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Abstract. This is a comprehensive review of the uses of potential theory in
studying the spectral theory of orthogonal polynomials. Much of the article
focuses on the Stahl–Totik theory of regular measures, especially the case of
OPRL and OPUC. Links are made to the study of ergodic Schrödinger op-
erators where one of our new results implies that, in complete generality, the
spectral measure is supported on a set of zero Hausdorff dimension (indeed,
of capacity zero) in the region of strictly positive Lyapunov exponent. There
are many examples and some new conjectures and indications of new research
directions. Included are appendices on potential theory and on Fekete–Szegő
theory.

1. Introduction. This paper deals with applications of potential theory to spectral
and inverse spectral theory, mainly to orthogonal polynomials especially on the real
line (OPRL) and unit circle (OPUC). This is an area that has traditionally impacted
both the orthogonal polynomial community and the spectral theory community
with insufficient interrelation. The OP approach emphasizes the procedure of going
from measure to recursion parameters, that is, the inverse spectral problem, while
spectral theorists tend to start with recursion parameters and so work with direct
spectral theory.

Potential theory ideas in the orthogonal polynomial community go back at least
to a deep 1919 paper of Faber [35] and a seminal 1924 paper of Szegő [107] with crit-
ical later developments of Kalmár [63] and Erdös–Turán [34]. The modern theory
was initiated by Ullman [114] (see also [115, 116, 117, 118, 112, 119, 123] and earlier
related work of Korovkin [68] and Widom [122]), followed by an often overlooked
paper of Van Assche [120], and culminating in the comprehensive and deep mono-
graph of Stahl–Totik [105]. (We are ignoring the important developments connected
to variable weights and external potentials, which are marginal to the themes we
study; see [91] and references therein.)

On the spectral theory community side, theoretical physicists rediscovered
Szegő’s potential theory connection of the growth of polynomials and the density of
zeros—this is called the Thouless formula after [110], although discovered slightly
earlier by Herbert and Jones [51]. The new elements involve ergodic classes of
potentials, especially Kotani theory (see [69, 96, 70, 71, 30, 27]).

2000 Mathematics Subject Classification. Primary: 31A15, 05E35, 34L05. Secondary: 31A35,
33D45, 34P05.

Key words and phrases. Potential theory, spectral theory, regular orthogonal polynomials.
∗ Mathematics 253-37, supported in part by NSF grants DMS-0140592 and DMS-0652919 and

U.S.–Israel Binational Science Foundation (BSF) Grant No. 2002068.

713 c©2007 American Institute of Mathematical Sciences



714 Barry Simon

One purpose of this paper is to make propaganda on both sides: to explain some
of the main aspects of the Stahl–Totik results to spectral theorists and the relevant
parts of Kotani theory to the OP community. But this article looks forward even
more than it looks back. In thinking through the issues, I realized there were many
interesting questions to examine. Motivated in part by the remark that one can
often learn from wrong conjectures [56], I make several conjectures which, depending
on your point of view, can be regarded as either bold or foolhardy (I especially have
Conjectures 8.7 and 8.11 in mind).

The potential of a measure µ on C is defined by

(1.1) Φµ(x) =

∫
log|x− y|−1 dµ(y)

which, for each x, is well defined (although perhaps ∞) if µ has compact sup-
port. The relevance of this to polynomials comes from noting that if Pn is a monic
polynomial,

(1.2) Pn(z) =

n∏

j=1

(z − zj)

and dνn its zero counting measure, that is,

(1.3) νn =
1

n

n∑

j=1

δzj

the point measure with nνn({w}) = multiplicity of w as a root of Pn, then

(1.4) |Pn(z)|1/n = exp(−Φνn
(z))

If now dµ is a measure of compact support on C, let Xn(z) and xn(z) be the
monic orthogonal and orthonormal polynomials for dµ, that is,

(1.5) Xn(z) = zn + lower order

with

(1.6)

∫
Xn(z)Xm(z) dµ(z) = ‖Xn‖2

L2δnm

and

(1.7) xn(z) =
Xn(z)

‖Xn‖L2

Here and elsewhere ‖ · ‖ without a subscript means the L2 norm for the measure
currently under consideration.

When supp(dµ) ⊂ R, we use Pn, pn and note (see [108, 39]) there are Jacobi
parameters {an, bn}∞n=1 ∈ [(0,∞) × R]∞, so

xpn(x) = an+1pn+1(x) + bn+1pn(x) + anpn−1(x)(1.8)

‖Pn‖ = a1 . . . anµ(R)1/2

and if supp(dµ) ⊂ ∂D, the unit circle, we use Φn, ϕn and note (see [108, 44, 98, 99])
there are Verblunsky coefficients {αn}∞n=0 ∈ D∞, so

Φn+1(z) = zΦn − ᾱnΦ∗
n(z)(1.9)

‖Φn(z)‖ = ρ0 . . . ρn−1µ(∂D)1/2(1.10)
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where

(1.11) Φ∗
n(z) = zn Φn(1/z̄) ρj = (1 − |αj |2)1/2

As usual, we will use J for the Jacobi matrix formed from the parameters in the
OPRL case, that is, J is tridiagonal with bj on diagonal and aj off-diagonal.

The Xn minimize L2 norms, that is,

(1.12) ‖Xn‖L2(dµ) = min{‖Qn‖L2 | Qn(z) = zn + lower order}
Given a compact E ⊂ C, the Chebyshev polynomials are defined by (L∞ is the sup
norm over E)

(1.13) ‖Tn‖L∞(E) = min{‖Qn‖L∞ | Qn(z) = zn + lower order}
These minimum conditions suggest that extreme objects in potential theory, namely,
the capacity, C(E), and equilibrium measure, dρE , discussed in [50, 73, 81, 88, 91]
and Appendix A will play a role (terminology from Appendix A is used extensively
below). In fact, going back to Szegő [107] (we sketch a proof in Appendix B), one
knows

Theorem 1.1 (Szegő [107]). For any compact E ⊂ C with Chebyshev polynomials,

Tn, one has

(1.14) lim
n→∞

‖Tn‖1/n
L∞(E) = C(E)

This has an immediate corollary (it appears with this argument in Widom [122]
and may well be earlier):

Corollary 1.2. Let µ be a measure of compact support, E, in C. Let Xn(z; dµ) be

its monic OPs. Then

(1.15) lim sup
n→∞

‖Xn‖1/n
L2(C,dµ) ≤ C(E)

Proof. By (1.12),

(1.16) ‖Xn‖1/n
L2(C,dµ) ≤ ‖Tn‖1/n

L2(C,dµ)

where Tn are the Chebyshev polynomials for E. On E, |Tn(z)| ≤ ‖Tn‖L∞(E) so,
since supp(dµ) = E,

(1.17) ‖Xn‖1/n
L2(C,dµ) ≤ ‖Tn‖1/n

L∞(E)µ(E)1/2n

and (1.15) follows from (1.14).

For OPRL and OPUC, the relation (1.15) says

lim sup(a1 . . . an)1/n ≤ C(E) (OPRL)(1.18)

lim sup(ρ1 . . . ρn)1/n ≤ C(E) (OPUC)(1.19)

(1.18) is a kind of thickness indication of the spectrum of discrete Schrödinger
operators (with aj ≡ 1) where it is not widely appreciated that C(E) ≥ 1.

In many cases that occur in spectral theory, one considers discrete and essen-
tial spectrum. In this context, σess(dµ) is the nonisolated points of supp(dµ).
σd(dµ) = supp(dµ) \ σess(dµ) is a countable discrete set. If dν is any measure
with finite Coulomb energy ν(σd(dµ)) = 0, thus C(supp(dµ)) = C(σess(dµ)); so we
will often consider E = σess(dµ) in (1.15). In fact, as discussed in Appendix A after
Theorem A.13, we should take E = σcap(dµ).
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The inequality (1.16) suggests singling out a special case. A measure dµ of
compact support, E, on C is called regular if and only if

(1.20) lim
n→∞

‖Xn‖1/n
L2(dµ) = C(E)

For E = [−1, 1], this class was singled out by Ullman [114]; the general case is due
to Stahl–Totik [105].

Example 1.3. The Nevai class , N(a, b), with a > 0, b ∈ R, is the set of probability
measures on R whose Jacobi parameters obey

(1.21) an → a bn → b

The Jacobi matrix with an ≡ a, bn ≡ b is easily seen to have spectrum

(1.22) E(a, b) = [b − 2a, b+ 2a]

so, by (A.8),

(1.23) C(E(a, b)) = a

By Weyl’s theorem, if µ ∈ N(a, b), σess(µ) = E(a, b), so µ is regular.

Example 1.4. Here is an example of a regular measure on R not in a Nevai class.
Let dµ be the measure with Jacobi parameters bn ≡ 0 and

(1.24) an =

{
1 n 6= k2 for all k
1
2 n = k2 for some k

Clearly, lim(a1 . . . an)1/n = 1, so if supp(dµ) = [−2, 2] (which has capacity 1 by
(1.23)), we will have a regular measure not in a Nevai class. Since ( 0 c

c 0 ) ≥
(−c 0

0 −c

)

for any c > 0, the Jacobi matrix J associated to dµ is bounded below by a diagonal
matrix with elements either − 1

2 , −1, − 3
2 , or −2 (for n = 1, 2, k2 or k2 + 1 and

otherwise), so J ≥ −2. Similarly, J ≤ 2. Thus, σ(J) = supp(dµ) ⊂ [−2, 2].
On the other hand, since lim(a1 . . . an)1/n = 1, (1.18) implies C(E) ≥ 1 where
E = supp(dµ). If E $ [−2, 2], it is missing an open subset and so |E| < 4 and
C(E) < 1 (by (A.57)). Thus C(E) ≥ 1 implies E = [−2, 2]. Alternatively, using
plane wave trial functions cut off to live in [k2+2, (k+1)2−1], we easily see directly
that [−2, 2] ⊂ σ(J).

This example has no a.c. spectrum by results of Remling [90]. In Section 8 (see
Example 8.12), we have models which are regular, not in Nevai class with nonempty
a.c. spectrum.

