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Abstract
We prove a general result on equality of the weak limits of the zero counting measure,
dνn, of orthogonal polynomials (defined by a measure dµ) and (1/n)Kn(x, x) dµ(x).
By combining this with the asymptotic upper bounds of Máté and Nevai [16] and Totik
[33] on nλn(x), we prove some general results on

∫
I
(1/n)Kn(x, x) dµs → 0 for

the singular part of dµ and
∫

I
|ρE(x) − (w(x)/n)Kn(x, x)| dx → 0, where ρE is the

density of the equilibrium measure and w(x) the density of dµ.

1. Introduction
We discuss here orthogonal polynomials on the real line (OPRL) and orthogonal poly-
nomials on the unit circle (OPUC) (see [32], [12], [11], [23], [24], [29]). dµ denotes
a measure on ∂D = {z ∈ C | |z| = 1} (positive but not necessarily normalized),
�n(z, dµ) and ϕn(z, dµ) denote its monic and normalized OPs and {αn}∞

n=0 denotes
its Verblunsky coefficients determined by (�∗

n(z) ≡ zn �n(1/z̄)),

�n+1(z) = z�n(z) − ᾱn�
∗
n(z). (1.1)

Moreover, with ρj = (1 − |αj |2)1/2,

‖�n‖L2(∂D,dµ) = µ(∂D)1/2
n−1∏
j=0

ρj . (1.2)

dµ also denotes a measure on R of compact support, and Pn(x, dµ) and pn(x, dµ)
denote its monic and normalized OPs. {an, bn}∞

n=1 are its Jacobi parameters defined by

xpn(x) = an+1pn+1(x) + bnpn(x) + anpn−1(x) (1.3)
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and

‖Pn‖L2(R,dµ) = µ(R)1/2(a1 · · · an). (1.4)

The Christoffel [7] and Darboux [8] (CD) kernel is defined by (some authors sum
only to n − 1)

Kn(z, w) =
n∑

j=0

ϕn(z) ϕn(w), (1.5)

Kn(x, y) =
n∑

j=0

pj (x)pj (y). (1.6)

The Lebesgue decomposition

dµ(eiθ ) = w(θ)
dθ

2π
+ dµs(e

iθ ), (1.7)

dµ(x) = w(x) dx + dµs(x), (1.8)

with dµs Lebesgue singular, enters.
This article concerns both a new method (based on Theorem 1.5) for the study of

spectral problems in the theory of OPs and some new results. The method provides new
proofs of known results but also new results, of which we emphasize Theorems 1.4
and 7.2.

To model the issues that concern us here, we recall two consequences of the Szegö
condition for OPUC; namely,

∫
log

(
w(θ)

) dθ

2π
> −∞. (1.9)

Here are two central results.

THEOREM 1.1 (Szegö [31])
If the Szegö condition holds, then

lim
n→∞

∫
|ϕn(eiθ )|2 dµs = 0. (1.10)

Remark
In distinction, if w = 0,

∫ |ϕn(eiθ )|2 dµs ≡ 1.
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THEOREM 1.2 (Máté, Nevai, and Totik [18])
If the Szegö condition holds, then for a.e. θ ,

w(θ)
1

n + 1
Kn(eiθ , eiθ ) → 1. (1.11)

Máté, Nevai, and Totik state the result in an equivalent form involving the Christoffel
function

λn(z0) = inf
{∫

|Qn(eiθ )|2 dµ(θ)
∣∣∣ deg Qn ≤ n; Qn(z0) = 1

}
. (1.12)

The minimizer is

Qn(eiθ ) = Kn(z0, e
iθ )

Kn(z0, z0)
, (1.13)

λn(z0) = Kn(z0, z0)−1, (1.14)

and since (1.9) implies that w(θ) > 0 for a.e. θ , (1.11) is equivalent to

nλn−1(eiθ ) → w(θ). (1.15)

It is also known under a global condition w(θ) > 0 that there are similar results
that come from what is called Rakhmanov theory (see [24, Chap. 9] and references
therein).

THEOREM 1.3
If w(θ) > 0 for a.e. θ , then
(i) (1.10) holds, and
(ii) we have

lim
n→∞

∫ ∣∣w(θ)|ϕn(eiθ )|2 − 1
∣∣ dθ

2π
= 0. (1.16)

Remarks
(i) is due to Rakhmanov [20], [21].
(ii) is due to Máté, Nevai, and Totik [17].

Theorems 1.1 and 1.2 are known to hold under a local Szegö condition together with
regularity in the sense of Stahl and Totik [30] (see also [26] and below).

One of our goals here is to prove the first results of these genres with neither
a local Szegö condition nor a global absolute continuity condition. While we focus
on the OPRL case, for comparison with Theorems 1 – 3, here are our new results for
OPUC.
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THEOREM 1.4
If I is an interval on ∂D so that
(a) w(θ) > 0 a.e. on I ; and
(b) dµ is regular for ∂D; that is,

(ρ1 · · · ρn)1/n → 1, (1.17)

then
(i)

∫
I

1

n + 1
Kn(eiθ , eiθ ) dµs(θ) → 0, (1.18)

(ii)
∫

I

∣∣∣1 − w(θ)
1

n + 1
Kn(eiθ , eiθ )

∣∣∣ dθ

2π
→ 0. (1.19)

Remarks
(1) We do not have pointwise convergence (1.11), but we do have one-half of it;

namely, for eiθ ∈ I ,

lim inf w(θ)
1

n + 1
Kn(eiθ , eiθ ) → 1. (1.20)

(2) One associates existence of limits of |ϕn|2 dµ with Rakhmanov, which we only
expect when dµ has support on all of ∂D or a single interval of R. At best,
with multiple intervals, one expects almost periodicity of |ϕn|2 dµ rather than
existence of the limits. For this reason, the Cesàro averages of Theorem 1.4 are
quite natural.

