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Abstract We study Nevai’s condition that for orthogonal polynomials on the real
line, Kn(x, x0)

2Kn(x0, x0)
−1 dρ(x) → δx0 , where Kn is the Christoffel–Darboux

kernel. We prove that it holds for the Nevai class of a finite gap set uniformly on
the spectrum, and we provide an example of a regular measure on [−2,2] where it
fails on an interval.
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1 Introduction

This paper studies material on the borderline of the theory of orthogonal polynomials
on the real line (OPRL) and spectral theory. Let dρ be a measure on R of compact but
not finite support, and let Pn(x, dρ),pn(x, dρ) be the standard [15, 44, 46] monic and
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normalized orthogonal polynomials for dρ. Let {an, bn}∞n=1 be the Jacobi parameters
defined by

xpn(x) = an+1pn+1(x) + bn+1pn(x) + anpn−1(x). (1.1)

The CD (for Christoffel–Darboux) kernel is defined by

Kn(x, y) =
n∑

j=0

pj (x)pj (y) (1.2)

for x, y real. The CD formula (see, e.g., [42]) asserts that

Kn(x, y) = an+1[pn+1(x)pn(y) − pn(x)pn+1(y)]
x − y

. (1.3)

The Christoffel variational principle (see [42]) says that if

λn(x0) = min

{∫ ∣∣Qn(x)
∣∣2 dρ(x)

∣∣∣∣ degQn ≤ n, Qn(x0) = 1

}
, (1.4)

then

λn(x0) = 1

Kn(x0, x0)
, (1.5)

and the minimizer is given by

Q̃n(x, x0) = Kn(x, x0)

Kn(x0, x0)
. (1.6)

It is quite natural to look at the probability measures (called Gn in Nevai [32])

dη(x0)
n (x) = |Q̃n(x, x0)|2 dρ(x)∫ |Q̃n(y, x0)|2 dρ(y)

, (1.7)

so that, by (1.5) and (1.6),

dη(x0)
n = |Kn(x, x0)|2 dρ(x)

Kn(x0, x0)
. (1.8)

Definition We say dρ obeys a Nevai condition at x0 if and only if

w-lim
n→∞ dη(x0)

n = δx0 , (1.9)

the point mass at x0.

(Here w-limn→∞ dνn = dν means limn→∞
∫

f (x)dνn(x) = ∫ f (x)dν(x) for any
compactly supported continuous f .)

The name comes from the fact that this condition was studied in the seminal work
of Nevai [32], who considered the following:
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Definition The Nevai class for [−2,2] is the set of all measures dρ whose Jacobi
parameters obey

an → 1, bn → 0. (1.10)

The interval [−2,2] is relevant since, by Weyl’s theorem on the essential spectrum,
[−2,2] is the derived set of supp(dρ), that is, the essential spectrum for the Jacobi
matrix of dρ.

Nevai proved the following:

Theorem 1.1 (Nevai [32]) If dρ is in the Nevai class for [−2,2], then the Nevai
condition holds for all x0 in [−2,2]. Indeed, the limit is uniform for x0 in any compact
set K ⊂ (−2,2).

The connection of this to spectral theory comes from the relation to the following
condition, sometimes called subexponential growth:

lim
n→∞

|pn(x0)|2∑n
j=0|pj (x0)|2 = 0, (1.11)

which we will show (see Proposition 2.1) is equivalent to

lim
n→∞

(|pn−1(x0)|2 + |pn(x0)|2)∑n
j=0|pj (x0)|2 = 0 (1.12)

and to

lim
n→∞

|pn+1(x0)|2∑n
j=0|pj (x0)|2 = 0. (1.13)

We will sometimes need

0 < A− ≡ inf
n

an ≤ sup
n

an ≡ A+ < ∞. (1.14)

We note that A+ < ∞ follows from the assumption that supp(dρ) is compact, and if
A− = 0, then by a result of Dombrowski [14], dμ is purely singular with respect to
Lebesgue measure. Obviously, (1.14) holds for the discrete Schrödinger case, an ≡ 1.

The relation of (1.11) to Nevai’s condition is direct:

Theorem 1.2 Let (1.14) hold. Nevai’s condition holds at x0 if and only if (1.11)
holds.

That (1.11) ⇒ (1.9) is due to Nevai. The converse is new here and appears as
Theorem 2.2.

Equation (1.11) is, of course, the kind of asymptotic eigenfunction result of inter-
est to spectral theorists and is susceptible to the methods of spectral theory. In partic-
ular, Theorem 1.2 shows that for compactly supported measures, the Nevai condition
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is intimately connected with the existence of certain natural sequences of approxi-
mate eigenvectors for the associated Jacobi matrix (for the relevance of approximate
eigenvectors to spectral analysis, see, e.g., [5]). Note that (1.1) and the orthogonal-
ity relation say that, for ρ-a.e. x, the sequence (p0(x),p1(x), . . .) is a generalized
eigenfunction at x for the Jacobi matrix, J , defined by the parameters {an, bn}∞n=1
(namely, it is a polynomially bounded solution of the corresponding eigenvalue equa-
tion). Truncations of generalized eigenfunctions are natural candidates for sequences
of approximate eigenvectors, and Theorem 1.2 (see (2.13) in particular) says that the
Nevai condition at x0 is equivalent to the requirement that truncations of the gen-
eralized eigenfunction at x0 yield a sequence of approximate eigenvectors for J . In
fact, from the point of view of spectral theory, for compactly supported measures, the
Nevai condition is a simple restatement of this in the “energy representation” of the
Jacobi matrix.

This connection is one reason Nevai’s condition is interesting—it has also been
used to relate ratios of λn(x0) for the measures dρ(x) and eg(x) dρ(x) (Nevai’s mo-
tivation in [32]). In this context, it was used by Máté–Nevai–Totik [31] to relate CD
kernel asymptotics for orthogonal polynomials on the unit circle (OPUC) and OPRL
and to study OP asymptotics when a Szegő condition fails (see [28–30]; see also [44,
Sect. 3.10]).

Given the form of the Christoffel variational principle, Nevai’s condition seems
like something that must always hold for x0 ∈ supp(dμ). However, (1.11) also pro-
vides a basis for some counter-examples to Nevai’s condition. In Sect. 3 (see Theo-
rem 3.2), we will prove that

Theorem 1.3 If

lim inf
n→∞
(∣∣pn(x0)

∣∣2 + ∣∣pn+1(x0)
∣∣2)1/n

> 1, (1.15)

then (1.11) fails.

This was the basis for the first counter-example to (1.11) by Szwarc [47]; in Sect. 3
(Example 3.5), we will see that the Anderson model provides an example of a mea-
sure on [−2,2] for which the Nevai condition fails for Lebesgue a.e. x0 ∈ [−2,2]!

Of course, (1.15) is associated with a positive Lyapunov exponent. One might
guess that a zero Lyapunov exponent implies (1.11). A main impetus for this paper
was our realization that this is not true! Recall that a measure on [−2,2] is called
regular if and only if lim(a1 · · ·an)

1/n = 1 (see Stahl–Totik [45] or Simon [40] for
reviews) and that regular measures have a zero Lyapunov exponent, that is, for quasi-
every (namely, outside, possibly, a set of zero logarithmic capacity) x0 ∈ [−2,2],

lim
n→∞

1

n
log
(∣∣pn(x0)

∣∣2 + ∣∣pn+1(x0)
∣∣2)1/2 = 0. (1.16)

In Sects. 4 and 5, we provide two examples of regular measures on [−2,2] for
which Nevai’s condition fails for Lebesgue a.e. x0 in ±(1,2). The example in Sect. 4
will be somewhat simpler but will have no a.c. spectrum, while that in Sect. 5 will
have pure a.c. spectrum on (−1,1).
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We also want to discuss extensions of Nevai’s theorem, Theorem 1.1. In this re-
gard, we should mention some beautiful work of Nevai–Totik–Zhang [34] and Zhang
[51] that already expanded this. The first paper proved uniform convergence on
[−2,2] with an elegant approach; this was extended in the second paper to (an, bn)

approaching a periodic limit. Somewhat earlier, Lubinsky–Nevai [26] had proven the
Nevai condition for this periodic limit case but only uniformly on compact subsets
of the interior of the spectrum. That paper also has results on subexponential growth
for some cases of measures that do not have compact support, a subject beyond the
scope of this paper. Still later, another proof for the periodic limit case was found by
Szwarc [48].

In the past four years, it has become clear that the proper analog of the Nevai
class for the periodic case is not approach to a fixed periodic element but approach
to an isospectral torus. We want to prove that one can do this not only in the periodic
case, but also on approach to the isospectral torus of, in general, almost periodic
Jacobi matrices that occurs in the general finite gap case. We will also study the
Nevai condition on the a.c. spectrum of ergodic Jacobi matrices and for the Fibonacci
model.

