7.3 of pa-
per I.

Proof If not, by compactness, there is a right limit J � so that

am+nj
→ a�

m, bm+nk
→ b�

m, (6.25)

and so that

ãm+nj
→ a(∞)

m , b̃m+nj
→ b(∞)

m , (6.26)

with

J � �= J (∞). (6.27)

By the Denisov–Rakhmanov–Remling theorem [18], J � and J (∞) lie in the
isospectral torus. Let χB(γ ) be the automorphic character of B(z). Then with χJ (γ )

the character of the Jost function for J , (5.10) and the fact that M(n−1) is automorphic
imply that

χJ(n) = χJ χ−n
B , χ

J̃ (n) = χ
J̃
χ−n

B . (6.28)

Since the definition of J̃ is χ
J̃

= χJ , we see that

χJ(n) = χ
J̃ (n) . (6.29)

By Theorem 5.3 and the fact that uniform convergence of character automorphic
functions implies convergence of their characters, we get

χJ� = χJ(∞) . (6.30)

But J � and J (∞) lie in the isospectral torus, so by Theorem 7.3 of paper I,

J � = J (∞). (6.31)

This contradiction to (6.27) implies that (6.24) holds. �

As a corollary, we get convergence of Jost solutions.

Theorem 6.6 Uniformly on compact subsets of D,

un(z;μ) − un(z; μ̃)

B(z)n
→ 0. (6.32)
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Moreover,

un(z;μ)

un(z; μ̃)
→ 1 (6.33)

uniformly on compact subsets of F int.

Remark At each point in {γ (0) | γ ∈ �}, un and Bn have zeros of order n, so unB
−n

has removable singularities at those points.

Proof Since J (n) and J̃ (n) (by Theorem 6.5) have the same right limits, by Theo-
rem 5.3,

∣∣u(z;μn) − u(z; μ̃n)
∣∣ → 0 (6.34)

uniformly on D. Since an/ãn → 1, (5.11) implies (6.32).
As un(z; μ̃) is bounded away from zero (uniformly in n) on compact subsets of

F int, (6.34) implies (6.33). �

Corollary 6.7 Let dμ ∈ Sz(e), and let dμ̃ ∈ Te be the measure for which (6.24)
holds. Then, as n → ∞,

a1 · · ·an

ã1 · · · ãn

→ u(0; μ̃)

u(0;μ)
. (6.35)

In particular, a1 · · ·an/ cap(e)n is asymptotically almost periodic.

Proof The final sentence follows from (6.35) and Corollary 7.4 of paper I. To obtain
(6.35), note that (5.10) at z = 0 and (2.12) imply

u(0;μn)

u(0;μ)
= a1 · · ·an

cap(e)n
. (6.36)

Thus,

a1 · · ·an

ã1 · · · ãn

= u(0; μ̃)

u(0;μ)

u(0;μn)

u(0; μ̃n)
. (6.37)

Since u(0;ν) is bounded away from 0 as dν runs through the isospectral torus,
(6.34) implies that

u(0;μn)

u(0; μ̃n)
→ 1,

proving (6.35). �

7 Szegő Asymptotics

In Sect. 6, we proved that if un is the Jost solution of a Jμ with dμ ∈ Sz(e) and ũn is
the Jost solution for the element of the isospectral torus to which Jμ is asymptotic (in
the sense of (1.17)), then, as n → ∞, un(z)/ũn(z) → 1 uniformly on compact subsets
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of F int. Our goal in this section is to prove that if pn and p̃n are the corresponding
orthonormal polynomials, then also on F int, pn(z)/p̃n(z) has a limit (which will not
be identically 1 and which we’ll write explicitly in terms of Jost functions).

The passage from Jost asymptotics to Szegő asymptotics in the case e = [−2,2]
was studied by Damanik–Simon [5] using constancy of the Wronskian. Our first ap-
proach for general e mimicked that of [5] but was awkward because certain objects
which were constant in the case e = [−2,2] were instead almost periodic. To over-
come this, we found a new approach which, even for e = [−2,2], is somewhat simpler
than the approach in [5].