There is nothing sacred about ∂D; regularity is defined for any set, and for both OPRL
and OPUC, all we need is regularity plus w(θ) > 0 on an interval. We also have
interesting new bounds on the density of zeros when regularity fails; these generalize
a theorem of Totik and Ullman [35].

These new theorems do not involve tweaking the methods used to prove Theo-
rems 1.1 – 1.3 but a genuinely new technique (plus one general method of Máté and
Nevai [16] used in the proof of Theorem 1.2). Our point here is as much to emphasize
this new technique as to prove the results. The new technique is the following.

THEOREM 1.5
Let dµ be a measure on R with bounded support or a measure on ∂D. For R,
let dνn be the normalized zero counting measure for the OPRL and for ∂D for
the zeros of the paraorthogonal polynomials (POPUC ). Let n(j ) be a subsequence
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n(1) < n(2) < · · · . Then for any probability measure, ν∞,

dνn(j )+1
w−→ dν∞ ⇐⇒ 1

n(j ) + 1
Kn(j )(x, x) dµ(x)

w−→ dν∞. (1.21)

Remarks
(1) We discuss POPUC and related objects on ∂D in Section 2.
(2) As we discuss later, dνn(j ) and dνn(j )+1 have the same limits.

In one sense, this result is more than twenty-five years old. It is a restatement of the
invariance of the density of states under change-of-boundary conditions first proved
in this context by Avron and Simon [2]. But this invariance is certainly not usually
stated in these terms. We also note that for OPUC, we noted this result in [24, Th. 8.2]
but did not appreciate its importance.

We note that for OPUC, limits of (1/(n + 1))Kn(eiθ , eiθ ) dµ(θ) have been studied
by Golinskii and Khrushchev [14] without explicitly noting the connection to CD
kernels. Their interesting results are limited to the case of OPUC and mainly to
situations where the support is all of ∂D.

By itself, Theorem 1.4 is interesting (e.g., it could be used to streamline the proof
of a slightly weaker version of Totik [33, Corollary 2]), but it is really powerful when
used with the following collection of results.

THEOREM 1.6 (see Máté and Nevai [16])
For any measure on ∂D,

lim sup nλn−1(eiθ ) ≤ w(θ). (1.22)

Máté, Nevai, and Totik [18] noted that this applies to OPRL on [−1, 1] using the
Szegö mapping, and Totik, in a brilliant article [33], shows how to extend it to any
measure of bounded support, E, on R so long as E contains an interval.

THEOREM 1.7 (see Totik [33])
Let I ⊂ E ⊂ R, where I = (a, b) is an interval and E is compact. Suppose that dµ

is a measure with support contained in E so that

dµ(x) = w(x) dx + dµs(x). (1.23)

Let dρE(x) be the potential theoretic equilibrium measure for E (so it is known that
dρE � I = ρE(x) dx for some strictly positive, real-analytic weight ρE). Then for
Lebesgue a.e. x ∈ I ,

lim sup nλn−1(x) ≤ w(x)

ρE(x)
. (1.24)
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Remarks
(1) Totik concentrated on the deeper and more subtle fact that if there is a local

Szegö condition on I and µ is regular for E, then the limit exists and equals
w(x)/ρE(x) for a.e. x. But along the way, he proved (1.24).

(2) We actually prove equality in (1.24) (for lim sup) when E = supp(dµ) and µ

is regular.
(3) Later (see Section 8), we prove the analog of Theorem 1.7 for closed subsets

of ∂D.

Some of our results assume regularity of µ, so we briefly summarize the main results
from that theory, due largely to Stahl and Totik in their book [30]; (see our recent
article [26] for an overview).

A measure µ on R is called regular if E = supp(dµ) is compact and

lim
n→∞

(a1 · · · an)1/n = C(E), (1.25)

where C(E) is the (logarithmic) capacity of E. For OPUC, (1.25) is replaced by

lim
n→∞

(ρ1 · · · ρn)1/n = C(E). (1.26)

Some insight is gained if one knows that in both cases, for any µ (supported on E

compact in R or ∂D), the lim sup is bounded above by C(E). For this article, regularity
is important because of the following.

THEOREM 1.8 (see [30, Sec. 2.2], [26, Th. 2.5])
If dµ is regular, then with dνn, the density of zeros of the OPRL or of the POPUC, we
have

dνn

w−→ dρE , (1.27)

the equilibrium measure for E. Conversely, if (1.27) holds, either µ is regular or µ is
supported on a set of capacity zero.

We now mention one criterion for regularity that goes back to Erdös and Turán [10]
for [−1, 1] and Widom [37] for general E.

THEOREM 1.9
If E = supp(dµ) and

dµ(x) = f (x) dρE(x) + dµs(x),

where µs is ρE-singular and f (x) > 0 for ρE-a.e. x, then µ is regular.
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There is a proof of Van Assche [36] of the general case presented in [26] which is not
difficult. But in the case where Eint (interior in the sense of R) differs from E by a
set of capacity zero (e.g., E = [−1, 1]), we find a proof that uses only our strategy in
Theorems 1.5 and 1.7. In particular, we have a proof of the Erdös-Turán result in [10]
which uses neither potential theory nor polynomial inequalities.

We can now describe the content of this article. In Section 2, we prove the
main weak convergence result, Theorem 1.5. In Section 3, we prove the analog of the
Erdös-Turán result for ∂D and illustrate how these ideas are connected to the regularity
criterion of Stahl and Totik [30]. Section 4 proves Theorem 1.4 for µ-regular on ∂D.
Sections 5 and 6 then parallel Sections 3 and 4 but for general compact sets E ⊂ R.
Section 7, motivated by work of Totik and Ullman in [35], provides a comparison
result about densities of zeros. Section 9 does the analog of Sections 5 and 6 for
general E ⊂ ∂D. To do this, we need Totik’s result (1.24) in that situation. This does
not seem to be in the literature, so Section 8 fills that need.