From what we have said so far, it appears to be a mixed verdict on the Nevai
condition, since we have results on when it occurs and also on when it doesn’t. But
we want to reinterpret the negative results. These all provide examples where it is not
true that the Nevai condition holds everywhere on the topological support of dρ or
even that it fails for Lebesgue a.e. x0 on the support. We believe it is likely that the
following more refined property could be true:

Conjecture 1.4 For any measure, dρ, with compact support, the Nevai condition
holds for dρ-a.e. x0 in supp(dρ).

Here is a summary of the contents of the rest of the paper. In Sect. 2, we prove
Theorem 1.2. In Sect. 3, we discuss cases with a positive Lyapunov exponent, includ-
ing a proof of Theorem 1.3. Sections 4 and 5 present the details of the examples of
regular measures where the Nevai condition fails for Lebesgue a.e. x0 in a particu-
lar open subset. Section 6 presents our version of the NTZ approach, as preparation
for our discussion of the finite gap Nevai class in Sect. 7. In Sect. 8, we will relate
(1.11) to the absence of �2 solutions of classical right limits and so recover the results
of Sect. 7 and even more (including Fibonacci models). The ideas of Sect. 8 seem
to be more generally applicable than Sect. 6, but the constants in Sect. 6 are more
explicit. Section 9 has some final remarks, including a discussion of Conjecture 1.4
and a second conjecture (Conjecture 9.5). Section 9 also notes that if 1

n
Kn(x0, x0)

has a nonzero limit, then the Nevai condition holds, and so links this to recent work
on that question. Thus, for those interested in ergodic Schrödinger operators, by the
end of this paper, we will have proven the Nevai condition in the Fibonacci model
uniformly on the spectrum and for ergodic models with a.c. spectrum, Lebesgue a.e.
on the essential support of the a.c. spectrum.

2 Subexponential Decay

We begin with the equivalence of (1.11), (1.12), (1.13), and more:
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Proposition 2.1 Let c0, c1, c2, . . . be a sequence of non-negative numbers and

Sn =
n∑

j=0

cj . (2.1)

Then the following are equivalent:

(i) cn/Sn → 0, (2.2)

(ii) Sn/Sn+1 → 1, (2.3)

(iii) cn+1/Sn → 0, (2.4)

(iv) (cn + cn+1)/Sn → 0, (2.5)

(v) (cn−1 + cn)/Sn → 0. (2.6)

Remarks 1. The relevance, of course, is to

cn = pn(x0)
2. (2.7)

2. If cn = en2
, cn/Sn → 1 and cn−1/Sn → 0, so (i) is not equivalent to cn−1/

Sn → 0.

Proof (i) ⇔ (ii). We have

Sn−1/Sn = 1 − cn/Sn, (2.8)

so

(i) ⇔ Sn−1/Sn → 1, (2.9)

which, by renumbering indices, is equivalent to (ii).
(ii) ⇔ (iii). We have

Sn+1/Sn = 1 + cn+1/Sn, (2.10)

from which (ii) is equivalent to (iii).
(iv) or (v) ⇒ (i). This is immediate, since for j = ±1,

0 ≤ cn/Sn ≤ (cn + cn+j )/Sn. (2.11)

(i) ⇒ (iv). This is immediate from (i) ⇒ (iii).
(i) ⇒ (v). Since (i) ⇒ Sn−1/Sn → 1, (i) ⇒ cn−1/Sn → 0, from which (v) is im-

mediate. �

Theorem 2.2 (⇒ Theorem 1.2) Suppose that (1.14) holds. Nevai’s condition is
equivalent to

∫
(x − x0)

2 dη(x0)
n (x) → 0, (2.12)

and (2.12) holds if and only if (1.11) holds.
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Proof By (1.8), (1.3), and the orthogonality of pn to pn+1,

∫
(x − x0)

2 dη(x0)
n (x) = a2

n+1[pn(x0)
2 + pn+1(x0)

2]
Kn(x0, x0)

. (2.13)

By (1.14) and (i) ⇔ (iv) in Proposition 2.1,

(2.12) ⇔ pn(x0)
2 + pn+1(x0)

2

Kn(x0, x0)
→ 0 ⇔ (1.11).

For measures, {νn}, all supported in a fixed compact, νn
w−→ δx0 ⇔∫

(x − x0)
2 dνn → 0. �

In the example in Remark 2 after Proposition 2.1, (cn−2 + cn−1)/Sn → 0 but (2.2)
fails. However, this cannot happen for the case cn = pn(x0). Note that if (1.14) holds,

∣∣pn(x0)
∣∣≤ A−1−

[
A+ + |x0| + sup

n
|bn|
] [∣∣pn−2(x0)

∣∣+ ∣∣pn−1(x0)
∣∣], (2.14)

since

pn(x0) = a−1
n

(
(x0 − bn)pn−1(x0) − an−1pn−2(x0)

)
. (2.15)

Also note the following obvious fact:

Proposition 2.3 Under the hypotheses and notation of Proposition 2.1, if there is a
constant K so that

cn ≤ K(cn−2 + cn−1), (2.16)

then (2.2) is equivalent to

cn−2 + cn−1

Sn

→ 0. (2.17)

3 Positive Lyapunov Exponent

We begin by proving a contrapositive of Theorem 1.3:

Proposition 3.1 If (1.11) holds, then

lim sup
n→∞

Kn(x0, x0)
1/n ≤ 1. (3.1)

So, in particular,

lim sup
n→∞
(∣∣pn(x0)

∣∣2 + ∣∣pn+1(x0)
∣∣2)1/n ≤ 1. (3.2)
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Proof Given ε, pick N so that for n ≥ N ,

|pn(x0)|2
Kn(x0, x0)

≤ ε. (3.3)

Then

Kn−1(x0, x0)

Kn(x0, x0)
≥ 1 − ε, (3.4)

so, for n ≥ N ,

Kn(x0, x0) ≤ (1 − ε)−1Kn−1(x0, x0), (3.5)

which implies

lim sup Kn(x0, x0)
1/n ≤ (1 − ε)−1. (3.6)

Since ε is arbitrary, (3.1) holds. Thus, since

(∣∣pn(x0)
∣∣2 + ∣∣pn+1(x0)

∣∣2)1/n ≤ Kn+1(x0, x0)
1/n, (3.7)

we get (3.2). �

Theorem 3.2 (≡ Theorem 1.3) (1.15) ⇒ not (1.11).

Proof As noted, this is a contrapositive of the last statement in Proposition 3.1. �

Recall that the transfer matrix at x0 is defined by

Tn(x0) = An(x0) · · ·A1(x0), (3.8)

Aj(x0) = 1

aj

(
x0 − bj −1

a2
j 0

)
, (3.9)

so det(Aj ) = det(Tn) = 1 and
(

pn(x0)

anpn−1(x0)

)
= Tn(x0)

(
1

0

)
. (3.10)

Recall also that one says the Lyapunov exponent exists if

γ (x0) = lim
n→∞

1

n
log
∥∥Tn(x0)

∥∥ (3.11)

exists. The Ruelle–Osceledec theorem (see, e.g., [39, Theorem 10.5.29]) says that if
γ (x0) > 0, then there is a one-dimensional subspace, V , of C

2, so u ∈ V \ {0} implies

lim
n→∞
∥∥Tn(x0)u

∥∥1/n = e−γ (x0), (3.12)

and if u ∈ C
2 \ V , then

lim
n→∞
∥∥Tn(x0)u

∥∥1/n = eγ (x0). (3.13)
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Thus:

Corollary 3.3 Let (1.14) hold. If γ (x0) > 0, then either x0 is a pure point of dρ,
namely, ρ({x0}) > 0, or else (1.11) fails.

Proof If (3.12) holds for u = ( 1
0

)
, then by (3.10), |pn(x0)| ≤ Ce−γ (x0)n/2, so pn ∈ �2,

and x0 is a pure point. So if x0 is not a pure point, then (3.13) holds, and since A− > 0,
(3.13) implies

lim
n→∞
(∣∣pn(x0)

∣∣2 + ∣∣pn+1(x0)
∣∣2)1/n = eγ (x0) > 1, (3.14)

and therefore (1.11) fails. �

Example 3.4 (Szwarc [47]) This example is mainly of historical interest. This is a
modification of [47] but uses the key notion of having an isolated point of σess(J ),
which is not an eigenvalue. We begin by noting that the whole-line Jacobi matrix,
J∞, with an ≡ 1, bn = 0 (n �= 0) and b0 = 3

2 has E = 5
2 (= 2 + 1

2 ) as an eigenvalue
with eigenfunction un = ( 1

2 )|n|, so σ(J∞) = [−2,2] ∪ { 5
2 }.