Example 1.5. The CN (for Cesàro–Nevai) class was introduced by Golinskii-
Khrushchev [46] for OPUC and it has an OPRL analog. For OPRL, it says

(1.25)
1

n

[ n∑

j=1

|aj − 1| + |bj |
]
→ 0

Example 1.4 is in this class and is regular, but it is not true that every element
of CN for OPRL is regular; for example, if an ≡ 1 and each bj is 0 or 1 so (1.25)
holds but with arbitrarily long strings of only 0’s and also of only 1’s, e.g., bj = 1
if n2 ≤ j ≤ n2 + n and bj = 0 otherwise. Then σ(J) = [−2, 3] with C(σ(J)) = 5

4 ,

but (a1 . . . an)1/n → 1. (To see that σ(J) = [−2, 3], let J+, J− be the matrices with
an ≡ 1 and bn ≡ 1 (for J+) and bn ≡ 0 (for J−). Then −2 ≤ J− ≤ J ≤ J+ ≤ 3,
so σ(J) ⊂ [−2, 3]. On the other hand, because of the long strings, a variational
argument shows σ(J+) ∪ σ(J−) ⊂ σ(J).) However, for OPUC, the subset of CN
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class with supn|αn| < 1 consists of only regular measures. For by Theorem 4.3.17
of [98], σ(dµ) = ∂D with capacity 1. On the other hand, if A = supn|αn| and

L(A) = − log(1 −A)

2A

then (since log|1 − x| is convex)

− log ρj ≤ L(A)|αj |2

so

1

n

n−1∑

j=0

log ρj ≤ L(A)
1

n

n−1∑

j=0

|αj |2 ≤ L(A)
1

n

n−1∑

j=0

|αj |

goes to zero so (ρ0 . . . ρn−1)
1/n → 1. It is easy to see that if supn|αn| < 1 is dropped,

regularity can be lost.

Example 1.6. Let an ≡ 1
2 and let bn = ±1 chosen as identically distributed random

variables. As above, all these random J ’s have −2 ≤ J ≤ 2, so supp(dµ) ⊂ [−2, 2].
Since there will be, with probability 1, long stretches of bn ≡ 1 or bn ≡ −1, it is
easy to see supp(dµ) ⊃ ([−1, 1]+1)∪([−1, 1]−1) = [−2, 2]. Thus, a typical random
dµ has support [−2, 2] with capacity 1, but obviously lim(a1 . . . an)1/n = 1

2 . This
shows there are measures which are not regular. By Example 1.3, random slowly
decaying Jacobi matrices are regular, so neither randomness nor pure point measures
necessarily destroy regularity. We return to pure point measures in Theorem 5.5
and Corollary 5.6.

Section 8 has many more examples of regular measures. Regularity is important
because of its connections to zero distributions and to root asymptotics. Let dνn

denote the zero distribution for Xn(z) defined by (1.3). Then

Theorem 1.7. Let dµ be a measure on R with σess(dµ) = E compact and C(E) > 0.
If µ is regular, then dνn converges weakly to dρE, the equilibrium measure for E.

Remarks. 1. For E = [0, 1], ideas close to this occur in Erdös–Turán [34]. The
full result is in Stahl–Totik [105] who prove a stronger result. Rather than E ⊂ R,
they need that the unbounded component, Ω, of C \E is dense in C. We will prove
Theorem 1.7 in Section 2.

2. The result is false for measures on ∂D. Indeed, it fails for dµ = dθ
2π , that is,

αn ≡ 0 and Φn(z) = zn. However, there is a result for paraorthogonal polynomials
and for the balayage of dνn. Theorem 1.7 is true if supp(dµ) ⊂ ∂D but is not all
of ∂D. We will discuss this further in Section 3 where we also prove a version of
Theorem 1.7 for OPUC.

For later purposes, we note

Proposition 1.8. Let dµ be a measure on R with σess(dµ) = E compact. Then

any limit of dνn is supported on E.

Proof. It is known (see [98, Sect. 1.2]) that if (a, b)∩ supp(dµ) = ∅, then Pn(x) has
at most one zero in (a, b). It follows that if e is an isolated point of supp(dµ), then
(e− δ, e+ δ) has at most three zeros for δ small (with more argument, one can get
two). Thus, points not in E have neighborhoods, N , with νn(N) ≤ 3

n .

Stahl–Totik [105] also have the following almost converse (their Sect. 2.2)—for
E ⊂ R, we prove a slightly stronger result; see Theorem 2.5.
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Theorem 1.9. Let dµ be a measure on R with σess(dµ) = E compact and C(E) > 0.
Suppose that dνn → dρE, the equilibrium measure. Then either dµ is regular or there

exists a Borel set, X, with dµ(R \X) = 0 and C(X) = 0.

Remarks. 1. As an example where such an X exists even though C(supp(µ)) > 0,
consider a µ which is dense pure point on [−2, 2].

2. In Section 8, we will see explicit examples where dνn → dρE but dµ is not
regular.

The other connection is to root asymptotics of the OPs. Recall the Green’s
function, GE(z), is defined by (A.40); it vanishes q.e. (quasi-everywhere, defined in
Appendix A) on E, is harmonic on Ω, and asymptotic to log|z| − logC(E) + o(1)
as |z| → ∞. The main theorem on root asymptotics is:

Theorem 1.10. Let E ⊂ C be compact and let µ be a measure of compact support

with σess(µ) = E. Then the following are equivalent:

(i) µ is regular, that is, limn→∞ ‖Xn‖1/n
L2(dµ) = C(E).

(ii) For all z in C, uniformly on compacts,

(1.26) lim sup|xn(z)|1/n ≤ eGE(z)

(iii) For q.e. z in ∂Ω (with Ω the unbounded connected component of C \ E), we

have

(1.27) lim sup|xn(z)|1/n ≤ 1

Moreover, if (i)–(iii) hold, then (here cvh = closed convex hull)
(iv) For every z ∈ C \ cvh(supp(dµ)), we have

(1.28) lim
n→∞

|xn(z)|1/n = eGE(z)

(v) For q.e. z ∈ ∂Ω,

(1.29) lim sup
n→∞

|xn(z)|1/n = 1

(vi) For any sequence Qn(z) of polynomials of degree n, for all z ∈ C,

(1.30) lim sup

∣∣∣∣
Qn(z)

‖Qn‖L2(dµ)

∣∣∣∣
1/n

≤ eGE(z)

Remark. It is easy to see that (iv), (v) or (vi) are equivalent to (i)–(iii).

For E ⊂ R, we will prove this in Section 2. For E ⊂ ∂D, we prove it in Section 3.
The original result asserting cases where regularity holds was proven in 1940!

Theorem 1.11 (Erdös–Turán [34]). Let dµ be supported on [−2, 2] and suppose

(1.31) dµ(x) = w(x) dx + dµs

with dµs singular. Suppose w(x) > 0 for a.e. x in [−2, 2]. Then µ is regular.

Remarks. 1. Erdös–Turán [34] worked on [−1, 1] and had dµs = 0.

2. We now have a stronger result than this—namely, Rakhmanov’s theorem (see
[99, Ch. 9]). If w(x) > 0 for a.e. x, one knows an → 1 (and bn → 0) much more
than (a1 . . . an)1/n → 1 (equivalently, we have ratio asymptotics on the p’s and not
just root asymptotics). Regularity is a “poor man’s” Rakhmanov’s theorem. But
unlike Rakhmanov’s theorem which is only known for a few other E’s (see [29, 90]
and the discussion in Section 8), this weaker version holds very generally.
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3. In this case, dρE is equivalent to dx, so (1.31) and W (x) > 0 for a.e. x is
equivalent to saying that ρE is µ-a.c.

In Section 4, we will prove the following vast generalization of the Erdös–Turán
result:

Theorem 1.12 (Widom [122]). Let µ be a measure on R with compact support and

E = σess(dµ) and C(E) > 0. Suppose dρE is the equilibrium measure for E and

(1.32) dµ = w(x) dρE(x) + dµs

where dµs is dρE-singular. Suppose w(x) > 0 for dρE-a.e. x. Then µ is regular.

Remarks. 1. As above, (1.32) + w(x) > 0 is equivalent to saying that dρE is
absolutely continuous with respect to dµ.

2. Widom’s result is much more general than what we have in this theorem. His
E is a general compact set in C. His polynomials are defined by general families
of minimum conditions, for example, Lp minimizers. Most importantly, he has a
general family of support conditions that, as he notes in a one-sentence remark,
include the case where dρE is a.c. with respect to dµ. Because of its spectral
theory connection, we have focused on the L2 minimizers, although it is not hard
to accommodate more general ones. We focus on the w > 0 case because if one
goes beyond that, it is better to look at conditions that depend on weights and not
just supports of the measure as Widom (and Ullman [114]) do (see Theorem 1.13
below).

3. In Section 4, we will give a proof of this theorem due to Van Assche [120] who
mentions Widom’s paper but says it is not clear his hypotheses apply despite an
explicit (albeit terse) aside in Widom’s paper. Stahl–Totik [105] state Theorem 1.12
explicitly. They seem to be unaware of Van Assche’s paper or Widom’s aside.

It was Geronimus [43] who seems to have first noted that there are non-a.c.
measures which are regular (and later Widom [122] and Ullman [114]). Of course,
with the discovery of Nevai class measures which are not a.c. [95, 32, 111, 78, 79,
80, 97, 67], there are many examples, but given a measure, one would like to know
effective criteria. Stahl–Totik [105, Ch. 4] have many, of which we single out:

Theorem 1.13 (Stahl–Totik [105]). Let E be a finite union of disjoint closed in-

tervals in R. Suppose µ is a measure on R with σess(dµ) = E, and for any η > 0
(|·| is Lebesgue measure),

(1.33) lim
m→∞

∣∣{x
∣∣ µ([x− 1

m , x+ 1
m ]) ≤ e−mη

}∣∣ = 0

Then µ is regular.