2. Weak convergence
Our main goal here is to prove a generalization of Theorem 1.5 (and so, also that
theorem). We let µ be a measure of compact support in C, and we let

N (µ) = sup
{|z| ∣∣ z ∈ supp(dµ)

}
. (2.1)

We let Mz be multiplication by z on L2(C, dµ), so

‖Mz‖ = N(µ), (2.2)

and we let Qn be the (n + 1)-dimensional orthogonal projection onto polynomials of
degree n or less. All estimates here depend on the following.

PROPOSITION 2.1
Fix 
 = 1, 2, . . . . Then

QnM


z Qn − (QnMzQn)
 (2.3)

is an operator of rank at most 
 and norm at most 2N(µ)
.

Proof
Let X be the operator in (2.3). Clearly, X = 0 on ran(1 − Qn) = ker(Qn). Since Mz

maps ran(Qj ) to ran(Qj+1), X = 0 on ran(Qn−
). This shows that X has rank at most

. The norm estimate is immediate from (2.2). �

Here is the link to Kn and to dνn+1. Let Xj (z, dµ) be the monic OPs for µ, and let
xn = Xn/‖Xn‖.
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PROPOSITION 2.2
(i) We have, for all w ∈ C,

detQn
(w − QnMzQn) = Xn+1(w, dµ). (2.4)

In particular, if dνn+1 is the zero counting measure for Xn+1, then

1

n + 1
Tr

(
(QnMzQn)


) =
∫

z
 dνn+1(z). (2.5)

(ii) Let

Kn(z, w) =
n∑

j=0

xj (z) xj (w). (2.6)

Then

Tr(QnM


z Qn) =

∫
z
Kn(z, z) dµ(z). (2.7)

Remark. The proof of (i) is due to Davies and Simon [9].

Proof of Proposition 2.2
(i) Let z0 be a zero of Xn+1 of order 
. Let ϕ(z) = Xn+1(z)/(z−z0)
. Since Qn[Xn+1] =
0, we see, with M (n)

z = QnMzQn,

(M (n)
z − z0)
ϕ = 0, (M (n)

z − z0)
−1ϕ �= 0 (2.8)

showing that z0 is a zero of detQn
(w − M (n)

z ) of order at least 
. In this way, we see
that Xn+1(w) and the det have the same zeros. Since both are monic, we obtain (2.4).

In particular, this shows

Tr
(
(M (n)

z )

) =

∑
zeros zj of

multiplicity mj

mjz


j = (n + 1)

∫
z
 dνn+1(z),

proving (2.5).
(ii) In L2(C, dµ), {xj }n

j=0 span ran(Qn) and are an orthonormal basis, so

Tr(QnM


z Qn) =

n∑
j=0

〈xj , z

xj 〉

=
∫ n∑

j=0

z
|xj (z)|2 dµ(z),

proving (2.7). �
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PROPOSITION 2.3
Let dηn be the probability measure

dηn(z) = 1

n + 1
Kn(z, z) dµ(z). (2.9)

Then for 
 = 0, 1, 2, . . . ,

∣∣∣
∫

z
 dηn(z) −
∫

z
 dνn+1(z)
∣∣∣ ≤ 2 
N(µ)


n + 1
. (2.10)

Suppose that there is a compact set, K ⊂ C, containing the supports of all dνn and
the support of dµ such that {z
}∞


=0 ∪{z̄
}∞

=0 are ‖·‖∞-total in the continuous function

on K . Then for any subsequence n(j ), dηn(j ) → dν∞ if and only if dνn(j )+1 → dν∞.

Proof
(2.10) is immediate from (2.5) and (2.7) if we note that, by Proposition 2.1,

∣∣Tr(QnM


z Qn) − Tr

(
(QnMzQn)


)∣∣ ≤ 2N(µ)

. (2.11)

In turn, (2.10) implies that we have the weak convergence result. �

While we were careful to use n(j ) and n(j ) + 1, we note that since |xj (z)|2 dµ is a
probability measure, we have

‖ηn − ηn+1‖ ≤ 1

n + 1
+ n

(1

n
− 1

n + 1

)
≤ 2

n + 1
, (2.12)

so we could just as well have discussed weak limits of ηn(j )+1 and νn(j )+1. The following
is Theorem 1.5 for OPRL.

THEOREM 2.4
For OPRL, dηn(j ) converges weakly to dν∞ if and only if dνn(j )+1 converges weakly
to dν∞.

Proof
{xj }∞

j=0 are total in C([α, β]) for any real interval [α, β], so Proposition 2.3 is appli-
cable. �

For OPUC, we need a few preliminaries. Let M+,1(X) be the probability measures
on a compact set X. Define P : C(∂D) → C(D) (with D = {z | |z| ≤ 1}) by

(Pf )(reiθ ) =
∫

1 − r2

1 + r2 − 2r cos(θ − ϕ)
f (eiθ )

dϕ

2π
(2.13)
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for r < 1 and (Pf )(eiθ ) = f (eiθ ). We also define P∗ : M+,1(D) → M+,1(∂D), the
balayage, by duality. Then the following is well known and elementary.

PROPOSITION 2.5
P∗(dν) is the unique measure, η, on ∂D with

∫
ei
θ dη(θ) =

∫
z
 dν(z) (2.14)

for 
 = 0, 1, 2, . . . .

Widom [37] proved that if µ is supported on a strict subset of ∂D, then the zero
counting measure, dνn, has weak limits supported on ∂D,

P∗(dνn) − dνn

w−→ 0. (2.15)

Finally, we note the following about POPUC defined for β ∈ ∂D by

Pn+1(z, β) = z�n(z) − β̄�∗
n(z), (2.16)

defined in [15] and studied further in [4] – [6], [13], [27], [38].