Now let J be the one-sided Jacobi matrix with an ≡ 1 and

bn =

⎧
⎪⎨

⎪⎩

β n = 1,
3
2 n = k2, k = 2,3, . . . ,

0 n �= k2 all k,

(3.15)

where β will be adjusted below.
Standard right-limit theorems (see, e.g., [22]) imply

σess(J ) = [−2,2] ∪
{

5

2

}
,

so, in particular, 5
2 ∈ σ(J ). Moreover, since the nonzero bn’s are of zero density, it is

easy to see that

γ

(
5

2

)
= log

(
spectral radius of

(
5
2 −1
1 0

))
= log(2), (3.16)

since
( 5

2 −1
1 0

)
has eigenvalues 2 and 1

2 .

It is easy to see that there is exactly one choice of β for which 5
2 is an eigenvalue

of J . For any other choice, Corollary 3.3 is applicable, and so the Nevai condition
fails at 5

2 ∈ σ(J ).

Example 3.5 Let an ≡ 1
2 and bn(ω) be i.i.d. random variables uniformly distributed in

[−1,1]. This is an Anderson model for which it is well known that for a.e. choice of
ω (see, e.g., [7]), the associated measure dρω has pure point spectrum filling [−2,2].
Moreover, for a.e. ω and quasi-every x0 ∈ [−2,2], one has a Lyapunov exponent
γ (x0) > 0. Since the set of eigenvalues is countable, for quasi-every x0 ∈ [−2,2],
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Corollary 3.3 is applicable. Thus, σ(Jω) = [−2,2], but for quasi-every x0 ∈ [−2,2],
the Nevai condition fails.

See Zygmunt [52] for some other examples.

4 A Regular Measure for Which the Nevai Condition Fails on a Set of Positive
Lebesgue Measure

Example 4.1 Let J be a Jacobi matrix with bn ≡ 0 and an described as follows.
Partition {1,2, . . . } into successive blocks A1,C1,A2,C2, . . . , where

#(Aj ) = 3j2
, #(Cj ) = 2j2

. (4.1)

On Aj , an ≡ 1 and on Cj , an ≡ 1
2 . Since the 3j2

blocks are much larger than the 2j2

blocks,

lim
n→∞ (a1 · · ·an)

1/n = 1, (4.2)

and since |an| ≤ 1, ‖J‖ ≤ 2, so σ(J ) ⊂ [−2,2]. Also, [−2,2] ⊂ σ(J ) can be seen
immediately by constructing approximate eigenvectors, supported in blocks where
an = 1, and using Weyl’s criterion [36, Theorem VII.12]. Thus, J is regular for
[−2,2], but, of course, not in Nevai class, since an � 1.

We will prove that:

Theorem 4.2 For the Jacobi matrix J , described above, the Nevai condition fails for
Lebesgue a.e. x0 ∈ [−2,2] \ [−1,1].

The intuition, which we will implement, goes as follows: For x0 in the speci-
fied set, in Aj regions, solutions of the eigenfunction equation are linear combina-
tions of plane waves. So in such regions, pn(x0) hardly grows or decays. In Cj re-
gions, they are linear combinations of growing and decaying exponentials, so usually,
the growing exponentials will win and the pn(x0) will grow exponentially. Cj+1 is
much bigger than Cj (indeed, #(Cj+1) = 2 × 4j #(Cj )), so at the center of Cj+1,
|pn(x0)|2 will be much bigger than

∑
k∈∪j

�=1(A�∪C�)∪Aj+1
|pk(x0)|2 and comparable

to
∑

k∈Cj+1
k≤n−1

|pk(x0)|2, which will prevent (1.11) from holding.

We will say more about the general strategy shortly, but we first implement the
initial step:

Proposition 4.3 Suppose for a given x0, there are C,D and α,β > 0 so that

(i) For all j and n ∈ Cj ∪ Aj+1,

∣∣pn(x0)
∣∣≤ Cj+1 exp

(
α2j2); (4.3)
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(ii) For all large j and nj , the “center” of Cj , we have

(∣∣pnj −1(x0)
∣∣2 + ∣∣pnj

(x0)
∣∣2)1/2 ≥ D−(j+1) exp

(
β2j2)

. (4.4)

Then (1.11) (and so the Nevai condition) fails at x0.

Remarks 1. In fact, the proof shows that (4.4) must only hold for infinitely many j ’s.
2. Since #(Cj ) is even, it does not have a strict center. By “center,” we mean one

half unit prior to the midpoint.

Proof Suppose (1.11) holds. Then, since (1.13) holds, for any ε > 0, there exists
N(ε), so for n ≥ N(ε),

∣∣pn+1(x0)
∣∣2 ≤ ε

n∑

k=1

∣∣pk(x0)
∣∣2, (4.5)

so
n+1∑

k=1

∣∣pk(x0)
∣∣2 ≤ (1 + ε)

n∑

k=1

∣∣pk(x0)
∣∣2, (4.6)

and thus, for n ≥ m ≥ N(ε),

∣∣pn−1(x0)
∣∣2 + ∣∣pn(x0)

∣∣2 ≤ (1 + ε)n−m
m∑

k=1

∣∣pk(x0)
∣∣2. (4.7)

Now, suppose Cj is such that its left-most point, mj + 1, has mj ≥ N(ε), and let
nj be the center of Cj . Then by (4.3),

mj∑

k=1

∣∣pk(x0)
∣∣2 ≤ C2j exp

(
2α2(j−1)2)

[
j∑

k=1

2k2 + 3k2

]
, (4.8)

and by (4.4),

∣∣pnj −1(x0)
∣∣2 + ∣∣pnj

(x0)
∣∣2 ≥ D−2(j+1) exp

(
2β2j2)

. (4.9)

Pick ε so that (1 + ε) ≤ e2β . Since nj − mj = 1
2 (2j2

), (4.7) says that as long as
m ≥ N(ε),

D−2(j+1) exp
(
2β2j2)≤ exp

(
β2j2)

C2j exp
(
2α2(j−1)2)(

2j3j2)
. (4.10)

Since 2β > β + 4 × 4−jα for j large, (4.10) cannot hold for large j . This contradic-
tion implies that (4.5) cannot hold for this value of ε, and thus, (1.11) fails. �

The upper bound, (4.3), will be easy from transfer matrix arguments. The lower
bound, (4.4), is much more subtle. Indeed, it implies that for any �, asymptotically
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|pnj
(x0)| ≥ n�

j . On the other hand, for a.e. x0 with respect to a spectral measure,
pn(x0) is polynomially bounded. Thus, (4.3) must fail for a dense set of x0’s! Fortu-
nately, this kind of problem has been faced before in spectral theory contexts, and we
will be able to borrow a technique from Jitomirskaya–Last [17]. We turn first to the
upper bound.

For x0 ∈ (−2,2) \ [−1,1], define θ(x0), η(x0) by

2 cos θ(x0) = x0, coshη(x0) = |x0|. (4.11)

Let Q(x0),R(x0) be the one-unit transfer matrices for bn ≡ 0, an ≡ 1 and bn ≡ 0,
an ≡ 1

2 . Then Q(x0) has e±iθ0 as eigenvalues, and R(x0) has eigenvalues e±η(x0) if
x0 > 0 and −e±η(x0) if x0 < 0. It follows that for some constants c(x0), d(x0),

∥∥Q(x0)
k
∥∥≤ c(x0), (4.12)

∥∥R(x0)
k
∥∥≤ d(x0)e

kη(x0), (4.13)

with c, d bounded uniformly on compacts of (−2,2)\[−1,1]. This lets us prove that:

Proposition 4.4 For any compact subset K of (−2,2) \ [−1,1], there are constants
C,α so that for all n, j and x0 ∈ K with n ∈ Cj ∪ Aj+1, we have

∥∥Tn(x0)
∥∥≤ Cj+1 exp

(
α2j2)

. (4.14)

Remark Since pn(x0) is a matrix element of Tn, we immediately have (4.3).