The idea is to exploit the formula for the diagonal Green’s function for x ∈ C+,

Gnn(x) = 〈
δn, (J − x)−1δn

〉
, (7.1)

namely (see, e.g., [26]),

Gnn(x) = pn−1(x)Un(x)

Wr(x)
, (7.2)

where Un(x) is defined by

Un(x) = un(ζ ), x(ζ ) = x, ζ ∈ F int, (7.3)

and Wr(x) is defined by

Wr(x) = am

(
Um+1(x)pm−1(x) − Um(x)pm(x)

)
(7.4)

for m ≥ 1. The right-hand side is independent of m. The unusual indices in (7.4)
compared to Wronskians come from the fact that Um and Vm = pm−1 obey the same
difference equation, and RHS of (7.4) is nothing but am(Um+1Vm − UmVm+1).

In (7.4), we can also take m = 0 if we set a0 = 1, p−1(x) = 0, and

U0(x) = u(ζ ;μ). (7.5)

With this choice of p−1, U0, and a0, Um obeys a0U0 + b1U1 + a1U2 = xU1, and
similarly for Vm. Since p−1 = 0 and p0 = 1, (7.4) for m = 0 says

Wr(x) = −u(ζ ;μ). (7.6)

Here is the key to going from Jost to Szegő asymptotics:

Theorem 7.1 Suppose {an, bn}∞n=1 obey (1.17) for some {ãn, b̃n}∞n=1 in Te. Then,
uniformly for z in compact subsets of C \ ([α1, β�+1] ∪ σ(J )),

lim
n→∞

[
Gnn(z) − G̃nn(z)

] = 0, (7.7)

where G̃nn is given by (7.1) with J replaced by J̃ .

Proof By the resolvent formula,

Gnn(z) − G̃nn(z) =
∑

m,k

Gnm(z)(J̃ − J )mk G̃kn(z). (7.8)
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On compact subsets of C+,

∣∣Gkn(z)
∣∣ + ∣∣G̃kn(z)

∣∣ ≤ Ce−D|k−n| (7.9)

for suitable C,D > 0. Since (J̃ − J )mk → 0 as m,k → ∞, we get (7.7) from (7.8)
and (7.9). Using the maximum principle, one extends the result to compact subsets
of C \ ([α1, β�+1] ∪ σ(J )). �

Theorem 7.2 Under the hypotheses of Theorem 7.1, uniformly on the same compact
subsets of C, we have that

lim
n→∞

Gnn(z)

G̃nn(z)
= 1. (7.10)

Proof For each fixed n, G̃nn(z) is nonvanishing on the compact subsets under dis-
cussion since neither ũn nor p̃n−1 have zeros there. Since shifting n is equivalent to
moving on the torus, G̃nn is uniformly bounded away from zero as n varies (cf. (7.13)
below). Therefore, (7.7) implies (7.10). �

As a final preliminary on Szegő asymptotics, we look at the isospectral torus. If
dν ∈ Te, then reflection of the Jacobi parameters about n = 0,

b(r)
n = b−n, a(r)

n = a1−n, n ∈ Z, (7.11)

gives an almost periodic Jacobi matrix in the isospectral torus, so a point we will call
dν(r) ∈ Te.

For n ∈ Z, we denote by dνn ∈ Te the spectral measure of the two-sided Jacobi
matrix J̃ν when restricted to �2({n + 1, n + 2, . . . }). In particular, dν0 = dν.

Following paper I, for x ∈ C ∪ {∞} \ e, we define z(x) ∈ F to be the unique point
with x(z(x)) = x, and for x ∈ e, we set z(x) = z(x − i0).

Theorem 7.3 Given dν ∈ Te, there exist nonvanishing, continuous functions α(x;ν)

and β(x;ν) for x ∈ C \ [α1, β�+1] so that the orthonormal polynomials are given by

pn−1(x;ν) = α(x;ν)
u(z(x), ν

(r)
−n)

a
(r)
−nB(z(x))n

+ β(x;ν)
u(z(x), νn)

anB(z(x))−n
. (7.12)

In particular, pn−1(x;ν)B(z(x))n is asymptotically almost periodic. Moreover, on
any compact subset K of C \ [α1, β�+1], there is a constant C > 1 so that

C−1B
(
z(x)

)n ≤ ∣∣pn−1(x;ν)
∣∣ ≤ CB

(
z(x)

)n (7.13)

for all x ∈ K and dν ∈ Te.