PROPOSITION 2.6
Let βn be an arbitrary sequence ∂D, and let dν

(βn)
n+1 be the zero counting measure for

Pn+1(z, βn) (known to live on ∂D; see, e.g., [27]). Then for any 
 ≥ 0,

∣∣∣
∫

z
 dνn+1 −
∫

z
 dν
(βn)
n+1

∣∣∣ → 0. (2.17)

Proof
Let Cn+1,F be the truncated CMV matrix of size n + 1 whose eigenvalues are the
zeros of �n+1(z) (see [23, Chap. 4]), and let C(βn)

n+1,F be the unitary dilation whose

eigenvalues are the zeros of Pn+1(z, βn) (see [6], [27], [25]). Then Cn+1,F − C(βn)
n+1,F

is rank 1 with norm bounded by 2, so C

n+1,F − [C(β)

n+1,F ]
 is rank at most 
 with norm
2. Thus

∣∣Tr
(
C


n+1,F − (C(β)
n+1,F )


)∣∣ ≤ 2
 (2.18)

and

|LHS of (2.17)| ≤ 2


n + 1
,

proving (2.17). �
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THEOREM 2.7
For OPUC, dηn(j ) converges weakly to dν∞ if and only if each of the following
converges weakly to dν∞:
(i) dν

(βn)
n+1 for any βn;

(ii) P(dνn+1), the balayage of dνn+1;
(iii) dνn+1 if supp(dµ) �= ∂D.

Proof
This is immediate from Propositions 2.3 and 2.6. �

When I mentioned Theorem 2.4 to Vilmos Totik, he found an alternate proof, using
tools more familiar to OP workers, which provides some insight. With his permission,
I include this proof. Let me discuss the result for convergence of sequences rather than
subsequences and then give some remarks to handle subsequences.

The key to Totik’s proof is Gaussian quadratures, which say that if {x(n)
j }n

j=1 are
the zeros of pn(x, dµ) and λn−1(x) = Kn−1(x, x)−1, then for any polynomial Rm of
degree m ≤ 2n − 1,

∫
Rm(x) dµ(x) =

n∑
j=1

λn−1(x(n)
j )Rm(x(n)

j ). (2.19)

We also need the Christoffel variation principle,

n ≤ q ⇒ λq(x) ≤ λn(x), (2.20)

which is immediate from (1.12).
Suppose we know that dνn → dν∞. Fix a polynomial Qm of degree m with

Qm ≥ 0 on cvh(supp(dµ)), where cvh = convex hull. Let

Rm+2n(x) = 1

n + 1
Qm(x)Kn(x, x),

which has degree m + 2n. Thus, if N = n + m, we have, by (2.19),
∫

Qm(x)
[ 1

n + 1
Kn(x, x)

]
dµ

=
N∑

j=1

λN−1(x(N−1)
j )Qm(x(N−1)

j )
( 1

n + 1

)
λn(x(N−1)

j )−1 (2.21)

≤
(N + 1

n + 1

) 1

N + 1

N∑
j=1

Qm(x(N−1)
j ), (2.22)
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by Qm ≥ 0 and (2.21) (so λN−1/λn ≤ 1). As n → ∞, N/n → 1. So, by hypothesis,

RHS of (2.22) →
∫

Qm(y) dν∞(y). (2.23)

We conclude, by (2.21), that

lim sup
∫

Qm(x) dηn(x) ≤
∫

Qm(y) dν∞(y). (2.24)

If 0 ≤ Qm ≤ 1 on cvh(supp(dµ)), we can apply this also to 1 − Qm and so conclude
for such Qm that

lim
∫

Qm dηn(x) =
∫

Qm dν∞,

which implies that w-lim dηn = dν∞.
The same inequality (2.22) can be used to show that if dηn

w−→ dη∞, then

lim inf
∫

Qm(y) dνm(y) ≥
∫

Qm(y) dη∞(y),

and thus, by the same 1 − Q trick, we get dνn → dη∞.
To handle subsequences, we need only note that by (2.12), if dηn(j ) → dη∞,

then dηn(j )+
 → dη∞ for 
 = 0, ±1, ±2, . . . . Similarly, by zero interlacing, if
dνn(j ) → dν∞, then dνn(j )+
 → dν∞ for fixed 
.

By using the operator theoretic proof of Gaussian quadrature (see, e.g., [23,
Sec. 1.2]), one sees that this proof is closely related to our proof above.

3. Regularity for ∂D: The Erdös-Turán theorem
Our goal in this section is to prove the following.

THEOREM 3.1
Let dµ on ∂D have the form (1.7) with w(θ) > 0 for a.e. θ . Then µ is regular; that
is, (1.26) holds with E = ∂D (so C(E) = 1).

Remarks
(1) This is an analog of a theorem for [−1, 1] proven by Erdös and Turán [10].

Our proof here seems to be new.
(2) This is, of course, weaker than Rakhmanov’s theorem (see [24, Chap. 9] and

references therein), but as we see, this extends easily to some other situations.



WEAK CONVERGENCE OF CD KERNELS 317

The proof combines the Máté-Nevai theorem (Theorem 1.6) and Proposition 2.5. It is
worth noting where the Máté-Nevai theorem comes from. By (1.12), if

Qn(eiθ ) = 1

n + 1

n∑
j=0

eij (θ−ϕ), (3.1)

then

λn(eiϕ) ≤
∫

|Qn(eiθ )|2 dµ(θ). (3.2)

Recognizing (n + 1)|Qn|2 as the Fejér kernel, (1.22) is a standard maximal function
a.e. convergence result.