Proof For n ∈ Aj+1, Tn(x0) is a product of (j + 1) factors of products of Q(x0) and
j factors of products of R(x0). Thus, by (4.12) and (4.13),

∥∥T (x0)
∥∥≤ c(x0)

j+1d(x0)
j exp

(
η(x0)

j∑

�=1

2�2

)
. (4.15)

For n ∈ Cj , the estimate is similar, but c(x0)
j+1 is replaced by c(x0)

j and
∑j

�=1 2�2

by a smaller sum.
Since c, d , and η are bounded on K and

j∑

�=1

2�2 ≤ 2j2
[

1 + 1

2
+ 1

4
+ · · ·
]

= 2 × 2j2
, (4.16)

we obtain (4.14). �

To get the lower bound, following Jitomirskaya–Last [17], we need to consider
Weyl solutions and Green’s functions. For Im z > 0, there is a unique solution u+

n (z)

of

anun+1 + (bn − z)un + an−1un−1 = 0 (4.17)
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defined for n = 1,2, . . . (with a0 ≡ 1) which is �2 at infinity and normalized by

u+
0 (z) = −1. (4.18)

This is the Weyl solution. The spectral theorist’s Green’s function (different from the
Green’s function of potential theory!) is defined for n,m ≥ 1 by

Gnm(z) = 〈δn, (J − z)−1δm

〉
. (4.19)

Then Gnm = Gmn and, for 1 ≤ n ≤ m,

Gnm(z) = pn−1(z)u
+
m(z). (4.20)

As usual, the Wronskian is constant and, by a0 ≡ 1 and (4.18) plus p−1 = 0,
p0 = 1, this constant is 1. So for all n = 0,1,2, . . . ,

an

(
u+

n+1(z)pn−1(z) − u+
n (z)pn(z)

)= 1. (4.21)

By (4.19), Gnm is the Borel transform of a signed measure, and so for Lebesgue
a.e. x0, it has boundary values Gnm(x0 + i0). In particular, since p0 = 1, u+

n = G1n

has a.e. boundary values, u+
n (x0 +i0). Also (4.20) and (4.21) still hold for z = x0 +i0.

In particular, for our example where an is 1 or 1
2 , (4.21) and the Schwarz inequality

imply that

(
pn(x0)

2 + pn−1(x0)
2)≥ (∣∣u+

n+1(x0 + i0)
∣∣2 + ∣∣u+

n (x0 + i0)
∣∣2)−1

. (4.22)

To get an exponentially growing lower bound on pn(x0)
2 +pn−1(x0)

2, we only need
to get an exponentially decaying upper bound on |u+

n (x0 + i0)| and |u+
n+1(x0 + i0)|.

Now fix 1 < k < � < ∞ and define J̃ to be the Jacobi matrix obtained by replacing
ak and a� by 0. Thus, under

�2({1,2, . . . })= �2({1, . . . , k})⊕ �2({k + 1, . . . , �})

⊕ �2({� + 1, � + 2, . . . , }), (4.23)

J̃ = JL ⊕ JM ⊕ JR (4.24)

(L,M,R for left, middle, right).

Proposition 4.5 Let G̃ be the Green’s function for J̃ . Let

k + 1 ≤ n ≤ �. (4.25)

Then

G1n = −akG1kG̃k+1n − a�G1�+1G̃�n. (4.26)

Proof Define

Γ = J − J̃ . (4.27)
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Then

(J − z)−1 = (J̃ − z)−1 − (J − z)−1Γ (J̃ − z)−1, (4.28)

so

G1n = G̃1n −
∑

m,r

G1mΓmrG̃rn. (4.29)

Since 1 and n lie in different blocks in the direct sum (4.24), G̃1n = 0. Γ is a rank
four operator; since G̃kn = G̃�+1n = 0, two terms in the sum in (4.29) vanish. The
result is (4.26). �

Proposition 4.6 Let J (k) be the k × k matrix with 0’s on the diagonal and 1
2 in each

of the two principal off-diagonals. Let G(k)(z) be the matrix (J (k) − z)−1. Then for
x0 /∈ [−1,1] and m ≤ n,

G(k)
mn(x0) = 2(w−m − wm)(w−(k+1−n) − w(k+1−n))

(w−1 − w)(w−(k+1) − w(k+1))
, (4.30)

where |w| > 1 and solves

w−1 + w = 2x0. (4.31)

In particular, for any compact K ∈ (−2,2) \ [−1,1], there are γ > 0 and C so that
for all x0 ∈ K and all k = 2r ,

∣∣G(2r)
1n (x0)

∣∣≤ Ce−γ r (4.32)

for

n = r, r − 1. (4.33)

Proof Since wn and w−n solve

1

2
(un+1 + un−1) = x0un, (4.34)

w−n − wn solves (4.34) with u0 = 0 boundary condition, while w−(k+1−n) −
w(k+1−n) solves it with uk+1 = 0 boundary condition. The numerator in (4.30) is
twice their product, and the denominator twice their Wronskian, proving (4.30). Then
(4.32) follows by noting that the dominant term in the numerator is wr , while in the
denominator, w2r . �

Thus, in (4.26), where k + 1 and � are taken to be the edge of a Cj block and n to
be the center or one less, the G̃ terms are exponentially small. We thus need estimates
on the set of x0 for which G1k(x0) can be large. Here we recall Loomis’s theorem:

Theorem 4.7 (Loomis [23]) Let μ be a complex measure on R of finite total variation
‖μ‖. Let

Fμ(x) = lim
ε↓0

∫
dμ(y)

y − (x + iε)
, (4.35)
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which exists for Lebesgue a.e. x. Then with | · | = Lebesgue measure,

∣∣{x | ∣∣Fμ(x)
∣∣> M

}∣∣≤ C‖μ‖
M

(4.36)

for a universal constant C.

Remarks 1. The history is complicated and is partly described in Loomis [23]. The
result for measures μ that are absolutely continuous is due earlier to Kolmogorov.

2. For dμ = f (x)dx with f ∈ L1, the optimal constant was found by Davis [12].
For purely singular positive measures, the result is essentially due to Boole [2] with
constant C = 2, which is optimal—indeed, one has equality.

3. In [17], they only used Boole’s equality, since their measure is purely singular.
That is true here also, but not in the next section. In any event, it is useful to know
that pure singularity is not needed a priori, although it follows on [−2,2] \ [−1,1]
from the estimates here.

Proposition 4.8 Let n1 < n2 < · · · be an arbitrary sequence of indices. Let δ > 0.
Then for a.e. x0 ∈ R, ∃J (x0), so that

j > J(x0) ⇒ ∣∣G1nj
(x0 + i0)

∣∣≤ eδj . (4.37)

Proof This is a standard Borel–Cantelli argument. Let χj be the characteristic func-
tion of {x0 | |G1nj

(x0)| > eδj }. Since G1nj
(x0 +i0) is of the form (4.35) for a measure

of variation at most 1,
∫

χj (x) dx ≤ Ce−δj . (4.38)

Thus,
∫ ∞∑

j=1

χj (x) dx < ∞, (4.39)

which implies that for a.e. x0,
∑∞

j=1 χj (x0) < ∞. Since each χj (x0) is 0 or 1, only
finitely many are nonzero, that is, for all large j , (4.37) holds. �

Proof of Theorem 4.2 By Propositions 4.3 and 4.4, we only need to prove that (4.4)
holds for Lebesgue a.e. x0. By (4.22), it suffices to prove exponentially decaying
upper bounds on u+

nj
, u+

nj +1 (for the same nj as (4.4)). As noted, u+
n = G1n, so it

suffices to prove exponentially decaying upper bounds on G1nj
,G1nj +1.

We use (4.26) with k, � the lower and upper edge of the Cj block. By Proposi-
tion 4.6,

|G̃k+1nj
| + |G̃k+1nj +1| + |G̃�nj

| + |G̃�nj +1| ≤ C exp
(−γ 2j2)

(4.40)

for some γ > 0.
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Thus, the result follows from Proposition 4.8, for eventually each of the com-
plementary Green’s functions in (4.26) is bounded by exp( 1

2γj) ≤ exp( 1
2γ 2j2

), and
(4.4) holds with β = 1

2γ . �

Finally, we want to note that J has a two-sided right limit which has an = 1
2 for

n ≤ −1 and an = 1 for n ≥ 0. There is no set of positive Lebesgue measures on which
J is reflectionless, so, by a theorem of Remling [37], J has purely singular spectrum.

5 A Regular Measure with Some A.C. Spectrum

As we noted at the end of the last section, Example 4.1 has no a.c. spectrum. Of
course, if Conjecture 1.4 is true, then Lebesgue a.e. on the a.c. spectrum, the Nevai
condition holds. So an example like Example 4.1 cannot have a.c. spectrum on
[−2,2] \ [−1,1], but it can on [−1,1]. The example in this section shows that a.c.
spectrum is indeed possible on [−1,1].