Theorem 1.14 (Stahl–Totik [105]). Let E be a finite union of disjoint closed in-

tervals in R. Suppose µ is a measure on R and that µ is regular. Then for any

η > 0,

(1.34) lim
m→∞

C
({
x ∈ E

∣∣ µ([x− 1
m , x+ 1

m ]) ≤ e−mη
})

= 0

Remarks. 1. We will prove Theorem 1.13 in Section 5.

2. Stahl–Totik [105] state these results for E = [−1, 1], but it is easy to accom-
modate finite unions of disjoint closed intervals; see Corollary 6.6.
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In Section 6, we turn to structural results (all due to Stahl–Totik [105]) con-
nected to inheritance of regularity when measures have a relation, for example,
when restrictions of regular measures are regular.

Section 7 discusses relations of potential theory and ergodic Jacobi matrices.
This theory concerns OPRL (or OPUC) whose recursion coefficients are samples
of an ergodic process—as examples, totally random or almost periodic cases. In
that case, various ergodic theorems guarantee the existence of lim(a1 . . . an)1/n, of
dν∞ ≡ lim dνn, and of a natural Lyapunov exponent, γ(z), which off of supp(dµ) is
lim|pn(z; dµ)|1/n and is subharmonic on C. In that section, we will prove some of
the few new results of this paper:

Theorem 1.15. Let dµω be the measures associated to an ergodic family of OPRL,

dν∞ and γ its density of states and Lyapunov exponent. Let E = supp(dν∞). Then

the following are equivalent:

(a) γ(x) = 0 for dρE-a.e. x

(b) lim
n→∞

(a1(ω) . . . an(ω))1/n = C(E)(1.35)

for a.e. ω. Moreover, if (a) and (b) hold, then

(1.36) dν∞(x) = dρE(x)

with dρE the equilibrium measure for E. Conversely, if (1.36) holds, either (a) and

(b) hold, or else for a.e. ω, dµω is supported on a set of capacity zero.

Remarks. 1. We will prove that for a.e. ω,

(1.37) lim
n→∞

(a1(ω) . . . an(ω))1/n = C(E) exp

(
−

∫
γ(x) dρE(x)

)

2. In Section 8, we will see examples where dν∞ = dρE but (1.35) fails. Of
course, (a) also fails.

The following is an ultimate version of what is sometimes called the Pastur–Ishii
theorem (see Section 7).

Theorem 1.16. Let dµω be a family of measures associated to an ergodic family of

OPRL and let γ be its Lyapunov exponent. Let S ⊂ R be the Borel set of x ∈ R with

γ(x) > 0. Then for a.e. ω, there exists Qω of capacity zero so dµω(S \Qω) = 0. In

particular, dµω ↾ S is of local Hausdorff dimension zero.

We should explain what is really new in this theorem. It has been known since
Pastur [86] and Ishii [53] that for ergodic Schrödinger operators, the spectral mea-
sures are supported on the eigenvalues union the bad set where Lyapunov behavior
fails (this bad set actually occurs, e.g., [12, 60]). The classic result is that the bad
set has Lebesgue measure zero. The new result here (elementary given a potential
theoretic point of view!) is that the bad set has capacity zero.

Section 8 describes examples, open questions, and conjectures. Section 9 has
some remarks on the possible extensions of these ideas to continuum Schrödinger
operators. Appendix A is a primer of potential theory and Appendix B proves
Theorem 1.1 on Chebyshev polynomials.

It is a pleasure to thank Jonathan Breuer, Jacob Christiansen, David Damanik,
Svetlana Jitomirskaya, Yoram Last, Christian Remling, Vilmos Totik, and Maxim
Zinchenko for useful discussions. I would also like to thank Ehud de Shalit and
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Yoram Last for the hospitality of the Einstein Institute of Mathematics of the
Hebrew University where part of this paper was written.

2. Regular Measures for OPRL. In this section, our main goal is to prove
Theorems 1.7 and 1.10 for OPRL. The key will be a series of arguments familiar to
spectral theorists as the Thouless formula, albeit in a different (nonergodic) guise.
The key will be an analog of positivity of the Lyapunov exponent off the spectrum.

Lemma 2.1. (a) Let J be a bounded Jacobi matrix and let H be the convex hull

of the spectrum of J . For any ϕ ∈ L2(R, dµ),

(2.1) |〈ϕ, (J − z)ϕ〉| ≥ dist(z,H)‖ϕ‖2

(b) The Jacobi parameters an obey (recall an > 0)

(2.2) an ≤ 1
2 diam(H)

Proof. In a spectral representation, J is multiplication by x. If d = dist(z,H), there
is ω ∈ ∂D with Re[(x− z)ω] ≥ d for all x ∈ H . Thus Re(〈ϕ, (J − z)ϕ〉ω) ≥ d‖ϕ‖2,
which yields (2.1).

Let D = 1
2 diam(H) and c = center of H so H = [c−D, c+D]. Then

an =

∫
xpnpn−1 dµ

=

∫
(x− c)pnpn−1 dµ

≤ sup
σ(J)

|x− c| = D

proving (2.2).

The following is related to the proof of Theorem 4.3.15 in [98]:

Proposition 2.2. Let dµ be a measure on R of compact support, pn(x, dµ) the

normalized OPRL, and H the convex hull of the support of dµ. For z /∈ H, let

d(z) = dist(z,H). Let D = 1
2 diam(H). Then for such z,

(2.3) |pn(z, dµ)|2 ≥
(
d

D

)2(
1 +

(
d

D

)2)n−1

In particular, pn(z) 6= 0 for all n and

(2.4) lim inf|pn(z, dµ)|1/n ≥
(

1 +

(
d

D

)2)1/2

> 1

Remark. Of course, it is well known that pn has all its zeros on H .

Proof. Let ϕn(x) be the function

(2.5) ϕn(x) =

n∑

j=0

pn(z)pn(x)

which has components ϕn = 〈p0(z), . . . , pn(z), 0, 0, . . . 〉 in pn(x) basis. Then, by
the recursion relation,

(2.6) [(J − z)ϕn]j =





0 j 6= n, n+ 1

−an+1pn+1(z) j = n

an+1pn(z) j = n+ 1
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(a version of the CD formula!). Thus,

(2.7) 〈ϕn, (J − z)ϕn〉 = −an+1pn+1(z) pn(z)

and (2.1) becomes

(2.8) an+1|pn+1(z)pn(z)| ≥ d
n∑

j=0

|pj(z)|2

By (2.2),

(2.9) |pn+1(z)pn(z)| ≥ d

D

n∑

j=0

|pj(z)|2

Next use 2|xy| ≤ αx2 + α−1y2 for any α to see

(2.10) |pn+1(z)pn(z)| ≤ 1

2

d

D
|pn(z)|2 +

1

2

D

d
|pn+1(z)|2

which, with (2.9), implies

(2.11) |pn+1(z)|2 ≥
(
d

D

)2 n∑

j=0

|pj(z)|2

This implies that

(2.12)

n+1∑

j=0

|pj(z)|2 ≥
[
1 +

(
d

D

)2] n∑

j=0

|pj(z)|2

so, since p0(z) = 1, we obtain

(2.13)

n∑

j=0

|pj(z)|2 ≥
[
1 +

(
d

D

)2]n

(2.13) plus (2.11) imply (2.3), and that implies (2.4).

Remark. (2.4) is also related to Schnol’s theorem (see [92, 93] and [98,
Lemma 4.3.13]) and to Combes–Thomas estimates [23, 1].

This yields the key estimate, given the following equality:

Theorem 2.3. Let dµ be a measure of compact support on R with H the convex

hull of supp(dµ). Let n(j) be a subsequence (i.e., n(1) < n(2) < n(3) < . . . in

{0, 1, 2, . . .}) so that the zero counting measures dνn(j) have a weak limit dν∞ and

so that (a1 . . . an(j))
1/n(j) has a nonzero limit A. Then, for any z /∈ H,

(2.14) lim
j→∞

|pn(j)(z)|1/n(j) = A−1 exp(−Φν∞
(z))

where Φν is the potential of ν. In particular,

(2.15) exp(−Φν∞
(z)) > A

Proof. (1.4) says that

(2.16) |pn(j)(z)|1/n(j)(a1 . . . an(j))
1/n(j) = exp(−Φνn(j)

(z))

For z /∈ H , log|z − y|−1 is continuous on H so since νn and so ν∞ are supported
on H (indeed, ν∞ is supported on σess(dµ)), Φνn(j)

(z) → Φν∞
(z) and (2.16) implies

(2.14). By (2.4), LHS of (2.14) > 1, which implies (2.15).
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Note: (2.15) implies that Φν∞
is bounded above which, by arguments of Craig–

Simon [25], implies ν∞((−∞, E]) is log-Hölder continuous. This is a new result,
although the fact for ergodic Jacobi matrices is due to Craig–Simon [25].

This yields an independent proof of Corollary 1.2 for OPRL, and more:

Theorem 2.4. Under the hypotheses of Theorem 2.3, if E = σess(dµ), then A ≤
C(E), and if A = C(E), then dν∞ = dρE , the equilibrium measure for E. In

particular, if µ is regular (i.e., lim(a1 . . . an)1/n = C(E)), then dνn → dρE and

(1.28) holds for z /∈ H.

Remark. Thus, we have proven Corollary 1.2 again, Theorem 1.7, and one part of
Theorem 1.10.

Proof. By (2.15) for z /∈ H ,

(2.17) Φν∞
(z) ≤ log(A−1)

By lower semicontinuity, this also holds on H . Integrating dν∞ using (A.6), we
obtain

(2.18) E(ν∞) ≤ log(A−1)

Since infν(E(ν)) = log(C(E)−1), we obtain log(C(E)−1) ≤ log(A−1), that is, A ≤
C(E). By uniqueness of minimizers, if A = C(E), dν∞ = dρE and regularity implies
dρE is the only limit point. By compactness, dνn → dρE , and then, by (2.14), we
obtain (1.28) for z /∈ H .

Completion of the Proof of Theorem 1.10 for OPRL. We proved above that (i) ⇒
(iv) and so, by the submean property of |f(z)|1/n (alternatively, by the subhar-
monicity of log|f(z)|) for analytic functions, we get (ii) also on H and thus have (i)
⇒ (ii) in full. (ii) ⇒ (iii) is trivial.