PROPOSITION 3.2
For any measure on ∂D for a.e. θ ,

lim inf
n→∞

1

n + 1
Kn(eiθ , eiθ ) ≥ w(θ)−1. (3.3)

On the set where w(θ) > 0,

lim inf
n→∞

1

n + 1
w(θ)Kn(eiθ , eiθ ) ≥ 1. (3.4)

Remark. If w(θ) = 0, (3.3) is interpreted as saying that the limit is infinite. In that
case, of course, (3.4) does not hold.

Proof
We have that (3.3) is immediate from (1.14) and (1.22). If w �= 0, ww−1 = 1, (3.3)
implies (3.4). �

Proof of Theorem 3.1
The hypothesis w > 0 for a.e. θ implies that dµ is not supported on a set of ca-
pacity zero. Thus, by Theorem 1.8, regularity holds if we prove that the density of
zeros of POPUC converges to dθ

2π
. By Proposition 2.5, this follows if we prove that

(1/(n + 1))Kn+1 dµ → dθ

2π
.

Suppose that n(j ) → ∞ is a subsequence with (1/(n + 1))Kn+1(eiθ , eiθ )w(θ)
dθ

2π
→ dν1 and (1/(n + 1))Kn+1(eiθ , eiθ ) dµs → dν2. Then since (1/(n + 1))Kn dµ

is normalized, ∫
[dν1 + dν2] = 1. (3.5)
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On the other hand, by Fatou’s lemma and (3.4), for any continuous f ≥ 0 and the
hypothesis w(θ) > 0 a.e. θ ,

∫
f dν1 = lim

∫
f

[ 1

n + 1
w(θ)Kn(eiθ , eiθ )

] dθ

2π

≥
∫

lim inf
[
f

1

n + 1
w(θ)Kn(eiθ , eiθ )

] dθ

2π

≥
∫

f (θ)
dθ

2π
. (3.6)

Thus

dν1 ≥ dθ

2π
. (3.7)

By (3.5), this can happen only if

dν1 = dθ

2π
, dν2 = 0. (3.8)

As a result of the compactness of the space of measures, one has that (1/(n + 1))
Kn+1 dµ → dθ

2π
. �

Along the way, we also proved that dν2 = 0; that is, we proved the following.

THEOREM 3.3
Under the hypotheses of Theorem 3.1,

1

n + 1

∫ n∑
j=0

|ϕj (eiθ )|2 dµs(θ) → 0.

It would be interesting to see if these methods provide an alternate proof of the theorem
of Stahl and Totik [30, Th. 4.2.7] that if for all η > 0,

lim
n→∞

∣∣∣∣
{
θ

∣∣∣∣ |µ
( ∣∣∣ {ψ | |eiθ − eiψ | ≤ 1

n

∣∣∣ })
≤ e−nη

}∣∣∣∣ = 0, (3.9)

then µ is regular. The point is that using powers of the Fejér kernel, one can get trial
functions localized in an interval of size O(1/n), and off a bigger interval of size
O(1/n), it is exponentially small. (3.9) should say that the dominant contribution
comes from an O(1/n)-interval. On the other hand, the translates of these trial func-
tions are spread over O(1/n)-intervals, so one gets lower bounds on (1/n)Kn(eiθ , eiθ )
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of order µ(eiθ − c/n, eiθ + c/n)−1 which are then integrated against dµ, canceling
this inverse and hopefully leading to (3.7), and so regularity.

4. Localization on ∂D

In this section, we prove Theorem 1.4. Instead of using the Máté-Nevai bound to prove
regularity, we combine it with regularity to get information.

Proof of Theorem 1.4
As in the proof of Theorem 3.1, we let dν1, dν2 be weak limits of
(1/n)K(eiθ , eiθ )w(θ) dθ

2π
and (1/n)Kn(eiθ , eiθ ) dµs(θ). On I , the same arguments

as above imply that

dν1 � I ≥ dθ

2π
� I. (4.1)

By regularity, globally,

dν1 + dν2 = dθ

2π
. (4.2)

Thus, on I ,

ν1 � I = dθ

2π
, ν2 � I = 0. (4.3)

The second implies (1.18). The first implies that

∫ b

a

w(θ)
1

n + 1
Kn(eiθ , eiθ )

dθ

2π
→ (b − a). (4.4)

Since (3.4) and Fatou imply that

∫ b

a

[
w(θ)

1

n + 1
Kn(eiθ , eiθ ) − 1

]
−

dθ

2π
→ 0, (4.5)

we obtain (1.19). �

Notice that (4.4) and (3.4) imply a pointwise a.e. result (which we stated as (1.20)),

lim inf
n→∞

1

n + 1
w(θ)Kn(eiθ , eiθ ) = 1. (4.6)

We do not know how to get a pointwise result on lim sup under only the condition
w(θ) > 0 (but without a local Szegö condition).
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5. Regularity for E ⊂ R: Widom’s theorem
In this section and Section 6, our goal is to extend the results of Sections 3 and
4 to situations where ∂D is replaced by fairly general closed sets in R. The keys
are Theorem 2.4 and Totik’s Theorem 1.7. We begin with a few remarks on where
Theorem 1.7 comes from (see also Section 8).

Since the hypothesis is that supp(dµ) ⊂ E, not equal to E, it suffices to find
En ⊃ E so that ρEn

(x) → ρE(x) on I and for which (1.21) can be proved. By
using Ẽn = {x | dist(x, E) ≤ 1/n}, one first gets approximation by a finite union
of intervals, and then, by a theorem proven by Bogatyrëv [3], Peherstorfer [19], and
Totik [34], one finds Ẽn ⊂ En, where the En’s are finite unions of intervals with
rational harmonic measure. For rational harmonic measures, one can use as trial
polynomials Km(x, x0)/Km(x0, x0), where Km is the CD kernel of a measure in the
periodic isospectral torus and Floquet theory. (This is the method from Simon [28];
Totik [33] instead uses polynomial mapping.)