Example 5.1 Let J be a Jacobi matrix with bn ≡ 0 and an described as follows:
Partition {1,2, . . . } into successive blocks A1,B1,C1,D1,A2,B2, . . . , where

#(Aj ) = 3j2
, #(Cj ) = 2j2

, #(Bj ) = #(Dj ) = j6 − 1. (5.1)

On Aj , an ≡ 1; on Cj , an ≡ 1
2 ; and on Bj and Dj , log(a2

n) linearly interpolates from
log( 1

4 ) to log(1); that is, for n ∈ Bj ,

a2
n

a2
n−1

= cj , (5.2)

and for n ∈ Dj ,

a2
n−1

a2
n

= cj , (5.3)

where

c
j6

j = 1

4
, (5.4)

so that

1 − cj = kj−6 + o
(
j−6) (5.5)

for a suitable nonzero constant k. In particular,

|1 − cj | ≤ E0j
−6 (5.6)

for some E0.

As in Example 4.1, this J is regular with spectrum [−2,2]. We will prove that:
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Theorem 5.2 On [−2,2]\ [−1,1], J has purely singular spectrum and for Lebesgue
a.e. x0 in this set, the Nevai condition fails. On (−1,1), J has purely a.c. spectrum,
and for all x0 ∈ (−1,1), the Nevai condition holds uniformly on compact subsets.

The technical key to the new elements of this example is:

Theorem 5.3 For x0 ∈ (−1,1), let un(x0, θ0) be the solution of (4.17) (with a0 ≡ 1
and z = x0) for n = 1,2, . . . , with

u0 = cos θ0, u1 = sin θ0. (5.7)

Then for any compact set K ⊂ (−1,1), there is a constant, C, so that for all x0 ∈ K ,
all θ0 and all n,

∣∣un(x0, θ0)
∣∣≤ C. (5.8)

Proof of Theorem 5.2 given Theorem 5.3 J has as one of its right limits Jr , the two-
sided matrix with bn ≡ 0, an ≡ 1

2 whose a.c. spectrum is Σac(Jr) = [−1,1]. By a
theorem of Last–Simon [21], Σac(J ) ⊂ [−1,1], so J has purely singular spectrum on
[−2,2] \ [−1,1]. The results on this set for the Nevai condition follow the arguments
in Sect. 4 without change.

Theorem 5.3 implies that the transfer matrix Tn(x0) is uniformly bounded in n and
x0 ∈ K ⊂ (−1,1) compact. Carmona’s formula (see, e.g., [39, Theorem 10.7.5]; also
[4, 21, 38, 41]) then implies the spectrum is purely a.c. on (−1,1).

The fact that the transfer matrix is bounded also implies pn(x0)
2 bounded above,

and, given constancy of the Wronskian (i.e., det(Tn) = 1), uniform lower bounds on
pn(x0)

2 + pn+1(x0)
2. Thus, on (−1,1),

pn(x0)
2

∑n
j=0 pj (x0)2

≤ C

n
→ 0, (5.9)

proving (1.11). �

The situation we need to control for Theorem 5.3 has much in common with
those studied by Kiselev–Last–Simon [19], and their techniques will work here. We
note that in our situation,

∑
n(an+1 − an)

2 + (bn+1 − bn)
2 < ∞, a general condition

studied recently by Denisov [13] but under the additional assumptions that an ≡ 1,
bn → 0. It would be interesting to see if one can extend his ideas to this context (see
Conjecture 9.5 and the discussion following it below).

We depend on the EFGP transform, as does [19], but we need to allow modification
for our case where an is not identically one, as it is in [19]. Since bn ≡ 0 for us, we
state the equations for that case. One defines Rn, θn by

Rn sin(θn) = anun sin(kn), (5.10)

Rn cos(θn) = an

(
un+1 − un cos(kn)

)
, (5.11)
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where kn is given by

2 cos(kn) = x0

an

. (5.12)

We note, since an ≥ 1
2 and supx0∈K |x0| < 1, that uniformly for x0 ∈ K and all n,

ε ≤ kn ≤ π − ε (5.13)

for some ε > 0 (depending on K).
As in [19], straightforward manipulations of the eigenfunction equation show

(4.17) is equivalent to

R2
n+1

R2
n

= 1 + (a2
n+1 − a2

n

) sin2(θn + kn)

a2
n sin2(kn)

, (5.14)

cot(θn+1) = an

an+1

sin(kn)

sin(kn+1)
cot(θn + kn). (5.15)

R1 and θ1 are functions of θ0 (given a1 = a2 = 1), and R1 is, for x0 ∈ K , uniformly
bounded above and below. Moreover, by (5.10) and (5.13), for C depending only
on K ,

|un| ≤ CRn. (5.16)

Define

Xn = (a2
n+1 − a2

n) sin2(θn + kn)

a2
n sin2(kn)

. (5.17)

By Lemma 3.5 of [19] and supn|Xn| < ∞, it suffices to prove that

sup
N

∣∣∣∣∣

N∑

j=1

Xj

∣∣∣∣∣< ∞. (5.18)

Define B̃j , D̃j by adding to Bj ,Dj the index one before (i.e., the top index of Aj

and Cj ). Then Xn is only nonzero on
⋃

j (B̃j ∪ D̃j ). On B̃j ∪ D̃j , by (5.2), (5.3), and
(5.6),

|Xn| ≤ E(x0)j
−6, (5.19)

where

E(x0) = E0 sup
n

1

sin2(kn)
(5.20)

is bounded above on K by (5.13). Theorem 5.3 is reduced to proving

sup
N

∣∣∣∣∣

N∑

n=1

Xn

∣∣∣∣∣< ∞ (5.21)

uniformly in θ1 and x0 ∈ K .
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Next, we note that one can write

Xn = X�
n + X̃n (5.22)

using

sin2(θn + kn) = 1

2

(
1 − cos

(
2(θn + kn)

))
. (5.23)

The X
�
n terms are independent of θn, and there is a symmetry between points in B̃j

and D̃j which, given the opposite signs of 1 − a2
n/a

2
n+1, causes a partial cancellation,

that is, since c−1
j − cj = O(j−6),

∑

n∈B̃j

X�
n +
∑

n∈D̃j

X�
n = O

(
j−6). (5.24)

Moreover,
∑

n∈B̃j

∣∣X�
n

∣∣≤ E(x0). (5.25)

These together (plus the approximate cancellation) imply

sup
N

∣∣∣∣∣

N∑

n=1

X�
n

∣∣∣∣∣≤ E(x0) + O

(∑
j−6
)

, (5.26)

so we have reduced the proof of (5.21), and so of Theorem 5.3, to proving

sup
N

∣∣∣∣∣

N∑

n=1

X̃n

∣∣∣∣∣< ∞ (5.27)

uniformly in θ1 and x0 ∈ K .
We want to use cancellations of sums of cosines—more explicitly, that sums of M

cosines with suitably varying phase are of order 1, not M . Here is what we need:

Lemma 5.4 For any q ∈ (0,2π), any θ , and M ,
∣∣∣∣∣

M∑

�=1

cos(q� + θ)

∣∣∣∣∣≤
[

sin

(
q

2

)]−1

. (5.28)

Proof Since cos(ψ) = Re(eiψ), it suffices to prove this if cos(q� + θ) is replaced by
ei(q�+θ). By summing a geometric series,

∣∣∣∣∣

M∑

�=1

ei(q�+θ)

∣∣∣∣∣ =
∣∣∣∣
ei[(M+1)q+θ] − ei[q+θ]

eiq − 1

∣∣∣∣

≤ 2

2|(eiq/2 − e−iq/2)/2| = 1

sin(
q
2 )

. �
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In cos(θn + kn), both kn and θn are n-dependent. But over sub-blocks small com-
pared to j6, kn is close to constant, and θn+1 − θn is close to constant. Thus, we break

B̃j and D̃j into j4 blocks, each with j2 members, call them {B̃j,�}j
4

�=1 and {D̃j,�}j
4

�=1.
For any n in some B̃j or D̃j , let βn be the first element of the sub-block containing n

and

κn = kβn .

Clearly, with constants uniformly bounded over K (below, C will stand for a generic
constant bounded on any compact K ⊂ (−1,1)),

|n − βn| ≤ Cj2, (5.29)

|kn − κn| ≤ Cj−4. (5.30)

Note that (5.30) comes from the fact that over a sub-block, an changes by at most
j2O(j−6).

In (5.15), the ratio of a’s is 1 plus an error of order j−6, so given that arc cot has
bounded derivatives,

∣∣θn+1 − (θn + kn)
∣∣≤ Cj−6, (5.31)

and so,

|θn+1 − θn − κn| ≤ Cj−4. (5.32)

This implies that if

θ̃n = θβn + (n − βn)κn, (5.33)

then

|θn − θ̃n| ≤ Cj−2. (5.34)

Define Yn to be X̃n with cos(2(θn + kn)) replaced by cos(2(θ̃n + κn)) and a2
n sin2(kn)

by a2
βn

sin2(κn). By (5.30) and (5.34) (since a2
n+1 − a2

n ∼ j−6), on B̃j ∪ D̃j ,

|Yn − X̃n| ≤ Cj−8 (5.35)

and
∑

n∈B̃j ∪D̃j

|Yn − X̃n| ≤ Cj−2,

which is summable in j . Thus, to prove (5.27), we need

sup
N

∣∣∣∣∣

N∑

n=1

Yn

∣∣∣∣∣< ∞ (5.36)

uniformly in θ1 and K .