Proof Define

u+
n (x;ν) = un

(
z(x);ν)

, u−
n (x;ν) = u+−n

(
x;ν(r)

)
. (7.14)
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Then u±
n are two solutions of

anvn+1 + bnvn + an−1vn−1 = xvn, (7.15)

and they are linearly independent since one is L2 at +∞ and the other at −∞, and x

is not an eigenvalue of J̃ν .
Since pn−1(x;ν) also solves (7.15), we have

pn−1(x;ν) = α(x;ν)u−
n (x;ν) + β(x;ν)u+

n (x;ν), (7.16)

and Wronskian formulae for α and β show that they are real analytic in ν ∈ Te and
analytic in x ∈ C \ [α1, β�+1].

Equation (7.12) then follows from Theorem 9.2 of paper I.
Since |B| < 1 on D, the second term multiplied by Bn is exponentially small, and

the first is almost periodic, so pn−1B
n is almost periodic up to an exponentially small

error.
The upper bound in (7.13) is immediate from (7.12), |B| < 1, and the almost

periodicity of u(z;νn).
Since x is not an eigenvalue of J̃ν , α is nonvanishing, which proves that for any

K and n ≥ N , we have a lower bound. Since pn has no zero in K , a lower bound on
n < N is immediate. That proves (7.13). �

Theorem 7.4 (Szegő asymptotics) Let dμ ∈ Sz(e), and let dμ̃ be the measure of the
Jacobi matrix in Te for which (1.17) holds. Then, uniformly on compact subsets of
C \ [α1, β�+1],

pn(x;μ)

pn(x; μ̃)
→ u(z(x);μ)

u(z(x); μ̃)
. (7.17)

In particular, pn(x;μ)B(z(x))n is asymptotically almost periodic.

Remarks (1) It is not hard to see that the last statement extends to C \ e.
(2) In the periodic case, one also has Szegő asymptotics in the gaps of e except at

finitely many points.
(3) Since the monic orthogonal polynomials Pn(x) are related to the orthonormal

ones via Pn(x) = (a1 · · ·an)pn(x), Szegő asymptotics for the monic polynomials
immediately follows from (6.35) and (7.17),

Pn(x;μ)

Pn(x; μ̃)
→ u(z(x);μ)/u(0;μ)

u(z(x); μ̃)/u(0; μ̃)
.

Proof It follows from (7.2) and (7.6) that

pn−1(x;μ)

pn−1(x; μ̃)
= Gnn(x)

G̃nn(x)

un(z(x); μ̃)

un(z(x);μ)

u(z(x);μ)

u(z(x); μ̃)
. (7.18)

The result is immediate from (7.10) and (6.33) since we can include points below α1
and above β�+1 by the maximum principle and the fact that pn(x; μ̃) is nonvanishing
on R \ [α1, β�+1]. �
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8 L2 Szegő Asymptotics on the Spectrum

By a standard approximation argument going back to Szegő [30, 31], the function

∫ 2π

0

eiθ + z

eiθ − z
log

(
ImM

(
eiθ

)) dθ

2π

is in H 2(D), so it has nontangential boundary values for a.e. z ∈ ∂D. Since convergent
Blaschke products (with a Blaschke condition) are well known to have boundary
values (see [19, pp. 249, 310]), u(z;μ) has boundary values for a.e. z ∈ ∂D and all
dμ ∈ Sz(e), and so does un(z;μ) by (5.11).

Thus, for Lebesgue a.e. x ∈ e,

u+
n (x;μ) ≡ un

(
z(x − i0);μ)

(8.1)

exists. Moreover, since Imm(x + i0) �= 0 for a.e. x ∈ e, we can define a linearly
independent solution u−

n by

u−
n (x;μ) ≡ u+

n (x;μ). (8.2)

This leads to an expansion:

pn(x) = Wr(p·−1, u
−· )u+

n+1(x;μ) − Wr(p·−1, u
+· )u−

n+1(x;μ)

Wr(u+· , u−· )
(8.3)

= u+
0 (x;μ)u+

n+1(x;μ) − u+
0 (x;μ)u+

n+1(x;μ)

Wr(u+· , u−· )
. (8.4)

Given the asymptotics of u+
n to ũ+

n , this explains the expected L2 asymptotic result
we’ll prove:

Theorem 8.1 Let dμ ∈ Sz(e) have the form (1.9), and let ũ+
n (x) be the Jost solution

for the asymptotic point in Te (i.e., the point given by (1.17)). Then

∫

e

∣∣∣∣pn(x) − Im(u(z(x);μ)ũ+
n+1(x))

πve(x)

∣∣∣∣
2

w(x)dx → 0 (8.5)

and
∫ ∣∣pn(x)

∣∣2
dμs(x) → 0, (8.6)

where ve is the weight for the reference measure used in (5.3).