THEOREM 5.1
Let E ⊂ R be a compact set with ∂E ≡ E \ Eint (Eint means interior in R) having
capacity zero (e.g., a finite union of closed intervals). Let dµ be a measure with
σess(dµ) = E and

dµ = f (x) dρE + dµs, (5.1)

where dµs is dρE-singular. Suppose that f (x) > 0 for dρE-a.e. x. Then dµ is regular.

Remarks
(1) In this case, dρE is equivalent to χE dx.
(2) For any compact E, this is a result of Widom [37] (see also Van Assche [36],

Stahl and Totik [30], and Simon [26]).

Proof of Theorem 5.1
Essentially identical to Theorem 3.1. By Theorem 1.8 and the fact that dµ is clearly not
supported on sets of capacity zero, it suffices to prove that dνn → dρE . Pick n(j ) →
∞, so

(
1/(n(j ) + 1)

)
Kn(j )(x, x)f (x) dρE and

(
1/(n(j ) + 1)

)
Kn(j )(x, x) dµs sepa-

rately have limits dν1 and dν2. It says in (1.21) that (given that f (x) > 0 for
a.e. x)

lim inf
1

n(j ) + 1
Kn(j )(x, x)f (x) ≥ 1. (5.2)

By Fatou’s lemma on Eint,

dν1 ≥ dρE. (5.3)
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Also, since
∫

(dν1 + dν2) = 1 and
∫

Eint dρE = 1 (since C(E \ Eint) = 0),
we conclude that dν1 = dρE , dν2 = 0. By compactness of probability measures,(
1/(n(j ) + 1)

)
Kn(j )(x, x) dµ

w−→ dρE , implying regularity. �

6. Localization on R

Here is an analog of Theorem 1.4 for any E ⊂ R.

THEOREM 6.1
Let I = [a, b] ⊂ E ⊂ R with a < b and E compact. Let dµ be a measure on R so
that σess(dµ) = E and µ is regular for E. Suppose that

dµ = w(x) dx + dµs (6.1)

with dµs Lebesgue singular. Suppose that w(x) > 0 for a.e. x ∈ I . Then
(i)

(
1/(n + 1)

)
Kn(x, x) dµs

w−→ 0;
(ii)

∫
I
|ρE(x) − (

1/(n + 1)
)
w(x)Kn(x, x)| dx → 0.

Proof
By w(x) > 0 a.e. on I and (1.17),

lim inf w(x)
1

n + 1
Kn(x, x) ≥ ρE(x)

for a.e. x ∈ I . From this, one can follow exactly the proofs in Section 4. �

7. Comparisons of density of zeros
In [35], Totik and Ullman proved the following. (We take [−a, a] rather than [a, b]
only for notational simplicity.)

THEOREM 7.1 (see [35])
Let dµ be a measure supported on a subset of [−1, 1], where

dµ = w(x) dx + dµs (7.1)

with

w(x) > 0 for a.e. x ∈ [−a, a]

for some a ∈ (0, 1). Let dν∞ be any limit point of the zero counting measures for dµ.
Then on (−a, a), we have

(2π)−1(1 − x2)−1/2 dx ≤ dν∞(x) ≤ (2π)−1(a2 − x2)−1/2 dx. (7.2)
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Our goal here is to prove the following, which we show implies Theorem 7.1 as a
corollary.

THEOREM 7.2
Let dµ1, dµ2 be two measures on R of compact support. Suppose that for some
interval I = (α, β),
(i)

dµ1 ≤ dµ2; (7.3)

(ii)

dµ1 � (α, β) = dµ2 � (α, β). (7.4)

Let n(j ) → ∞, and suppose that dν
(k)
n(j ) → dν(k)

∞ for k = 1, 2, where dν(k)
n is the

zero counting measure for dµk . Then on (α, β),

dν(2)
∞ � (α, β) ≤ dν(1)

∞ � (α, β). (7.5)

Proof
By (1.12),

λn(x, dµ1) ≤ λn(x, dµ2), (7.6)

so by (1.14),

1

n + 1
K (2)

n (x, x) ≤ 1

n + 1
K (1)

n (x, x) (7.7)

for all x. By (7.4) on (α, β),

1

n + 1
K (2)

n (x, x) dµ2 ≤ 1

n + 1
K (1)

n (x, x) dµ1. (7.8)

By Theorem 2.4, this implies (7.5). �

Proof of Theorem 7.1
Let dµ2 = dµ, and let dµ1 = χ(−a,a)[dµ] so that dµ1 ≤ dµ2 with equality
on [−a, a]. By Theorem 5.1, dµ1 is regular for [a, a], so dν(2)

n → (2π)−1(a2 −
x2)−1/2 dx, the equilibrium measure for [−a, a]. Thus (7.5) implies the second in-
equality in (7.2).

On the other hand, let dµ1 = dµ, and let dµ2 = [χ(−1,1) − χ(−a,a)] dx + dµ.
Then dµ1 ≤ dµ2 with equality on (−a, a). Moreover, dµ2 is regular for [−1, 1],
by Theorem 5.1 and the hypothesis σ (dµ) ⊂ [−1, 1]. Thus dν(1)

n → (2π)−1(1 −
x2)−1/2 dx. Thus (7.5) implies the first inequality in (7.2). �
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Remarks
(1) Theorem 7.1 only requires σess(dµ) ⊂ [−1, 1].
(2) The theorems in [35] are weaker than Theorem 7.1 in one respect and stronger

in another. They are weaker in that because of their dependence on potential
theory, they require that one of the comparison measures be regular. On the
other hand, they are stronger in that our reliance on weak convergence limits
us to open sets like (α, β), while they can handle more general sets.