Proof of Theorem 5.3 As noted, we are reduced to proving (5.36). Now {1, . . . ,N}
can be broken into sums over 0 (i.e., Aj and Cj , except for their final indices), sums



Constr Approx (2010) 32: 221–254 241

over some number of sub-blocks, and one further partial sub-block. Summing over a
single sub-block is, by Lemma 5.4 (given that, by (5.13), 2κn is bounded away from
0 and 2π ), bounded by Cj−6 (from the fact that a2

n+1 − a2
n ∼ j−6). Since there are

2j4 sub-blocks in B̃j ∪ D̃j , we see that

∣∣∣∣∣

N∑

n=1

Yn

∣∣∣∣∣≤
∑

j

(
2j4)(Cj−6)< ∞.

�

6 The NTZ Argument

Here we begin with the key lemma of Nevai–Totik–Zhang [34] and apply it to extend
the result of Zhang [51] to allow approach to an isospectral torus.

Proposition 6.1 [34] For any positive r , any θ,ϕ ∈ [0,2π], and L,

12

L

L−1∑

j=0

∣∣1 − rei(jθ+ϕ)
∣∣2 ≥ ∣∣1 − reiϕ

∣∣2. (6.1)

Remarks 1. The authors of [34] allow general p > 0 where we take p = 2; but for
p = 2, their constant is 32, not 12.

2. We include a proof at the end of this section for the reader’s convenience and
because we want to emphasize the concepts in the context of what we cannot do in
the next section.

3. For θ not near 0 or 2π , the idea behind a bound of this form is the same as the
idea behind Lemma 5.4. As θ → 0 or 2π , for this argument to work, the constant 12
has to be replaced by larger and larger numbers. The idea for small θ is instead to use
the fact that enough terms need to be close to the initial one.

Corollary 6.2 [51] Let A be a 2 × 2 matrix with

det(A) = 1,
∣∣Tr(A)

∣∣≤ 2. (6.2)

Then for any vector v ∈ C
2 (with v = (v1, v2) the components of v),

∣∣(AL−1v
)

1

∣∣2 ≤ 12

L

L−1∑

j=0

∣∣(Ajv
)

1

∣∣2. (6.3)

Proof If A obeys (6.2), so does B = A−1, and if w = AL−1v, (6.3) is equivalent to

|w1|2 ≤ 12

L

L−1∑

j=0

∣∣(Bjw
)

1

∣∣2, (6.4)

so we need only prove (6.4).
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Any B obeying (6.2) is a limit of B’s with |Tr(B)| < 2, so we can suppose

det(B) = 1,
∣∣Tr(B)

∣∣< 2. (6.5)

In that case, B is diagonalizable and has eigenvalue e±iθ with 2 cos(θ) = Tr(B).
In particular, for any v,

(
B�v
)

1 = αei�θ + βe−i�θ (6.6)

for some α,β . By replacing θ by −θ , we can suppose α �= 0 (if α = β = 0, (6.4)
is trivial!). Write −β/α = re−iϕ . Then (6.4) is equivalent to (after multiplying by
|α|−2)

∣∣1 − re−iϕ
∣∣2 ≤ 12

L

L−1∑

j=0

∣∣1 − re−i(2jθ+ϕ)
∣∣2, (6.7)

which, after a change of names of θ,ϕ, is (6.1). �

Recall that if {an, bn}∞n=1 are Jacobi parameters, a two-sided set {a(r)
n , b

(r)
n }∞n=−∞

is called a right limit if for some mj → ∞ and all n = 0,±1, . . . ,

amj +n → a(r)
n , bmj +n → b(r)

n . (6.8)

If supn(|an| + |bn|) < ∞, there are right limits by compactness and, indeed, any
sequence mk has a subsequence defining a right limit. Right limits are described in
[44, Chap. 7] and references quoted there.

Any finite gap set

e = [α1, β1] ∪ · · · ∪ [α�+1, β�+1] (6.9)

with

α1 < β1 < α2 < β2 < · · · < β�+1 (6.10)

defines an �-dimensional isospectral torus, Te, of almost periodic two-sided Jacobi
matrices, J , with σ(J ) = e. The torus Te can be defined using minimal Herglotz
functions [44, Chap. 5] or reflectionless requirements [44, Chap. 7]. If ρe is the po-
tential theoretic equilibrium measure for e (see, e.g., [40, 45]), we say e is “periodic”
if and only if each ρe([αj ,βj ]) is rational; equivalently, all J ∈ Te have a common
period p.

The Nevai class for e is defined to be those one-sided J ’s whose right limits are
all in Te. For e = [−2,2], Te has a single point (with period 1!) and the Nevai class
for e is the usual Nevai class.

Theorem 6.3 If J lies in the Nevai class for a periodic e, then the Nevai condition
holds uniformly for J on e.

Remark If J has a single p element orbit, J (r) ∈ Te, as right limits (i.e., J is asymp-
totically periodic); this is a result of [48, 51].
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Proof Let p be the period of e. We will prove that for any xn ∈ e and any L, we have

lim sup
n→∞

|pn(xn)|2∑n
j=n−pL|pj (xn)|2 ≤ 12

L
, (6.11)

from which

lim sup
n→∞

|pn(xn)|2∑n
j=0|pj (xn)|2 = 0, (6.12)

proving the claimed uniform Nevai condition.
Without loss, we can pass to a subsequence so that xn → x∞; the ratio in (6.11)

still converges to the lim sup; an+k → a
(r)
k , bn+k → b

(r)
k for some periodic right limit;

and (pn(xn),pn(xn−1))/‖(pn(xn),pn−1(xn−1))‖ has a limit in C
2.

The transfer matrix over p units starting at 0 for that x∞ is a matrix A obeying
(6.2). So, by (6.3),

lim sup
n→∞

|pn(xn)|2∑L−1
j=0 |pn−jp(xn)|2

≤ 12

L
, (6.13)

which implies (6.11). �

We turn to the proof of Proposition 6.1. Without loss, we can (by taking complex
conjugates) suppose

0 < θ ≤ π (6.14)

(since θ = 0 is trivial). There are three cases to consider:

Case 1 L ≤ 12, which is trivial.
Case 2

θL ≥ 2π, L ≥ 13. (6.15)

Case 3

θL < 2π. (6.16)

Proof of Proposition 6.1 Consider Case 2 first, expanding

L−1∑

j=0

∣∣1 − rei(jθ+ϕ)
∣∣2 = L

(
1 + r2)− 2r Re[X], (6.17)

where

X = ei(Lθ+ϕ) − eiϕ

eiθ − 1
, (6.18)

so

|X| ≤ 1
1
2 |1 − eiθ | = 1

|sin( θ
2 )| ≤ π

θ
, (6.19)
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since

inf
0≤y≤π

[
sin(

y
2 )

y

]
= 1

π
. (6.20)

By (6.15), π/θ ≤ L/2, so by (6.17),

LHS of (6.1) ≥ L
(
1 + r2)− Lr ≥ L

2

(
1 + r2)> 6

(
1 + r2) (6.21)

(since L > 12). Clearly,

RHS of (6.1) ≤ |1 + r|2 ≤ 2
(
1 + r2), (6.22)

so (6.1) holds in Case 2.
That leaves Case 3. We will consider ϕ < 0 (ϕ > 0 is even easier). Consider the L

points

T = {ϕ + jθ}L−1
j=0 . (6.23)

Since Lθ < 2π , they do not make it back around the circle. Consider the three
sets: S1 = {η | ϕ ≤ η <

ϕ
2 }, S2 = {ϕ

2 ≤ η < 0}, and S3 = {0 ≤ η < −ϕ
2 }. Clearly,

#(S1 ∩ T ) ≥ max(#(S2 ∩ T ),#(S3 ∩ T )), so at most two-thirds of the points in T lie
in S2 ∪ S3.