(iii) ⇒ (i). Pick a subsequence n(j) so that (a1 . . . an(j))
1/n(j) →

lim inf(a1 . . . an(j))
1/n = A, and so νn(j) → ν∞. By (1.4) and Theorem A.7,

(iii) implies for q.e. x in E we have that Φν∞
(x) ≥ log(A−1). Thus, since dρE gives

zero weight to zero capacity sets (see Proposition A.6) and (A.2),

log(A−1) ≤
∫

log Φν∞
(x) dρE(x)

=

∫
ΦρE

(x) dν∞(x)

≤ log(C(E)−1)(2.19)

by (A.23). Thus A−1 ≤ C(E)−1, so C(E) ≤ A. By Theorem 2.4 (or Corollary 1.2),
we see A = C(E), that is, µ is regular.

The reader may be concerned about this argument if A = 0. But in that case,
Theorem A.7 and (1.27) imply that q.e. on E, Φν(x) = ∞ which is inconsistent
with Theorem A.11 (or with Corollary A.5). Thus (1.27) implies A > 0.

(i) ⇒ (v). This is immediate from Theorem 2.4, the fact that equality holds q.e. in

(A.15) and in (A.23).

(ii) ⇒ (vi). Without loss, we can redefine Qn so ‖Qn‖L2(dµ) = 1. Then

(2.20) Qn(z) =
n∑

j=0

cj,npj(z, dµ)
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where

(2.21)
n∑

j=0

|cj,n|2 = 1 ⇒ |cj,n| ≤ 1

Thus

(2.22) |Qn(z)| ≤ n sup
0≤j≤n

|pj(z, dµ)|

and (1.26) ⇒ (1.30).

This completes the proof of Theorem 1.10 for OPRL and our presentation of
the key properties of regular measures for OPRL. We turn to relations between the
support of dµ and regularity of the density of zeros that will include Theorem 1.9.

Theorem 2.5. Let dµ be a measure of compact support, E, with Jacobi parame-

ters, {an, bn}∞n=1. Let n(j) be a subsequence so that dνn(j) has a limit, dρE, the

equilibrium measure for E. Then either

(a)

(2.23) lim
j→∞

(a1 . . . an(j))
1/n(j) = C(E)

or

(b) µ is carried by a set of capacity zero, that is, there is X ⊂ E of capacity zero

so µ(R \X) = 0.

Proof. Let A be a limit point of (a1 . . . an(j))
1/n. If A = 0, interpret A−1 as ∞. By

(2.16) and the upper envelope theorem (Theorem A.7), we see for some subsubse-
quence ñ(j),

(2.24) lim
j→∞

|pñ(j)(x)|1/ñ(j) = A−1 exp(−ΦρE
(x))

for q.e. x. By Theorem A.10, ΦρE
(x) = log(C(E)−1) for q.e. x. So for q.e. x ∈ E,

(2.25) lim
j→∞

|pñ(j)(x)|1/ñ(j) = A−1C(E)

On the other hand (see (4.14) below), for µ-a.e. x, we have

(2.26) |pn(x)| ≤ C(x)(n + 1)

so for such x,

(2.27) lim sup|pn(x)|1/n ≤ 1

If A < C(E), then C(E)
A > 1, so (2.27) can only hold on the set of capacity zero

where (2.25) fails, that is, either A = C(E) (since it is always true that A ≤ C(E))
or µ is carried by a set of capacity zero.

Before leaving the subject of OPRL, we want to say something about nonregular
situations:

Theorem 2.6. Let µ be a fixed measure of compact support on R.

(a) The set of limit points of (a1 . . . an)1/n is always a closed interval.

(b) The set of limits of zero counting measures dνn is always a closed compact set.
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Remarks. 1. As quoted in [119], where the first proof of (a) appeared, (a) is a
theorem of Freud and Ziegler.

2. Part (b) was conjectured in Ullman [117] and is proven in Stahl–Totik [105]
(see Theorem 2.1.4 of [105]).

3. Stahl–Totik [105] also prove (their Theorem 2.2.1) that so long as no carrier
of µ has capacity zero, the existence of a limit for dνn(j) implies the existence of a

limit for (a1 . . . an(j))
1/n(j). However, as we will see (Example 2.7), the converse is

false.

Proof. We sketch the proof of (a); the proof of (b) can be found in [105] and is
similar in spirit. The set of limit points is a closed subset of [0, C(E)]. If it is not
connected, we can find limit points A < B and c ∈ (A,B) which is not a limit point.

Thus, there are N and ε so for n > N ,

(2.28) Γn ≡ (a1 . . . an)1/n /∈ (c− ε, c+ ε)

Suppose Γn < c− ε and let D = 1
2 diam(cvh(supp(µ))) ≥ an by (2.2). Then

(2.29) Γn+1 = a
1/n+1
n+1 Γn/n+1

n ≤ D1/n+1(c− ε)n/n+1

Since RHS of (2.29) converges to c− ε, we can find N1 so

(2.30) n ≥ N1 ⇒ RHS of (2.29) ≤ c

Thus n ≥ N , n ≥ N1, and Γn ≤ c − ε implies Γn+1 ≤ c − ε (by (2.28)). It follows
that Γn cannot have both A and B as limit points.

This contradiction proves the set of limit points is an interval.

Example 2.7. This example shows that (a1 . . . an)1/n may have a limit (necessarily
strictly less than C(E)) but dνn does not. A more complicated example appears as
Example 2.2.7 in [105]. Let an ≡ 1 (so (a1 . . . an)1/n → 1) and

bn =

{
1 N2ℓ ≤ n < N2ℓ+1

−1 N2ℓ+1 ≤ n < N2ℓ+2

where Nℓ = 23ℓ

. It is easy to see by looking at traces of powers of the cutoff Jacobi
matrix that dνN2

2ℓ
→ dρ[−1,3] and dνN2

2ℓ+1
→ dρ[−3,1].

There is another result about the set of limit points that should be mentioned
in connection with work of Ullman and collaborators. Define cµ to be inf of the
capacity of Borel sets, S, which are carriers of µ in the sense that µ(R \ S) = 0.
For example, if µ is a dense pure point measure with support E = [−2, 2], µ is
supported on a countable set, so cµ = 0 even though C(E) = 1. Then, in general,

Ullman shows that any limit point of (a1 . . . an)1/n lies in [cµ, C(supp(dµ))], and
Wyneken [123] proved that given any µ and any [A,B] ⊂ [cµ, C(supp(dµ))], there
is η mutually equivalent to µ so the set of limit points of Γn(η) is [A,B] (see also
Theorem 5.4 below).

In particular, these results show that if cµ = C(supp(dµ)), then µ is regular—a
theorem of Ullman [114], although Widom [122] essentially had the same theorem
(this oversimplifies the relation between Widom [122] and Ullman [114]; see [105,
Ch. 4]). We have not discussed this result in detail because the Stahl–Totik criterion
of Theorem 1.13 essentially subsumes these earlier works (at least for E a finite union
of closed intervals) and we will prove that in Section 5.
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3. Regular Measures for OPUC. In this section, we will prove Theorem 1.10
for OPUC and an analog of Theorem 1.7. Here one issue will be that if E = ∂D,
the zero density may not converge to a measure on ∂D. The key step concerns
Proposition 2.2, which essentially depended on the CD formula which is only known
for OPRL and OPUC, and where the OPUC version is not obviously relevant.
Instead, we will see, using operator theoretic methods [101], that there is a kind of
“half CD formula” that suffices. We begin with an analog of Lemma 2.1:

Lemma 3.1. (a) Let µ be a measure of compact support on C and H the convex

hull of the support of µ. Let Mz be multiplication by z on L2(C, dµ). Then for

any z0 ∈ C and ϕ ∈ L2(C, dµ), we have

(3.1) |〈ϕ, (Mz − z0)ϕ〉| ≥ dist(z0, H)‖ϕ‖2

(b) Let D be defined by

(3.2) D = min
w

[
max
z∈H

|z − w|
]

(which lies between 1
2 diam(H) and diam(H)). Then

(3.3) ‖Xn+1‖L2(dµ) ≤ D‖Xn‖L2(dµ)

Proof. (a) Let ω ∈ ∂D. Then

|〈ϕ, (Mz − z0)ϕ〉| ≥
∫

Re((z − z0)ω̄)|ϕ(z)|2 dµ(z)

≥ min
z∈H

Re((z − z0)ω̄)‖ϕ‖2

Maximizing over ω yields (3.1).

(b) Since (z − w)Xn is a monic polynomial of degree n+ 1,

‖Xn+1‖ ≤ ‖(z − w)Xn‖ ≤ max
z∈H

|z − w|‖Xn‖

Minimizing over w yields (3.3).

To get the analog of (2.7), we need

Proposition 3.2. Let dµ be a measure of compact support on C and let Mz be

multiplication by z on L2(C, dµ). Let K be the orthogonal projection in L2(C, dµ)
onto the n+ 1-dimensional subspace polynomials of degree at most n. Then

(3.4) [Mz,K]K =
‖Xn+1‖
‖Xn‖

[〈xn, · 〉xn+1]

Remark. This is essentially “half” the CD formula; operator theoretic approaches
to the CD formula are discussed in [101].

Proof. For any ϕ,

(3.5) [Mz,K]Kϕ = (1 −K)z(Kϕ)

This clearly vanishes if Kϕ = 0 or if ϕ ∈ ranKn−1. Thus, it is a rank one operator.
Moreover, since (1 −K)zXn = Xn+1, we see

[Mz,K]KXn = Xn+1

Since Xn+1 = ‖Xn+1‖xn+1 and Xn = ‖Xn‖xn, we see that (3.4) holds.
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Proposition 3.3. Let dµ be a measure of compact support on C, xn(z; dµ) the

normalized OPs, and H the convex hull of the support of dµ. For z0 /∈ H, let

d(z0) = dist(z0, H) and let D be given by (3.2). Then for such z0,

(3.6) |xn(z0; dµ)|2 ≥
(
d

D

)2(
1 +

(
d

D

)2)n−1

In particular, xn(z0) 6= 0 for all n and

(3.7) lim inf|xn(z0; dµ)|1/n ≥
(

1 +

(
d

D

)2)1/2

> 1

Remark. Again, it is well known (a theorem of Fejér) that zeros of xn lie in H .