(3) In [26], there is an example of a measure, dµ, on [−1, 1], where w(x) > 0
on [−1, 0] and the zero counting measures include among their limit points
the equilibrium measures for [−1, 0] and for [−1, 1]. This shows that in the
[a, b]-form of Theorem 7.1, both inequalities in (7.2) can be saturated.

8. Totik’s bound for OPUC
As preparation for applying our strategy to subsets of ∂D, we need to prove an analog
of Totik’s bound (1.23) for closed sets on ∂D. Given a, b ∈ ∂D, we let I = (a, b)
be the interval of all points between a and b, that is, going counterclockwise from a

to b, so −1 ∈ (eiθ , ei(2π−θ)) for 0 < θ < π but −1 /∈ (ei(2π−θ), eiθ ). Given E ⊂ ∂D

closed, we let dρE be its equilibrium measure. If I ⊂ E ⊂ ∂D is a nonempty open
interval, then

dρE � I = ρE(θ) dm(θ), (8.1)

where dm = dθ

2π
. The main theorem of this section is the following.

THEOREM 8.1
Let I ⊂ E ⊂ ∂D, where I = (a, b) is an interval and E is closed. Let dµ be a
measure with support in E so that

dµ(θ) = w(θ) dm + dµs(θ). (8.2)

Then for dm-a.e. θ ∈ I , we have

lim sup nλn−1(eiθ ) ≤ w(θ)

ρE(θ)
. (8.3)

Following Totik’s strategy in [33] and [34] for OPRL, we do this in two steps.

THEOREM 8.2
(8.3) holds if supp(dµ) ⊂ Eint and E is a finite union of intervals whose relative
harmonic measures are rational.
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THEOREM 8.3
For any closed E in ∂D, we can find En with the following.
(i) Each En is a finite union of intervals whose relative harmonic measures are

rational.
(ii)

E ⊂ Eint
n . (8.4)

(iii)

C(En \ E) → 0. (8.5)

Remark. If E = I1 ∪ · · · ∪ I
, the relative harmonic measures are ρE(Ij ), which sum
to 1.

Proof of Theorem 8.1, given Theorems 8.2 and 8.3
By general principles, since I is an interval, ρEn

(θ) and ρE(θ) are real analytic with
bounded derivatives. We have that (8.5) implies that dρEn

w−→ dρE , and then the
bounded derivative implies that ρEn

(θ) → ρE(θ) uniformly on compact subsets of
I . By Theorem 8.2, the left-hand side of (8.3) ≤ w(θ)/ρEn

(θ) for each n. Since
ρEn

(θ) → ρE(θ), we obtain (8.3). �

Our proof of Theorems 8.2 and 8.3 diverges from the Totik strategy in two ways. Totik
obtains Theorem 8.2 by using polynomial maps. Instead, following Simon [28], we
use Floquet solutions.

Second, Totik shows if E has 
 gaps, one can find En with rational relative
harmonic measures also with 
 gaps obeying (8.4) and (8.5). This is a result with
rather different proofs by Bogatyrëv [3], Peherstorfer [19], and Totik [34]. I believe
that any of these proofs extends to OPUC, but we settle for a weaker result: our En’s
contain up to 2
 intervals, the first 
 each containing one of the 
 intervals of E and
an additional 
 or fewer exponentially small intervals. This allows us to get away with
following only the easier part of Peherstorfer’s strategy.

Proof of Theorem 8.2
By [24, Theorem 11.4.5], E is the essential spectrum of an isospectral torus of
Verblunsky coefficients periodic up to a phase; that is, for suitable p (chosen so that
pρE(Ij ) is an integer for each j ),

αn+1 = λαn.

Let µE be the measure associated to a point on the isospectral torus.
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By Floquet theory (see [24, Sec. 11.2]), for z ∈ Eint, ϕn is a sum of two functions
each periodic up to a phase, and by [24, Sec. 11.12], on compact subsets, K , of Eint,

sup
z∈K,n

|ϕn(z)| < ∞. (8.6)

It follows from the CD formula (see [23, Sec. 2.2]) that

sup
z,w∈K

|Kn(z, w)| ≤ C|z − w|−1. (8.7)

The almost periodicity of ϕ implies that uniformly on K , (1/(n + 1))Kn(z, z) has
a finite nonzero limit, and then, by Theorem 2.7, the limit must be ρE(θ)/wE(θ); that
is, uniformly on K ,

lim
n→∞

1

n
Kn(eiθ , eiθ ) = ρE(θ)

wE(θ)
, (8.8)

where wE(θ) is the weight for dρE(θ). Moreover, as proved in Simon [28], for any
A > 0, uniformly on eiθ ∈ K and n|ϕ − θ | < A,

Qn(eiϕ) ≡ Kn(eiθ , eiϕ)

Kn(eiθ , eiθ )
= sin(nρE(θ)(θ − ϕ))

n(θ − ϕ)ρE(θ)

(
1 + O(1)

)
. (8.9)

Now, use Qn(eiϕ) as a trial function in (1.12). By (8.7) and (8.8), by taking A

large, the contribution of n|ϕ − θ | > A can be made arbitrarily small. Maximal
function arguments and (8.9) show that the contribution of the region n|ϕ − θ | < A

to nλn−1 is close to w(θ)/ρE(θ). This proves (8.3) for dµ. �

Given E ⊂ ∂D compact, define

Ẽn =
{
eiθ ∈ D

∣∣∣ dist(eiθ , E) ≤ 1

n

}
. (8.10)

It is easy to see that C(Ẽn\E) → 0 and that Ẽn is a union of 
(n) < ∞ closed intervals.
It thus suffices to prove Theorem 8.3 when E is already a union of finitely many 


disjoint closed intervals, and it is that which we are heading toward. (Parenthetically,
we note that we could dispense with this and instead prove the analog of Theorem 8.2
for a finite union of intervals using Jost solutions for the isospectral torus associated
to such finite gap sets, as in Simon [28].)