By the lemma below, if η ∈ T \ (S2 ∪ S3),

∣∣1 − reiη
∣∣2 ≥ 1

4

∣∣1 − reiϕ
∣∣2, (6.24)

so

LHS of (6.1) ≥ L

3

(
12

L

)
1

4

∣∣1 − reiϕ
∣∣2 = RHS of (6.1). �

Lemma 6.4

inf
π≥|η|≥| ϕ

2 |
0<r

|1 − reiη|
|1 − reiϕ | ≥ 1

2
. (6.25)

Proof Note that |1 − reiη|/|1 − reiϕ | is invariant under r → r−1, so we can suppose
0 < r ≤ 1. Moreover, |1 − reiη| is invariant under η → −η and increasing in η for
0 < η < π , so the inf occurs at η = ϕ

2 .
A straightforward calculation shows |1 − reiϕ/2|/|1 − reiϕ | is decreasing

in r in r ∈ (0,1], so the inf is |1 − eiϕ/2|/|1 − eiϕ | = |sin(
ϕ
4 )|/|sin(

ϕ
2 )| =

1/|2 cos(ϕ
4 )| ≥ 1

2 . �

7 The Nevai Class of a General Finite Gap Set

In this section, we will discuss the extension of Theorem 6.3 to general finite gap
sets. We will only be able to prove the weaker result that the Nevai condition holds
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uniformly on compact subsets of eint. In the next section, using different methods, we
will prove the result uniformly on all of e.

We begin by noting the following abstraction of the argument we used in the proof
of Theorem 6.3:

Proposition 7.1 Let J be a half-line Jacobi matrix, and let R be the set of its right
limits. Let K ⊂ R be a compact set. For v ∈ C

2 and J (r) ∈ R, let un(v, J (r), z) solve

a(r)
n un+1 + b(r)

n un + a
(r)
n−1un−1 = zun (7.1)

with

(u0, u1) = (v1, v2). (7.2)

Suppose that for all ε, there is N so that for all unit vectors v ∈ C
2, all J (r) ∈ R, all

x0 ∈ K , and all n > N ,

|un(v, J (r), x0)|2∑n
j=0|uj (v, J (r), x0)|2 ≤ ε. (7.3)

Then J obeys the Nevai condition uniformly on K .

Proposition 7.2 Let J be a half-line Jacobi matrix obeying (1.14), and let R be the
set of its right limits. Suppose that there is a compact subset K ⊂ R such that for
each x0 ∈ K and J (r) ∈ R, there is a solution u+

n (J (r), x0) of (7.1) (with z = x0) so
that

(i) sup
n,x0,J

(r)

∣∣u+
n

(
J (r), x0

)∣∣< ∞, (7.4)

(ii) inf
x0,J

(r)
a

(r)
0

∣∣u+
1 u+

0 − u+
1 u+

0

∣∣> 0. (7.5)

Then the Nevai condition holds for J uniformly on K .

Remark These are very strong conditions, but they hold in the finite gap case.

Proof Define

Un(J
(r), x0) = 1

d(J (r), x0)

(
u+

n+1 u+
n+1

a
(r)
n u+

n a
(r)
n u+

n

)
, (7.6)

where d(J (r), x0) is a square root of

a(r)
n

(
u+

n+1 u+
n − u+

n+1 u+
n

)
, (7.7)

which is n-independent. Then Un is uniformly bounded in x0 ∈ K , J (r) ∈ R, n by
(7.4)/(7.5) and has determinant 1, so the same is true of U−1

n .
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Moreover, the transfer matrix for J (r) is

Tn = UnU
−1
0 , (7.8)

so it is bounded in n,J (r), x, and has a bounded inverse. This shows

∣∣un

(
v,J (r), x0

)∣∣2 + ∣∣un+1
(
v,J (r), x0

)∣∣2 (7.9)

is uniformly bounded above and below as v runs through unit vectors.
The ratio in (7.3) is thus uniformly bounded by c/n, so Proposition 7.1 is applica-

ble. �

Theorem 7.3 If J lies in the Nevai class for a finite gap set e, then the Nevai condition
holds uniformly on compact subsets of eint.

Proof In [6] (see also [44, Chap. 9]), Jost solutions are constructed on the isospectral
torus, Te, that obey (7.4)/(7.5). �

8 Absence of Pure Points in Right Limits

In this section, we want to note and apply the following:

Theorem 8.1 Let J be a bounded half-line Jacobi matrix with (1.14), and let R be
the set of its right limits. Let Ξ be the set of x0 ∈ R so that for every J (r) ∈ R and
every nonzero solution un of (7.1) with z = x0, we have

0∑

n=−∞
|un|2 = ∞. (8.1)

Then

(i) The Nevai condition holds uniformly on any compact subset of Ξ .
(ii) If Ξ contains σess(J ), then the Nevai condition holds uniformly on σ(J ).

We will provide a proof below. We first discuss some consequences.

Theorem 8.2 If J lies in the Nevai class for a finite gap set e, then the Nevai condition
holds uniformly on σ(J ).

Proof In [6] (see also [44, Chap. 9]), it is proven that for any J (r) in the isospec-
tral torus, Te, and any x0 ∈ eint, every solution is almost periodic; and for x0 ∈
{αj ,βj }�+1

j=1, every solution is the sum of an almost periodic function and n times
an almost periodic function. Nonzero almost periodic functions obey (8.1) and
σess(J ) = e, so Theorem 8.1 is applicable. �
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There is a class of whole-line stochastic Jacobi matrices called subshifts, with
work reviewed in [8]. The most famous is the Fibonacci model which has (χI =
characteristic function of the set I )

an ≡ 1, bn ≡ χ[1−α,1]
(
(nα + θ)mod 1

)
,

where α = 1
2 (

√
5 − 1) and θ is a parameter (e.g., 0). The name comes from the fact

that the transfer matrix, Tn, has special properties when n is a Fibonacci number.
Damanik–Lenz [9] showed that there are no solutions �2 at −∞ for any θ and any x0
in the spectrum, and it is not hard to see the right limits for any half-line Fibonacci
problem are again Fibonacci models or such models modified at a single site. Thus,
Theorem 8.1 is applicable, and:

Theorem 8.3 Any Fibonacci model restricted to a half line obeys the Nevai condition
uniformly on the spectrum.

Remark Results of Damanik–Killip–Lenz [11] allow extension of this to general
Sturmian models.

Theorem 8.1 was motivated by our trying to understand Szwarc [48]. He noted
that one could use results of Nevai [32] on weak limits of the measure

∑

j

pn(x
(n+1)
j )2

∑n
k=0 pk(x

(n+1)
j )2

δ
x

(n+1)
j

, (8.2)

where x
(n+1)
j are the solutions of

pn+1
(
x

(n+1)
j

)= 0, (8.3)

that is, the ratios in (1.11) are weights in some natural measures. Thus, a failure of
(1.11) should imply a suitable half-line limit has a pure point, and that is what is
forbidden by (8.1). We begin with:

Lemma 8.4 Let Jn;F be the n×n truncated Jacobi matrix. Then the spectral measure

of Jn+1;F and vector δn+1 is (8.2), where the x
(n+1)
j solve (8.3).

Proof It is well known (see [44]) that

det(x − Jn+1;F ) = Pn+1(x), (8.4)

so the eigenvalues are the solutions of (8.3). The unnormalized eigenvector for x
(n+1)
j

is (v1, . . . , vn+1)
T , where

vk = pk−1
(
x

(n+1)
j

)
, (8.5)

so (8.2) has the squares of the normalized components for δn+1. �
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Lemma 8.5 Let J
(n)
F be a family of mn × mn finite Jacobi matrices with coefficients

associated to {a(n)
j }mn−1

j=1 ∪ {b(n)
j }mn

j=1. Suppose

(i) mn → ∞,
(ii)

sup
j,n

∣∣a(n)
j

∣∣+ ∣∣b(n)
j

∣∣< ∞, (8.6)

(iii) for each fixed j ,

a
(n)
j → a

(∞)
j , b

(n)
j → b

(∞)
j . (8.7)

Let J (∞) be the infinite Jacobi matrix with parameters {a(∞)
j , b

(∞)
j }∞j=1. Let dρ(n) be

the spectral measure for J
(n)
F and δ1, and dρ(∞) for J (∞) and δ1. Then

w-lim
n→∞ dρ(n) = dρ(∞). (8.8)

Remark This generalizes Theorem 3 in [32, p. 17].