Proof. Define

(3.8) ϕn(w) =

n∑

j=0

xj(z0)xj(w)

We claim

(3.9) 〈ϕn, (Mz − z0)ϕn〉 = −‖Xn+1‖
‖Xn‖

xn(z0)xn+1(z0)

This is precisely an analog of (2.7). Given this and Lemma 3.1, the proof is identical
to that of Proposition 2.2.

To prove (3.9), we note the integral kernel of Kn is

(3.10) Kn(s, t) =

n∑

j=0

pj(s) pj(t)

and that (3.4) says

(3.11)

∫
(s− w)Kn(s, w)Kn(w, t) dµ(w) =

‖Xn+1‖
‖Xn‖

xn+1(s)xn(z0)

(3.11) originally holds for a.e. s, t in supp(dµ), but since both sides are polynomials
in s and t̄, for all s, t. Setting s = t = z0, (3.11) is just (3.9).

Now we want to specialize to OPUC. The zeros in that case lie in D. One defines
the balayage of the zeros measure, dνn, on ∂D by

(3.12) P(dν) = F (θ)
dθ

2π

where

(3.13) F (θ) =

∫
1 − |z|2
|eiθ − z|2 dνn(z)

It is the unique measure on ∂D with

(3.14)

∫
zkP(dνn) =

∫
zk dνn(z)

for k ≥ 0 (see [98, Prop. 8.2.2]).
Since |z| > 1 ≥ |w| implies

(3.15) log|z − w|−1 = − log|z| + Re

( ∞∑

j=1

1

j

(
w

z

)j)
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by (3.14), we have

(3.16) |z| > 1 ⇒ Φνn
(z) = ΦP(dνn)(z)

If dνn → dν∞, then P(dνn) → P(dν∞), and this equals dν∞ if dν∞ is a measure
on ∂D. If supp(dµ) $ ∂D, then it is known that the bulk of the zeros goes to
∂D (Widom’s zero theorem; see [98, Thm. 8.1.8]), so dν∞ is a measure on ∂D.
It is also known (see [98, Thm. 8.2.7]) that the zero counting measures for the
paraorthogonal polynomials (POPUC) have the same weak limits as P(dνn). The
analogs of Theorems 2.3 and 2.4 are thus:

Theorem 3.4. Let dµ be a measure on ∂D, the unit circle. Let n(j) be a subse-

quence with n(1) < n(2) < . . . so that (ρ1 . . . ρn(j))
1/n(j) has a nonzero limit A and

so that there is a measure dν∞ on ∂D which is the weak limit of P(dνn(j)) (equiv-

alently, of dνn(j) if supp(dµ) 6= ∂D; equivalently, of the zero counting measures of

POPUC). Then for any |z| > 1 or z /∈ ∂D \ supp(dµ),

(3.17) lim
j→∞

|ϕn(j)(z)|1/n(j) = A−1 exp(−Φν∞
(z))

In particular,

(3.18) exp(−Φν∞
(z)) ≥ A

It follows that if E = σess(dµ), then A ≤ C(E), and if µ is regular (i.e.,
(ρ1 . . . ρn)1/n → C(E)), then every limit point of P(dνn(j)) is the equilibrium mea-

sure dνE. So P(dνn) → dνE (and if E 6= ∂D, dνn → dνE).

Proof. Given the above discussion and results, this is identical to the proofs of
Theorems 2.3 and 2.4.

By mimicking the proof we give for Theorem 1.10 for OPRL, we obtain the same
result for OPUC.

4. Van Assche’s Proof of Widom’s Theorem. In this section, we will prove
Theorem 1.12 using part of Van Assche’s approach [120]. The basic idea is sim-
ple: By a combination of Chebyshev’s inequality and the Borel–Cantelli lemma,

if ‖Pn(j)‖1/n(j)
L2(dµ) → A, then for dµ-a.e. x, we have lim supj→∞|Pn(j)(x)|1/n(j) ≤ A.

By using some potential theory, we will find that the density of zeros measure, dν,
supported on E obeys for q.e. x, Φν(x) ≥ log(A−1) a.e. dµ. Since dρE is a.c. with
respect to dµ, this will imply

∫
ΦρE

(x) dν(x) ≥ log(A−1). But by potential theory
again, ΦρE

(x) ≤ log(C(E)−1), so we will have A−1 ≤ C(E)−1, that is, C(E) ≤ A.

Lemma 4.1. Let dµ be a probability measure on a measure space X. Let fn(j) be a

sequence of functions indexed by integers 1 ≤ n(1) < n(2) < . . . . Suppose for some

1 ≤ p <∞,

(4.1) lim sup
j→∞

‖fn(j)‖1/n(j)
Lp = A

Then for dµ-a.e. x,

(4.2) lim sup|fn(j)(x)|1/n(j) ≤ A

Proof. Fix B > A. Then

(4.3) µ(Sj(B)) ≡ µ({x | |fn(j)(x)| > Bn(j)}) ≤ ‖fn(j)‖p
Lp

Bn(j)p
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By (4.1) and B > A, we see
∑

j

µ(Sj(B)) <∞

so for µ-a.e. x, there is J(x) with x /∈ Sj for all j > J(x). Thus, for µ-a.e. x,

lim sup|fn(j)(x)|1/n(j) ≤ B

Since B is arbitrary, we have (4.2).

Proof of Theorem 1.12. Let A be a limit point of ‖Pn(j)‖1/n(j)
L2(dµ). By passing to a

subsequence, we can suppose the zero counting measure dνn(j) has a limit dν∞
which, by Proposition 1.8, is supported on E.

By Lemma 4.1 for a.e. x(dµ),

(4.4) lim sup|Pn(j)(x)|1/n(j) ≤ A

By (1.4) for such x,

(4.5) lim sup exp(−Φνn(j)
(x)) ≤ A

By the upper envelope theorem (Theorem A.7) for q.e. x ∈ C,

(4.6) Φν∞
(x) = lim inf Φνn(j)

(x)

Thus, there exist sets S1 and S2 so that µ(S1) = 0 and C(S2) = 0, so that for
x ∈ C \ (S1 ∪ S2),

(4.7) Φν∞
(x) ≥ log(A−1)

We can now repeat the argument that led to (2.19). By hypothesis, dρE is dµ-a.c.
So ρE(S1) = 0 and, of course, since E(ρE) <∞, ρE(S2) = 0. Thus, (4.7) holds a.e.
dρE .

Therefore, by (A.2),

log(A−1) ≤
∫

Φν∞
(x) dρE(x)

=

∫
ΦρE

(x) dν∞(x)

≤ log(C(E)−1)

by (A.23).
Thus, A−1 ≤ C(E)−1 or C(E) ≤ A. Thus, lim inf ‖Pn‖1/n ≥ C(E). Since (see

(1.15)), lim sup ‖Pn‖1/n ≤ C(E), we have regularity.

The above proof is basically a part of Van Assche’s argument [120] which can be
simplified since he proves that dν∞ = dρE by a direct argument using similar ideas,
and we can avoid that because of the general argument in Section 2.

This argument can also prove a related result—we will see examples of this
phenomenon at the end of the next section.

Theorem 4.2. Suppose µ is a measure of compact support on R so E ⊂ supp(dµ)
for an essentially perfect compact set E with C(E) > 0. Suppose dρE is a.c. with

respect to dµ, and for some n(1) < n(2) < . . . , we have

(4.8) ‖Pn(j)‖1/n(j)
L2(R,dµ) → C(E)

for the monic Pn(x, dµ). Let dνn(j) be the corresponding zero counting measure.

Then dνn(j)
w−→ dρE.
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Remarks. 1. We have in mind cases where E is a proper subset of supp(dµ).
There will be many subsets with the same capacity, but there can only be one that
has dρE a.e. with respect to dµ.

2. Since dµ ↾ E is regular (by Theorem 1.12) and ‖Pn(j)( · , µ)‖L2(dµ) ≥
‖Pn(j)( · , µ ↾ E)‖L2(dµ↾E), we see that

lim inf ‖Pn‖1/n
L2(R,dµ) ≥ C(E)

so (4.8) is equivalent to a lim sup assumption.

Proof. Let dν∞ be a limit point of dνn(j). As in the proof of Theorem 1.12, there
exist sets S1 with µ(S1) = 0 and S2 with C(S2) = 0, so for x ∈ C \ (S1 ∪ S2), we
have

(4.9) Φν∞
(x) ≥ log(C(E)−1)

Since ρE(S1) = 0 by the assumption and ρE(S2) = 0 since C(E) > 0, (4.9) holds
for ρE-a.e. x. Moreover, since

(4.10) ΦρE
(z) ≤ log(C(E)−1)

for all z,

log(C(E)−1) ≤
∫

Φν∞
(x) dρE(x)

=

∫
ΦρE

(x) dν∞(x)

≤ log(C(E)−1)(4.11)

Thus, using (4.10), we see

ΦρE
(x) = log(C(E)−1)

for ν∞-a.e. x. But ΦρE
(z) < log(C(E)−1) for all z /∈ E, so ν∞ is supported on

E. By (4.11) and (4.9), Φν∞
(x) = log(C(E)−1) for dρE-a.e. x. By Theorem A.14,

ν∞ = ρE .