Remarks (1) πve(x) enters because of the following calculation:

Wr(ũ+· , ũ−· ) = ã0
(
ũ+

1 ũ+
0 − ũ+

1 ũ+
0

)
(8.7)

= −(ã0)
2
∣∣ũ+

0

∣∣22i Im m̃(x − i0) (8.8)
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= 2i
ve(x)

w̃(x)
πw̃(x) (8.9)

= 2πive(x). (8.10)

In the above, (8.8) comes from (1.26) and (5.10), and (8.9) comes from (4.16), (5.3)
(see Lemma 8.2 below), and (5.11), which says that ũ+

0 = ã−1
0 u( · , μ̃).

(2) In case e = [−2,2], (8.5) becomes

∫ 2

−2

∣∣∣∣pn(x) − Im(u(z(x);μ)ei(n+1)θ(x))

sin(θ(x))

∣∣∣∣
2

w(x)dx → 0,

where θ(x) is given by z(x) = eiθ(x). This is a result of [15]; see also [5] and [26,
Sect. 3.7].

We define

k+
n (x) = u(z(x);μ) ũ+

n+1(x)

2πive(x)
, (8.11)

k−
n (x) = k+

n (x), (8.12)

in which case, (8.5)–(8.6) become

∥∥pn − k+
n − k−

n

∥∥2
w

+ ‖pn‖2
s → 0, (8.13)

where ‖·‖w is the L2(e,w dx) norm (we use 〈 , 〉w for the inner product) and ‖·‖s is
the L2(R, dμs) norm. Clearly, (8.13) follows from:

‖pn‖2
w + ‖pn‖2

s = 1, (8.14)

∥∥k±
n

∥∥2
w

= 1

2
, (8.15)

lim
n→∞

〈
k−
n , k+

n

〉
w

= 0, (8.16)

lim
n→∞ Re

〈
k−
n ,pn

〉
w

= 1

2
. (8.17)

Equation (8.14) is the normalization condition on pn, so we only need to prove
(8.15)–(8.17). We’ll need some preliminaries:

Lemma 8.2 For a.e. z ∈ ∂D, the boundary value of u(z;μ) obeys

∣∣u(z;μ)
∣∣2 = ve(x(z))

w(x(z))
. (8.18)

Proof In (5.3), |∏k B(z, zk)| has 1 as boundary value, by standard results on
Blaschke products. By convergence of the Poisson kernel, for a.e. z in ∂D, the real
part of the exponential converges to log(

ve(x(z))
w(x(z))

). �
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Lemma 8.3 For any dν ∈ Te with weight wν , we have

∫

e

dx

wν(x)
= 2π2a0(ν)2. (8.19)

Proof If G̃00(z;ν) is the Green’s function of the whole-line Jacobi matrix J̃ν and
u+

n (x;ν) = un(z(x + i0);ν) the boundary value of the Jost solution, then

G̃00(x + i0;ν) = u+
0 (x;ν)u+

0 (x;ν)

a0(ν)[u+
1 (x;ν)u+

0 (x;ν) − u+
1 (x;ν)u+

0 (x;ν)]
(8.20)

= − 1

a0(ν)22i Imm(x + i0;ν)
(8.21)

= i

2πa0(ν)2wν(x)
, (8.22)

so

1

π
Im G̃00(x + i0;ν) = 1

2π2a0(ν)2wν(x)
. (8.23)

But the whole-line Jacobi matrix J̃ν has purely a.c. spectrum σ(J̃ν) = e and the
density of the probability spectral measure for J̃ν and δ0 is 1

π
Im G̃00(x + i0;ν), so

1

π

∫

e

Im G̃00(x + i0;ν)dx = 1. (8.24)

Equations (8.23) and (8.24) imply (8.19). �

Proposition 8.4 Equation (8.15) holds.

Proof By (5.11) and (8.11),

∣∣k+
n (x)

∣∣2 = |u(z(x);μ)|2|u(z(x); μ̃n+1)|2
4π2(ãn+1)2ve(x)2

, (8.25)

so, by Lemma 8.2,

∣∣k+
n (x)

∣∣2 = 1

4π2(ãn+1)2w(x)w̃n+1(x)
, (8.26)

and so,
∫

e

∣∣k+
n (x)

∣∣2
w(x)dx = 1

4π2(ãn+1)2

∫

e

dx

w̃n+1(x)
= 1

2
(8.27)

by Lemma 8.3. Since |k−
n | = |k+

n |, we get the same result for ‖k−
n ‖2

w . �
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Lemma 8.5 Let f ∈ L1(e, dρe). Then

lim
n→∞

∫

e

B
(
z(x)

)n
f (x) dρe(x) = 0. (8.28)

Moreover, (8.28) holds uniformly on norm compact subsets of L1(e, dρe).