Proof Extend J
(n)
F to an infinite matrix by setting all other matrix elements to 0. Then

(8.6) implies that

sup
n

∥∥J (n)
F

∥∥< ∞, (8.9)

and (8.7) implies that for any finite support vector, v,

∥∥(J (n)
F − J (∞)

)
v
∥∥→ 0. (8.10)

It follows that

s-lim J
(n)
F = J (∞). (8.11)

So, by (8.9),

s-lim
(
J

(n)
F

)k = (J (∞)
)k (8.12)

for all k. Thus,

lim
〈
δ1,
(
J

(n)
F

)k
δ1
〉= 〈δ1,

(
J (∞)
)k

δ1
〉
, (8.13)

so

lim
∫

xk dρ(n) =
∫

xk dρ(∞), (8.14)

from which (8.8) follows. �

Proof of Theorem 8.1 Let K̃ be a compact subset of Ξ . If (1.11) does not hold uni-
formly, we can find n(j) → ∞, xj ∈ K̃ , and ε > 0 so that for all j ,

pn(j)(xj )
2

∑n(j)

k=0 pk(xj )2
≥ ε. (8.15)
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By passing to a subsequence, we can suppose

xj → x∞ ∈ K̃. (8.16)

Notice that (8.15) implies

pn(j)−1(xj )
2 ≤

n(j)∑

k=0

pk(xj )
2 ≤ ε−1pn(j)(xj )

2. (8.17)

Define b̃n(j)+1 by

an(j)pn(j)−1(xj ) + (b̃n(j)+1 − xj )pn(j)(xj ) = 0. (8.18)

Thus, for the OPs with Jacobi parameters (a1, . . . , an(j)), (b1, . . . , bn(j), b̃n(j)+1), we
have

p̃n(j)+1(xj ) = 0. (8.19)

Moreover, by (8.18) and (8.17),

lim sup |b̃n(j)+1| ≤ ε−1/2 sup
k

|ak| + sup
k

|xk| (8.20)

is finite.
Let J

(j)
F be the Jacobi matrix which is (n(j)+ 1)× (n(j)+ 1) with an(j), an(j)−1,

. . . , a1 off diagonal and b̃n(j)+1 − xj + x∞, bn(j) − xj + x∞, . . . , b1 − xj + x∞ on
diagonal. By (8.15) and Lemma 8.4 (turning Jn(j)+1;F on its head!), the spectral

measure for J
(j)
F , δ1 has a pure point at x∞ of mass at least ε.

By passing to a further subsequence, we can suppose for all q that an(j)+q → a
(r)
q ,

bn(j)+q → b
(r)
q for some right limit, J (r), and, by (8.20) and a further subsequence,

that b̃n(j)+1 → b̃
(r)
1 .

The coefficients of J
(j)
F clearly obey (8.6), and there is a J (∞), so (8.7) holds. This

is given by the reversed left side of J (r) (from −∞ to 1), with b
(r)
1 replaced by b̃

(r)
1 .

For any positive function f ,
∫

f (y)dρ(n)(y) ≥ εf (x∞). (8.21)

So, by (8.8),
∫

f (y)dρ(∞)(y) ≥ εf (x∞). (8.22)

Thus,

ρ(∞)
({x∞})≥ ε, (8.23)

and x∞ is an eigenvalue of J (∞). Thus, J (r) has an eigensolution at x∞ which is �2

at −∞, violating (8.1). This proves statement (i) of Theorem 8.2.
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For (ii), by passing to a subsequence, (8.16) holds for some x∞. If x∞ is an iso-
lated eigenvalue, xj must be equal to x∞ for large j , so lim sup|pj (x∞)| > 0, violat-
ing the condition that x∞ is an isolated eigenvalue. If x∞ ∈ σess(J ), the argument in
the first part produces a contradiction. Thus, (ii) is proven. �

9 Some Comments

We end this paper with some final results and comments. The following must be well
known in the ergodic theory community:

Proposition 9.1 Let an be a sequence of reals and

Cn = 1

n

n∑

j=1

aj . (9.1)

If

lim
n→∞ Cn = C∞ �= 0 (9.2)

exists, then

an

nCn

→ 0. (9.3)

Proof Since

an = nCn − (n − 1)Cn−1, (9.4)

n−1an = Cn − Cn−1 + n−1Cn−1, (9.5)

so

an

nCn

= Cn − Cn−1 + n−1Cn−1

Cn

(9.6)

goes to zero if (9.2) holds. �

It is an idea associated especially with Freud and Nevai (see [33]) that on the a.c.
spectrum,

1

n

n−1∑

j=0

pj (x0)
2 → ρ∞(x0)

w(x0)
, (9.7)

where ρ∞ is the density of zeros and w is the a.c. part of the underlying measure,
with concrete results both classical [31, 49] and recent [1, 24, 25, 43, 50].

Via Proposition 9.1, this gives several results on the Nevai condition. Totik’s result
[49] implies:
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Theorem 9.2 Let dρ have the form

dρ(x) = w(x)dx + dρs(x), (9.8)

with dρs Lebesgue singular. Let e be the essential support of dρ and suppose ρ is
regular for e. Suppose I is an open interval in e on which a Szegő condition holds:

∫

I

log
(
w(x)
)
dx > −∞. (9.9)

Then for Lebesgue a.e. x0 ∈ I , the Nevai condition holds.

More recent work on uniform convergence [24, 43] implies:

Theorem 9.3 Under the hypotheses of Theorem 9.2, if (9.9) is replaced by w con-
tinuous on I and infI w(x) > 0, then the Nevai condition holds on all of I uniformly
on compact subsets of I .

Recent work on ergodic Jacobi matrices ([1]; see that paper for the definition of
ergodic Jacobi matrices) implies:

Theorem 9.4 Let Jω be a family of ergodic Jacobi matrices obeying (1.14). Suppose
Σac, the essential support of the a.c. spectrum, is nonempty. Then for a.e. ω,x0 ∈ Σac,
the Nevai condition holds.

We also want to make a comment regarding the unbounded case (where ρ is not
compactly supported). In this case, there exist measures, ρ, of various types (includ-

ing pure point!) with limn→∞
a2
n+1[pn(x0)

2+pn+1(x0)
2]

Kn(x0,x0)
�= 0 for x in a set of positive ρ

measure. Indeed, the power law behavior of the generalized eigenfunctions in [3] and
those associated with the absolutely continuous part of the measure in [10] imply the
limit in these cases is actually ∞ for certain values of the relevant parameters. In the
introduction, it was noted that this means that truncations of the generalized eigen-
function do not form a sequence of approximate eigenvectors. Although (2.13) is still
true in this case, Theorem 1.2 does not hold for measures that are not compactly sup-
ported, so this does not constitute a counter-example to Conjecture 1.4. In any case,
it seems to be an interesting challenge to study the Nevai condition in the unbounded
case.

Next, we turn to some remarks on Conjecture 1.4. It is standard to break dρ into
three parts: a.c., pure point, and singular continuous. For compactly supported mea-
sures, the Nevai condition always holds at pure points, since if x0 is a pure point,∑∞

j=0 pj (x0)
2 < ∞, so pn(x0)

2 → 0. For dρc (= the continuous part of dρ), using
Egorov’s Theorem together with the fact that λn → 0 dρc-a.e., it is not hard to see that

limn→∞
∫ pn(x)2
∑n

j=0 pj (x)2 dρc(x) = 0, so the issue is going from convergence of integrals

to pointwise convergence.
If x0 is not a pure point but supn|pn(x0)| < ∞, then since

∑∞
j=0 pj (x0)

2 = ∞,
the Nevai condition holds. Thus, our Conjecture 1.4 is related to a famous conjecture
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of Steklov and what is sometimes called the Schrödinger conjecture [27]. There are
known counter-examples to both conjectures (see [35] and [16]), but the counter-
example in [35] has failure of boundedness at a single point and the counter-example
in [16] does not seem to violate the Nevai condition, so Conjecture 1.4 could be true.

We note that the currently open version of the Schrödinger conjecture, that for
a.e. x0 in the essential support of the a.c. spectrum one has bounded eigenfunctions,
would imply the Nevai condition a.e. on the essential support of the a.c. spectrum.

Finally, in connection with the example of Sect. 5, we would like to point out that
we believe the following is true:

Conjecture 9.5 Let q ∈ N, let {an, bn}∞n=1 be Jacobi parameters obeying

∞∑

n=1

(an+q − an)
2 + (bn+q − bn)

2 < ∞, (9.10)

and let R be the set of corresponding right limits. Then

Σac =
⋂

R
σ
(
J (r)
)
,

where Σac is the corresponding essential support of the a.c. spectrum.

We note that (9.10) implies R is made of q-periodic Jacobi matrices. The inclu-
sion Σac ⊂⋂R σ(J (r)) follows from a general result of [21], so the point here is the
inclusion in the other direction. Conjecture 9.5 generalizes a conjecture of Kaluzhny–
Last [18], who make this conjecture for the special case where R consists of a single
element. Denissov’s result [13] establishes it for the special case where an ≡ 1 and
where the single element of R is the free Jacobi matrix (namely, bn → 0), proving
an even earlier variant of this conjecture by Last [20]. Theorem 5.2 shows that Con-
jecture 9.5 holds for the Jacobi matrix of Example 5.1 (a special case where (9.10)
holds for q = 1), thus providing some level of confirmation for it.
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