There is an alternate way to prove (4.4) without Lemma 4.1 that links it to ideas
more familiar to spectral theorists. It is well known that for elliptic PDEs, there
are polynomially bounded eigenfunctions for a.e. energy with respect to spectral
measures. This is called the BGK expansion in [94] after Berezanskĭı[14], Browder
[20], G̊arding [40], Gel’fand [41], and Kac [62]. The translation to OPRL is discussed
in Last–Simon [75]. Since

∫
|pn(x)|2 dµ = 1, we have

(4.12)
∞∑

n=0

(n+ 1)−2

∫
|pn(x)|2 dµ <∞

and thus, for dµ-a.e. x,

(4.13)
∞∑

n=0

(n+ 1)−2|pn(x)|2 <∞

so

(4.14) |Pn(x)| ≤ C(x)(n + 1)‖Pn‖L2

which implies (4.4).
It is interesting to note that if E is such that it is regular and dρE is purely

absolutely continuous on E = supp(dρE), one can use these ideas to provide an
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alternate proof (see Simon [100] for still another alternate proof in this case). For
in that case, the measure associated to the second kind polynomials, qn(x), also has
a.c. weight w̃(x) > 0 for a.e. x in E, and thus

(4.15) |qn(x)| ≤ C(x)(n + 1)

which, by constancy of the Wronskian, implies

(4.16) |pn(x)|2 + |pn+1(x)|2 ≥ C̃(x)(n + 1)−1

If dνn(j) → dν∞, so does dνn(j)+1 (by interlacing of zeros), and thus, by (4.14) and

(4.16), if lim(a1 . . . an(j))
1/n(j) → A, then

(4.17) − log(A) +

∫
log(|x− y|−1) dν∞(y) = 0

for x ∈ E but with a set of Lebesgue measure zero and of capacity zero removed.
By Theorem A.14, we conclude that A = C(E) and dν∞ = dρE .

Remark. We note that (4.17) holds a.e. on the a.c. spectrum and by the above
arguments, a.e. on that spectrum, 1

n log ‖Tn(x)‖ → 0, a deterministic analog of the
Pastur–Ishii theorem.

5. The Stahl–Totik Criterion. In this section, we will present an exposition of
Stahl–Totik’s proof [105] of their result, our Theorem 1.13. As a warmup, we prove

Theorem 5.1. Let dµ be a measure on ∂D obeying

(5.1) inf
θ0

µ({eiθ | |θ − θ0| ≤ 1
m}) ≥ Cδe

−δm

for all δ > 0. Then µ is regular.

Proof. We will use Bernstein’s inequality that for any polynomial, Pn, of degree n,

(5.2) sup
z∈D

|P ′
n(z)| ≤ n sup

z∈∂D

|Pn(z)|

Szegő’s simple half-page proof of this can be found, for example, in Theorem 2.2.5
of [98].

Applying this to the monic polynomials Φn(z; dµ), we see that if θn is chosen
with |Φn(eiθn ; dµ)| = ‖Φn‖∂D, the sup norm, and |θ − θn| ≤ 1

2n , then

(5.3) |Φn(eiθ; dµ)| ≥ 1
2 ‖Φn‖∂D

Thus, by (5.1) with m = 2n,

(5.4) ‖Φn( · ; dµ)‖2
L2(dµ) ≥ (1

4 ‖Φn‖2
∂D)Cδe

−2δn

Since Φn( · ; dµ) is monic,

(5.5)

∫
Φn(eiθ; dµ)e−inθ dθ

2π
= 1

so the sup norm obeys

(5.6) ‖Φn‖∂D ≥ 1

and so (5.4) implies

lim inf ‖Φn( · ; dµ)‖1/n
L2 ≥ e−2δ

Since δ is arbitrary, the lim inf is larger than or equal to 1. Since C(E) = 1, µ is
regular.
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There are two issues with just using these ideas to prove Theorem 1.13. While
(5.5) is special for ∂D, its consequence, (5.6), is really only an expression of ‖Tn‖E ≥
C(E)n (see (B.8)), so it is not an issue.

However, (5.2) only holds because a circle has no ends. The analog for, say,
[−1, 1] is Bernstein’s inequality

(5.7) |p′(x)| ≤ n√
1 − x2

‖p‖[−1,1]

or (Markov’s inequality)

(5.8) |p′(x)| ≤ n2‖p‖[−1,1]

Either one can be used to obtain a theorem like Theorem 5.1 on [−1, 1] but e−δm

needs to be replaced by e−δ
√

m—interesting, but weaker than Theorem 1.13.
The other difficulty is that (5.1) is global, requiring a result uniform in θ0, and

(1.33) needs only a result for most θ0. The problem with using bounds on derivatives
is that they only get information on a single set of size O( 1

n ) at best. They get

|pn(x)| ≥ 1
2‖pn‖E there, but that is overkill—we only need |pn(x)| ≥ e−δ′n‖pn‖E ,

and that actually holds on a set of size O(1)! The key will thus be a variant of the
Remez inequality in the following form:

Proposition 5.2. Fix E a finite union of closed bounded intervals in R. Then

there is c(δ) > 0 with c(δ) → 0 as δ ↓ 0, so that for any F ⊂ E with |E \ F | < δ,
we have

(5.9) ‖Qn‖E ≤ ec(δ)n‖Qn‖F

for any polynomial, Qn, of degree n.

Remarks. 1. This is a variant of an inequality of Remez [89]; see the proof for his
precise result.

2. The relevance of Remez’s inequality to regularity appeared already in Erdös–
Turán [34] and was the key to the proof in Freud [39] of the Erdös–Turán theorem,
Theorem 1.11. Its use here is due to Stahl–Totik [105].

Proof. If E = I1∪· · ·∪Iℓ disjoint intervals and |E \F | ≤ δ, then |Ij \ Ij ∩F | ≤ δ for
all j, so it suffices to prove this result for each single interval and then, by scaling,
for E = [−1, 1].

In that case, Remez’s inequality (due to Remez [89]; see Borwein–Erdélyi [15] for
a proof and further discussion) says that if F ⊂ [−1, 1] and |[−1, 1] \ F | ≤ δ, then
with Tn the classical first kind Chebyshev polynomials,

(5.10) ‖Qn‖E ≤ Tn

(
2 + δ

2 − δ

)
‖Qn‖F

(This can be proven by showing the worst case occurs when F = [−1, 1 − δ] and
Qn(x) = Tn(2x+δ

2−δ ).)
Since

(5.11) Tn(cosh(x)) = cosh(nx) ≤ enx

and cosh(ε) = 1 + ε2

2 +O(ε4), we have

(5.12) Tn

(
2 + δ

2 − δ

)
≤ exp

(
n[
√

2δ +O(δ3/2)]
)

so for E = [−1, 1], (5.9) holds with c(δ) =
√

2δ +O(δ3/2).
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Lemma 5.3. If Pn is a real polynomial of degree n, and a > 0, S ≡ {λ ∈ R |
|Pn(x)| > a} is a union of at most (n+ 1) intervals.

Proof. ∂S is the finite set of points where Pn(x) = ±a. If all the zeros of Pn ±a are
simple, these boundary points are distinct. Including ±∞ so each interval has two
“endpoints,” these intervals have at most 2n + 2 distinct endpoints (and exactly
that number if all roots of Pn ± a are real). If some root of Pn ± a is double, two
intervals can share an endpoint but that endpoint counts twice in the zeros.

Proof of Theorem 1.13. By Proposition B.3, if Pn(x) = Pn(x; dµ), then

(5.13) sup
x∈E

|Pn(x)| ≥ c(E)n

Fix δ1 and let

(5.14) F = {x | |Pn(x)| ≤ c(E)ne−2c(δ1)n}
If |E \F | < δ1, then (5.9) would imply ‖Pn‖E ≤ c(E)ne−c(δ1)n, violating (5.13). So

(5.15) |E \ F | ≥ δ1

By Lemma 5.3, R \ F is a union of at most n+ 1 intervals, so if E is a union of
ℓ intervals, E \ F consists of at most ℓ(n+ 1) intervals (a very crude overestimate
that suffices for us!).

Some of these intervals may have size less than δ1

4nℓ , but the total size of those is

at most δ1

2 , so we can find disjoint intervals I
(n)
1 , . . . , I

(n)
k(n) in E \ F , so

(5.16) |I(n)
j | ≥ δ1

4nℓ

∣∣∣∣
k(n)⋃

j=1

I
(n)
j

∣∣∣∣ ≥
δ1
2

Let Ĩ
(n)
j be the interval of size 1

2 |I
(n)
j | and the same center. Then with L(n)(δ1) =

∪k(n)
j=1 Ĩ

(n)
j , we have

|L(n)(δ1)| ≥
δ1
4

(5.17)

|Pn(y)| ≥ c(E)ne−2c(δ1)n if dist(y, L(n)(δ1)) ≤
δ1

16nℓ
(5.18)

Now define for any δ2 > 0 and m,

J(m, δ2) = {x | µ(x− 1
m , x+ 1

m ) ≥ e−δ2m}
By hypothesis, for any fixed δ2,

lim
m→∞

|E \ J(m, δ2)| = 0

and, in particular, for any fixed integer M, for all large n,

(5.19) |E \ J(Mn, δ2)| <
δ1
4

so, in particular,

(5.20) J(Mn, δ2) ∩ L(n)(δ1) 6= ∅
Given δ1, pick M so large that

(5.21) M−1 ≤ δ1
16ℓ
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If x lies in the set on the left side of (5.20), let I = {y | |x− y| ≤ 1
Mn}. Then since

1
Mn ≤ δ1

16nℓ , for y ∈ I,

(5.22) |Pn(y)| ≥ c(E)ne−2c(δ1)n

since x ∈ L(n)(δ1) and (5.18) holds. By x ∈ J(Mn, δ2),

(5.23) µ(I) ≥ e−Mδ2n

Thus,

(5.24) ‖Pn‖L2 ≥ c(E)ne−2c(δ1)ne−MNδ2/2

so

(5.25) lim inf ‖Pn‖1/n
L2 ≥ c(E)e−2c(δ1)e−Mδ2/2

First pick δ1, then fix M by (5.21) (recall ℓ is fixed as the number of intervals

in E) and let δ2 = δ1

M . Then take δ1 ↓ 0 and get lim inf ‖Pn‖1/n
L2 ≥ c(E), proving

regularity.

Here is a typical application of the Stahl–Totik criterion. It illustrates the limi-
tations of regularity criteria like those of [114, 122] that only depend on what sets
are carriers for µ. This result is a special case of a theorem of Wyneken [123].