Define Pn to be the set of monic polynomials, all of whose zeros lie in ∂D. Since

eiθ/2 + eiϕe−iθ/2 = eiϕ/2[ei(θ−ϕ)/2 + e−i(θ−ϕ)/2],
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if P ∈ Pn, there is a phase factor eiη, so that

z−n/2eiηP (z) is real on ∂D. (8.11)

Define the restricted Chebyshev polynomials, T̃n, associated to E ⊂ ∂D by requiring
that T̃n minimize

‖Pn‖E = sup
z∈E

|Pn(z)| (8.12)

over all Pn ∈ Pn. We show that for n large, 2T̃2n/‖T̃2n‖E are the rotated discriminants
associated to sets En that approximate an E that is a finite union of intervals. An
important input is the following.

LEMMA 8.4
Let I = (z0, z1) be an interval in ∂D. For any small ϕ, let Iϕ = (z0e

iϕ, z1e
−iϕ), so for

ϕ > 0, Iϕ is smaller than I . For ϕ < 0,

|(z − z0e
iϕ)(z − z1e

−iϕ)|

decreases on ∂D \ I and increases on I as ϕ decreases in (−ε, 0).

Proof
Take z1 = z̄0, and then use some elementary calculus. �

THEOREM 8.5
Let E be a finite union of disjoint closed intervals on ∂D, E = I1 ∪ · · · ∪ I
, and let
∂D \ E = G1 ∪ · · · ∪ G
 have 
 gaps. Then we have the following.
(i) Each T̃n has at most one zero in each G
.
(ii) If z

(n)
j is the zero of T̃n in Gj , then on any compact K ⊂ Gj , we have

lim
n→∞

inf
z∈K

(∣∣∣ T̃n(z)

(z − z
(n)
j )‖Tn‖E

∣∣∣ )1/n

> 1. (8.13)

(iii) At any local maximum, z̃, of |T̃n(z)| in some Ij , we have

|T̃n(z̃)| = ‖T̃n‖E. (8.14)

Proof
(i) If there are two zeros in some Gj , we can symmetrically move the zeros apart.

Doing that increases T̃n on Gj , which is disjoint from E, but it decreases
‖T̃n‖E , contradicting the minimizing definition.
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(ii) The zero counting measure for T̃n converges to the equilibrium measure on E.
For standard Tn’s and E ⊂ R, this result is proved in [1], [22], [26]. A small
change implies this result for T̃n. This, in turn, says that locally uniformly on
Gj ,

∣∣∣ T̃n(z)

(z − z
(n)
j )‖T̃n‖E

∣∣∣1/n

→ exp
(−�ρE

(z)
)
, (8.15)

which implies (8.13).
(iii) Since z−n/2T̃n(z) is real up to a phase, the local maxima of |T̃n(z)| on ∂D

alternate with the zeros of T̃n(z). If a local maximum is smaller than ‖T̃n‖E ,
we move the nearest zeros, say, z0, z1, apart. That decreases ‖T̃n‖E\(z0,z1) and
increases ‖T̃n‖(z0,z1). Since the latter is assumed smaller than ‖T̃n‖E , it decreases
‖T̃n‖E overall, violating the minimizing definition. Thus, |T̃n(z)| ≥ ‖T̃n‖E . But
since z̃ ∈ E, |T̃n(z)| ≤ ‖T̃n‖E . �

Now, define

�n(z) = 2eiϕn T̃2n(z)

‖T̃2n‖E

, (8.16)

where ϕn is chosen to make �n real on ∂D. By (8.14), maxima in E occur with
�n(z) = ±2, and by (8.13), maxima in ∂D \ E occur at points where |�n(z)| > 2.
Thus, up to a phase, �n(z) looks like a discriminant. So, by [24, Theorem 11.4.5],
En ≡ �−1

n ([−2, 2]) is the essential spectrum of a CMV matrix whose Verblunsky
coefficients obey αm+p = λαm for |λ| = 1.

Proof of Theorem 8.3
En has at most 2
 components, 
 containing I1, . . . , I
 (call them I

(n)
1 , . . . , I

(n)

 ), and


 possible components, J
(n)
1 , . . . , J

(n)

 , one in each gap. Since capacities are bounded

by one-quarter times the Lebesgue measure, it suffices to show that


∑
j=1

|I (n)
j \ Ij | + |J (n)

j | → 0

to prove (8.5) and complete the proof. Since, on ∂D,

−�ρE
(x) ≥ c dist(x, E)1/2, (8.17)

by (8.15), we have |I (n)
j \ Ij | → 0 and |J (n)

j | → 0. �
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9. Theorems for subsets of ∂D

Given Theorem 8.1 and our strategies in Sections 3 – 6, we immediately have the
following.

THEOREM 9.1
Let E ⊂ ∂D with ∂E = E \ Eint (Eint means interior in ∂D) having capacity zero.
Let dµ be a measure on ∂D with σess(dµ) = E and

dµ = f (x) dρE + dµs , (9.1)

where dµs is dρE-singular. Suppose that f (x) > 0 for dρE-a.e. x. Then dµ is regular.

THEOREM 9.2
Let I ⊂ E ⊂ ∂D with I a nonempty closed interval and E closed. Let dµ be a
measure on ∂D so that σess(dµ) = E and µ is regular for E. Suppose that

dµ = w(θ)
dθ

2π
+ dµs , (9.2)

and suppose that w(θ) > 0 for a.e. eiθ ∈ I . Then
(i)

1

n + 1
Kn(eiθ , eiθ ) dµs(θ)

w−→ 0,

(ii)
∫

I

∣∣∣ρE(θ) − 1

n + 1
w(θ)Kn(eiθ , eiθ )

∣∣∣ dθ

2π
→ 0,

where dρ(θ) = ρE(θ) dθ

2π
on I .
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