Proof Without loss of generality, assume that f is real-valued. Then by Corollary 4.6
of paper I, we obtain

∫

e

B
(
z(x)

)n
f (x) dρe(x) =

∫ 2π

0
B

(
eiθ

)n
f

(
x
(
eiθ

)) dθ

2π
. (8.29)

By the Cauchy theorem, {Bn}n∈Z forms an orthonormal system in L2(∂D, dθ
2π

).
Hence it follows from the Bessel inequality that RHS of (8.29) converges to zero
for any L2-function. The general case of L1-functions and the result on uniform con-
vergence on norm compacts follow by approximation. �

Remark The above result can be also established via a stationary phase argument.

Proposition 8.6 Equation (8.16) holds.

Proof By the same calculation that was used in the proof of Proposition 8.4,

〈
k−
n , k+

n

〉
w

=
∫

e

fn(x)B2n+2(z(x)
)
dx, (8.30)

where

fn(x) = − 1

4π2(ãn+1)2

u(z(x); μ̃n+1)
2

ve(x)

|u(z(x);μ)|2
u(z(x);μ)2

. (8.31)

For dν ∈ Te, let

f (x;ν) = − 1

4π2a0(ν)2

u(z(x);ν)2

ve(x)

|u(z(x);μ)|2
u(z(x);μ)2

. (8.32)

By Lemma 8.2, the f ’s are all in L1 (with L1 norm 1/2 by Lemma 8.3), and f is L1

continuous in ν. So, since Te is compact, we see from Lemma 8.5 that the integral
in (8.30) goes to zero. �

This leaves (8.17). The argument is somewhat complicated in case there are bound
states, especially if there are infinitely many. So let us consider it first when dμ has
no point masses in R \ e.

Proposition 8.7 Suppose dμ has support e so that u(z;μ) is nonvanishing on D.
Then (8.17) holds.
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Proof We claim that

Re

[∫

e

k−
n (x)pn(x)w(x)dx

]

= 1

2

∫

∂F ∩∂D

u(z;μ)ũn+1(z)

2πive(x(z))
pn(x(z))w(x(z))x′(z) dz, (8.33)

where the integral is evaluated counterclockwise. As Re k−
n = 1

2k+
n + 1

2k−
n and

Repn(x) = pn(x), the k+
n term directly gives the counterclockwise integral over

C+ ∩ ∂F ∩ ∂D (since x′(z) is positive there). Since u and ũ+
n+1 are real on R, and x′

and i flip signs under eiθ → e−iθ , the k−
n term gives the integral over ∂F ∩ ∂D∩C−.

Notice next that, by (8.18),

u(z;μ)
w(x(z))

ve(x(z))
= 1

u(z;μ)
, (8.34)

so

LHS of (8.33) = 1

4πi

∫

∂F ∩∂D

ũn+1(z)pn(x(z))

u(z;μ)
x′(z) dz. (8.35)

By (6.28), (5.11), and the choice of dμ̃, the integrand in (8.35), call it F , is auto-
morphic under �. Since F is real on R, we have F(z̄) = F(z). Moreover, there are
γ ∈ � so that for z ∈ C+

� , we have γ (z) = z, so we conclude that F is real on C+
� and

C−
� . Thus, orienting the contours counterclockwise about 0, we get

∫

C+
� ∪C−

�

F (z) dz = 0,

since C+
� and C−

� run in opposite directions. It follows that

LHS of (8.33) = 1

4πi

∫

∂F

ũn+1(z)pn(x(z))

u(z;μ)
x′(z) dz. (8.36)

Inside F , the integrand is regular except at z = 0. Since pn is a polynomial of
degree n in x(z), and x(z) has a simple pole at z = 0, znpn(x(z)) is regular at z = 0.
By (5.11), ũn+1(z)/B(z)n+1 is regular at z = 0. Thus, ũn+1(z)pn(x(z)) has a first-
order zero at z = 0. u(z) is regular there and x′(z) has a double pole. So the integrand
in (8.36) has a simple pole at z = 0, and we conclude that