Theorem 5.4. Let µ be a measure whose support is E, a finite union of closed

intervals. Then there exists a measure η equivalent to µ which is regular.

Proof. For any n, define

(5.26) µn =
∑

{j|µ(( j
n

, j+1
n

])>0}

µ

((
j

n
,
j + 1

n

])−1

µ ↾

(
j

n
,
j + 1

n

]

Then µn has total mass at most n(|E| + ℓ) where ℓ is the number of intervals. Let

(5.27) η =

∞∑

n=1

n−3µn

which is easily seen to be equivalent to µ.
Notice that if dist(x,R \ E) > 1

n , then [x− 1
n , x+ 1

n ] contains an interval of the

form ( j
2n ,

j+1
2n ], so µ2n([x− 1

n , x+ 1
n ]) ≥ 1. Thus

(5.28)
∣∣{x

∣∣ η([x − 1
n , x+ 1

n ]) ≤ 8n−3
}∣∣ ≤ 2ℓ

n

and (1.33) holds.

By using point measures, it is easy to construct nonregular measures, including
ones that illustrate how close (1.34) is to being ideal. The key is

Theorem 5.5. Let {xj}∞j=1 be a bounded sequence in R and {aj}∞j=1 an ℓ1 sequence

of positive numbers. Let

(5.29) µ =

∞∑

j=1

ajδxj

Let

(5.30) d = max
j,k

|xj − xk|
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Then

(5.31) ‖Pn(x, dµ)‖L2(R,dµ) ≤ dn

( ∞∑

j=n+1

aj

)1/2

Proof. Let Qn(x) =
∏n

j=1(x− xj), which kills the contributions of the pure points

at {xj}n
j=1, so

(5.32) ‖Qn‖2 ≤
∞∑

j=n+1

d2naj

by (5.30). Since ‖Pn‖ ≤ ‖Qn‖, (5.31) is immediate.

Corollary 5.6. Let {xj}∞j=1 be an arbitrary bounded subset of R. Then there exists

a pure point measure dµ with precisely this set as its set of pure points, so that

‖Pn‖1/n → 0. In particular, if E is any compact set with C(E) > 0, there is a

measure µ with supp(µ) = E and µ not regular.

Proof. Pick aj = e−j2

so (
∑∞

j=n+1 aj)
1/2n → 0.

Example 5.7. The following illuminates (1.33). For 2n ≤ k < 2n+1, let xk = k−2n

2n

and let 0 < y < 1. Define

(5.33) dµ =
∞∑

k=1

ykδxk

The xk are not distinct, but that does not change the bound (5.31). Thus

(5.34) lim sup ‖Pn‖1/n ≤ y

Since C([0, 1]) = 1
4 , the measure is not regular if y < 1

4 . On the other hand, if

2n ≤ m ≤ 2n+1 and x0 ∈ [0, 1], there is an xk with |xk−x0| ≤ 1
m and 2n ≤ k < 2n+1.

Thus

µ([x0 − 1
m , x0 + 1

m ]) ≥ yk ≥ y2n+1 ≥ y2m

so (1.33) holds for η = − log y2, that is, for some but not all η. This shows the
exponential rate in Theorem 1.13 cannot be improved.

Example 5.8. We will give an example of a measure dµ on [−2, 2] which is a.c.
on [−2, 0] and so that among the limit points of the zero counting measures, dνn

are both dρ[−2,2] and dρ[−2,0], the equilibrium measure for [−2, 2] and for [−2, 0].
This will answer a question asked me by Yoram Last, in reaction to Remling [90],
whether a.c. spectra force the existence of a density of states and also show that
bounds on limit points of dνn of Totik–Ullman [112] and Simon [100] cannot be
improved.

We define dµ by

(5.35) dµ ↾ [−2, 0] = (−x(x + 2))−1/2 dx

picked so the OPRL for the restriction are multiples of the Chebyshev polynomials
for [−2, 0]

(5.36) dµ ↾ [0, 2] =

∞∑

n=1

an dηn
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where dηn is concentrated uniformly at the dyadic rationals of the form k/2n not
previously “captured,” that is,

(5.37) dηn =
2n−1∑

j=0

1

2n
δ(2j+1)/2n−1

The an’s are carefully picked as follows. Define Nj inductively by

(5.38) N1 = 1 Nj+1 = 2N3
j

and

an =

{
1

n2 N2k−1 < N ≤ N2k

2−n4

N2k < n ≤ N2k+1

Our goal will be to prove that

(5.39) dν
2N2

2k
→ dρ[−2,0] dν

2
N2

2k+1
→ dρ[−2,2]

Intuitively, for m = 2N2
2k+1 , the measures at level 1/m will be uniformly spaced

out (on an exponential scale), so by the Stahl–Totik theorem, the zeros will want

to look like the equilibrium measure for [−2, 2]. But for m = 2N2
2k , most intervals

of size 1/m in [0, 2] will have tiny measure, so the zeros will want to almost all
lie on [−2, 0], where the best strategy for these (to minimize

∫
P 2

m dµ) will be to
approximate the equilibrium measure for [−2, 0].

As a preliminary, we will show

lim sup ‖Pn‖1/n = 1 lim inf ‖Pn‖1/n = 1
2(5.40)

lim
k→∞

‖P
2N2

2k
‖1/2N2

2k = 1
2 lim

k→∞
‖P

2
N2

2k+1
‖
1/2

N2
2k+1

= 1(5.41)

We begin with

(5.42) lim sup ‖Pn‖1/n ≤ 1 lim inf ‖Pn‖1/n ≥ 1
2

The first is immediate from (1.15) and C([−2, 2]) = 1; the second from
‖Pn(x, dµ)‖ ≥ ‖Pn(x, dµ ↾ [−2, 0])‖ (by (1.12)), regularity of dµ ↾ [−2, 0], and
C([−2, 0]) = 1

2 .
Next, we turn to

(5.43) lim sup
k→∞

‖P
2N2

2k
‖1/2N2

2k ≤ 1
2

Let Tn(x; [−2, 0]) be the Chebyshev polynomials for [−2, 0] (which are just affinely
related to the classic Chebyshev polynomials of the first kind) and let

(5.44) Q
2N2

2k
(x) = T

2N2
2k

−N2k
(x; [−2, 0])

2N2k∏

ℓ=1

(
x− ℓ

2N2k−1

)

so by (1.12),

(5.45) ‖P
2N2

2k
‖ ≤ ‖Q

2N2
2k
‖ ≤ 1 + 2

where 1 is the contribution of the integral from [−2, 0] and 2 from (0, 2).

Since cos ℓx = 2ℓ−1(cosx)ℓ+ lower order and the average of cos2 x is 1
2 , for any

[a, b],

(5.46) ‖Tm(x; [a, b])‖ =
√

2C([a, b])m

Inverse Problems and Imaging Volume 1, No. 4 (2007), 713–772



Equilibrium Measures and Capacities in Spectral Theory 737

where the norm is over L2(R, dρ[a,b]). Since the product in (5.44) is bounded by

42N2k on [−2, 2], we have

(5.47) 1 ≤
√

2 (1
2 )2

N2
2k

−N2k
42N

2k

On the other hand, there is a constant K so

(5.48) ‖Tm(x; [−2, 0])‖L∞([−2,2]) ≤ Km

and the product in (5.44) kills all the pure points up to level N2k:

2 ≤ K2N2k

∞∑

n=N2k

an

≤ K2N2k
[N2k+12

−N4
2k + (N2k+1)

−1]

is much smaller than the right side of (5.47) for k large. Thus, by (5.47),

(5.49) lim sup
(

1 + 2
)1/2N2

2k

≤ 1
2

proving (5.43).
In verifying (5.40), we finally prove that

(5.50) lim inf
k→∞

‖P
2

N2
2k+1

‖1/2
N2

2k+1 ≥ 1

By the fact that the Chebyshev polynomials for [−2, 2] obey

(5.51) Tn(2 cosx; [−2, 2]) = 2 cosnx

has ‖Tn‖L∞([−2,2]) = 2, we see

(5.52) ‖Pm‖L∞([−2,2]) ≥ 2

By Markov’s inequality (5.8), we have

(5.53) ‖P ′
m‖L∞([−2,2]) ≤ m2

2 ‖Pm‖L∞([−2,2])

so there is an interval of size 4/m2 where Pm(x) ≥ 1, that is,

(5.54) ‖Pm(x)‖2
L2(dµ) ≥ inf

y∈[−2,2]
µ([y − 2

m2 , y + 2
m2 ])

which implies that

(5.55) ‖P
2

N2
2k+1

‖L2(µ) ≥ a
2

N2
2k+1

2−N2
2k+1

so it is bounded from below by a power of 2−N2
2k+1. Since m−ℓ/m → 1 for any fixed

ℓ, we obtain (5.50).
Clearly, (5.42), (5.43), and (5.50) imply (5.40) and (5.41). We now only need to

go from there to results on limits of dνn. By Theorem 2.4, the second equality in
(5.41) implies the second limit result in (5.39). By Theorem 4.2, the first equality
in (5.41) implies the first limit result in (5.39).

Example 5.9. Here is an example of a measure dµ on [0, 1] where the density
of zeros has a limit singular relative to the equilibrium measure for [0, 1]. Such
examples are discussed in [105] and go back to work of Ullman. Let Σ be the
classical Cantor set and dρΣ its equilibrium measure. Let

(5.56) dµ = dρΣ +
∞∑

n=1

2−n4

( 2n−1∑

j=0

1

2n
δ(2j+1)/2n

)
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As in the above construction, one shows ‖Pn‖1/n → C(Σ) and then Theorem 4.2
implies that dνn → dρΣ which is singular with respect to Lebesgue measure, and
so relative to dρ[0,1] ≡ dρsupp(dµ).

6. Structural Results. In this section, we will focus on the mutual regularity of
related measures. There are three main theorems, all from Stahl–Totik [105]:

Theorem 6.1. Let µ, η be two measures of compact support whose supports are

equal up to sets of capacity zero. If µ ≥ η and η is regular, then so is µ.