LHS of (8.33) = 1

2

[
un+1(z;μ)pn(x(z))

zu(z;μ)

∣∣∣∣
z=0

]
un+1(0; μ̃)

un+1(0;μ)

[
z2x′(z)

∣∣
z=0

]
. (8.37)

The first factor in (8.37) is z−1Gn+1,n+1(x(z))|z=0, which is

lim
z→0

z−1
(

− 1

x(z)
+ O

(
1

x(z)2

))
= − 1

x∞
. (8.38)
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The third factor is

lim
z→0

z2
(

−x∞
z2

+ O(1)

)
= −x∞, (8.39)

so

LHS of (8.33) = 1

2

un+1(0; μ̃)

un+1(0;μ)
→ 1

2
(8.40)

by Theorem 6.6. �

Proposition 8.8 If dμ has support e plus finitely many mass points in R \ e, then
(8.17) holds.

Proof We follow the proof of the last proposition until we get to (8.35). However,
u now has a pole at each zk in F with

x(zk) = xk ∈ σ(J ). (8.41)

Thus, the integrand can have poles (but only finitely many) in F int and also on C±
j .

Interpret (8.36) as taking principal parts at the poles on C±
j . Each such pole con-

tributes with half of 2πi times the residue, so we get 2πi times the residue if we only
count the poles in F (i.e., in C+

j but not in C−
j ).

The residue at zk is

B(zk)
n+1u(zk; μ̃n+1)pn(xk)x′(zk)

2ãn+1u′(zk;μ)
. (8.42)

As
∑

n|pn(xk)|2 = 1/μ({xk}), |B(zk)| < 1, and supn|u(zk; μ̃n+1)| < ∞, the quantity
in (8.42) goes to zero. Since there are finitely many of these poles, their contribution
vanishes in the limit and LHS of (8.33) converges to 1/2. �

Finally, we turn to the general case. The following completes the proof of Theo-
rem 8.1:

Proposition 8.9 For any dμ ∈ Sz(e), (8.17) holds.

Proof Following Peherstorfer–Yuditskii [15], we’ll approximate u by one with a fi-
nite number of zeros, but to preserve the fact that we need certain functions to be
automorphic, we also modify ũn.

Label all the point masses of dμ in a single sequence {xk}∞k=1 with corresponding
points zk ∈ F such that x(zk) = xk . Let

u(m)(z;μ) =
m∏

k=1

B(z, zk)ε(z;μ), (8.43)
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and denote by dμ̃(m) the measure in the isospectral torus whose Jost function has the
same character as u(m). Define

k(m)+
n (x) = u(m)(z(x);μ)u+

n+1(x; μ̃(m))

2iπve(x)
. (8.44)

Clearly, it suffices to prove that

lim
m→∞

∥∥k(m)+
n − k+

n

∥∥
w

→ 0 (8.45)

uniformly in n, and that

lim
m→∞ lim

n→∞

∣∣∣∣Re
〈
k(m)+
n ,pn

〉 − 1

2

∣∣∣∣ = 0. (8.46)

Since
∏m

k=1 B(z, zk) → ∏∞
k=1 B(z, zk) uniformly on compacts, the characters

converge. Moreover, this convergence of B’s is pointwise on ∂D. The first implies
convergence of u(z(x); μ̃(m)

n+1) to u(z(x); μ̃n+1) away from the band edges (uni-
formly in n and x as m → ∞) with uniform square root bounds. This plus (8.26)
yields (8.45).

The proof of (8.46) follows the proof of Proposition 8.8. The fact that we’ve
arranged for the functions to be automorphic allows the cancellation of the C+

j and

C−
j integrals, and since there are only finitely many poles away from z = 0, we get

convergence in (8.42) and hence in (8.46). �
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27. Simon, B., Zlatoš, A.: Sum rules and the Szegő condition for orthogonal polynomials on the real line.

Commun. Math. Phys. 242, 393–423 (2003)
28. Sodin, M., Yuditskii, P.: Almost periodic Jacobi matrices with homogeneous spectrum, infinite-

dimensional Jacobi inversion, and Hardy spaces of character-automorphic functions. J. Geom. Anal.
7, 387–435 (1997)

29. Stahl, H., Totik, V.: General Orthogonal Polynomials. Encyclopedia of Mathematics and its Applica-
tions, vol. 43. Cambridge University Press, Cambridge (1992)
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