Theorem 6.2. Let {En}∞n=1 and E∞ be compact subsets of C so that E∞ and

∪∞
n=1En agree up to sets of capacity zero and C(E∞) > 0. Let µ be a measure with

supp(dµ) = E∞ so that each µ ↾ Ej which is nonzero is regular. Then µ is regular.

Remark. By µ ↾ K, we mean the measure

(6.1) (µ ↾ K)(S) = µ(K ∩ S)

To understand why the next theorem is so restrictive compared to Theorem 6.2,
consider

Example 6.3. Let E be the standard Cantor set in [0, 1]. Let η be a measure on
E which is not regular (see Corollary 5.6) and let

(6.2) dµ = dη + dx ↾ [0, 1]

By Theorem 6.1, dµ is regular. But dµ ↾ E = dη is not regular.

Theorem 6.4. Let I = [a, b] be a closed interval with I ⊂ E ⊂ R and E compact.

Let µ be a regular measure with support in E so C(supp(µ ↾ I)) > 0. Then µ ↾ I is

regular.

Remarks. 1. We do not require that supp(dµ) = E (nor that I ⊂ supp(dµ)) but
only that supp(dµ) ⊂ E and that µ is regular in the sense that C(supp(dµ)) > 0

and ‖Pn( · , dµ)‖1/n
L2(dµ) → C(supp(dµ)).

2. The analog of the sets I in [105] must have nonempty two-dimensional interior.
Our I obviously has empty two-dimensional interior, but if I = [a, b] ⊂ E ⊂ R and
if D is the disk {z | |z − 1

2 (a+ b)| ≤ 1
2 |b − a|}, then µ ↾ D = µ ↾ I.

The proofs of Theorems 6.1 and 6.2 will be easy, but Theorem 6.4 will be non-
trivial. Here are some consequences of these results:

Corollary 6.5. Let µ, ν be two regular measures (with different supports allowed).
Then their max, µ ∨ ν, and sum, µ+ ν, are regular.

Remark. See Doob [33] for the definition of µ ∨ ν.
Proof. µ+ν and µ∨ν have the same support and µ+ν ≥ µ∨ν so, by Theorem 6.1, we
only need the result for µ∨ν. Let E1 = supp(µ) and E2 = supp(ν), so supp(µ∨ν) =
E1 ∪ E2. By definition, (µ ∨ ν) ↾ E1 ≥ µ and they have the same supports. So, by
Theorem 6.1, µ∨ν ↾ E1 is regular. Similarly, µ∨ν ↾ E2 is regular. By Theorem 6.2,
µ ∨ ν is regular.

Corollary 6.6. Let E = I1 ∪ · · · ∪ Iℓ be a union of finitely many disjoint closed

intervals. Let µ be a measure on E. Then µ is regular if and only if each µ ↾ Ij is

regular.

Proof. Immediate from Theorems 6.2 and 6.4.
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Proof of Theorem 6.1. Since (1.12) holds,

(6.3) ‖Xn‖L2(dη) ≤ ‖Xn‖L2(dµ)

Given (1.15), we have (with E = supp(dµ))

lim ‖Xn‖1/n
L2(dη) = C(E) ⇒ lim ‖Xn‖1/n

L2(dµ) = C(E)

Proof of Theorem 6.2. Let µj = µ ↾ Ej and let xn(z) be the xn’s for dµ. Then

(6.4) ‖xn‖L2(dµj) ≤ ‖xn‖L2(dµ) = 1

so

(6.5) |xn(z)| ≤ |xn(z)|
‖xn‖L2(dµj)

By regularity and Theorem 1.10(vi), for q.e. z ∈ Ej (using GEj
(z) = 0 for q.e.

z ∈ Ej by Theorem A.10(b) and (A.40)), we see for q.e. x ∈ Ej ,

(6.6) lim sup
n→∞

|xn(z)|1/n ≤ 1

Since ∪∞
j=1Ej is q.e. E, we have (6.6) q.e. on all of E. By (iii) ⇒ (i) in Theorem 1.10,

µ is regular.

To prove Theorem 6.4, we first make a reduction:

Proposition 6.7. Suppose there is I = [a, b] ⊂ E ⊂ R (with a < b), µ regular,

C(supp(µ ↾ I)) > 0 but

(6.7) lim inf ‖Pn( · , µ ↾ I)‖1/n
L2(µ↾I) < C(supp(µ ↾ I))

Then there exists a µ, perhaps distinct but also regular and supported on E, so that

(6.7) holds and

(6.8) lim inf ‖Pn( · , µ ↾ I)‖1/n
L2(µ↾I) > 0

Proof. If (6.8) holds for the initial µ, we can stop. Otherwise, we will take

(6.9) µ̃ = µ+ ρF

where F = [x0 − δ, x0 + δ] ⊂ I with x0 = 1
2 (a + b) and δ sufficiently small chosen

later.
By Corollary 6.5, µ̃ is regular and, by (6.3),

‖Pn( · , µ̃ ↾ I)‖1/n
L2(µ̃↾I) ≥ ‖Pn( · , ρF )‖1/n

L2(ρF )

so (6.8) holds since

lim
n→∞

‖Pn( · , ρF )‖1/n
L2(ρF ) = C(F ) > 0

Thus, we need only prove that (6.7) holds for suitable δ. Since we are supposing
(6.8) fails for µ, pick n(j) → ∞ so

(6.10) ‖Pn(j)( · , µ ↾ I)‖1/n(j)
L2(µ↾I) → 0

Define

(6.11) Q2n(j)(x) = Pn(j)(x, µ ↾ I)(x− x0)
n(j)

Let d = diam(E) and note that on E, since x0 ∈ I ⊂ E,

(6.12) |x− x0|n(j) ≤ dn(j)
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and since Pn(j) has all its zeros in cvh(E), for x ∈ E,

(6.13) |Pn(j)(x)| ≤ dn(j)

Thus,

‖Q2n(j)‖2
L2(µ̃↾I) = ‖Pn(j)(· − x0)

n(j)‖2
L2(µ↾I) + ‖Pn(j)(· − x0)

n(j)‖2
L2(dρE)

≤ d2n(j)‖Pn(j)‖2
L2(µ↾I) + d2n(j)δ2n(j)(6.14)

Using (6.10), we see

lim sup ‖Q2n(j)‖1/2n(j)
L2(µ̃↾I) ≤ d1/2δ1/2 < C(supp(µ ↾ I)) ≤ C(supp(µ̃ ↾ I))

if we take δ small. Since (1.12),

(6.15) ‖P2n(j)( · , µ̃ ↾ I)‖L2(µ̃↾I) ≤ ‖Q2n(j)‖L2(µ̃↾I)

we see µ̃ ↾ I is not regular.

Proof of Theorem 6.4. By Proposition 6.7, we can find µ so µ is regular, µ ↾ I is
not regular but for some a > 0 (with µI = µ ↾ I),

(6.16)

∫

I

|Pn(x, µI)|2 dµ ≥ an

Fix x0 ∈ Iint. Let d = diam(E) and for ℓ to be picked shortly, let

(6.17) Qn(2ℓ+1)(x) = Pn(x, µI)

(
1 − (x− x0)

2

d2

)ℓn

Since P obeys (6.13), if we define

(6.18) η = max
x∈E\I

(
1 − (x− x0)

2

d2

)
< 1

we have for x /∈ I,

(6.19) |Qn(2ℓ+2)(x)| ≤ ηℓndn

Choose ℓ so

(6.20) (ηℓd)2 < a

Then, by (6.17), (6.19), and (6.20),

(6.21)

∫

K

|Qn(2ℓ+1)(x)|2 dµ ≤ 2

∫
|Pn(x, µI)|2 dµ

so

(6.22) |pn(x0; dµI)|1/n ≤ 21/2n|Qn(2ℓ+1)(x0)|1/n

‖Qn(2ℓ+1)‖1/n
L2(K,dµ)

so, by (1.30) and regularity of µ, for µ-a.e. x0 in I int ∩ supp(dµ),

lim sup|pn(x0; dµI)|1/n ≤ 1

But then Theorem 1.10 implies dµI is regular. This contradiction proves the
theorem.
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7. Ergodic Jacobi Matrices and Potential Theory. In this section, we will
explore regularity ideas for ergodic half- and whole-line Jacobi operators and see
this is connected to Kotani theory (see [99, Sect. 10.11] and [27] as well as the
original papers [69, 96, 42, 70]). A main goal is to prove Theorems 1.15 and 1.16.

Let (Ω, dσ) be a probability measure space. Let T : Ω → Ω be an invertible

ergodic transformation. Let Ã, B̃ be measurable functions from Ω to R with B̃
bounded, Ã positive, and both Ã and Ã−1 bounded. For ω ∈ Ω and n ∈ Z, define
an(ω), bn(ω) by

(7.1) an(ω) = Ã(T nω) bn(ω) = B̃(T nω)

By J(ω), we mean the Jacobi matrix with parameters {an(ω), bn(ω)}∞n=1. By

J̃(ω), we mean the two-sided Jacobi matrix with parameters {an(ω), bn(ω)}∞n=−∞.

Occasionally we will use J+
k (ω) for the one-sided matrix with parameters

{ak+n(ω), bk+n(ω)}∞n=1 and J−
k (ω) for the one-sided matrix with parameters

{ak−n(ω), bk+1−n(ω)}∞n=1.
Spectral measures for one-sided matrices (and vector δ1) are dµω , dµ

±k
ω and for

J̃(ω), we use dµ̃ω;k for vector δk.
For spectral theory, the transfer matrix is basic. Define for n ∈ Z,

(7.2) An(x, ω) =
1

an+1(ω)

(
x− bn+1(ω) −1
an+1(ω)2 0

)

then

(7.3) an+1un+1 + (bn+1 − x)un + anun−1 = 0

is equivalent to

(7.4)

(
un+1

an+1un

)
= An

(
un

anun−1

)

We define for n < m,

(7.5) T (m,n;x, ω) = Am(x, ω)Am−1(x, ω) . . . An+1(x, ω)

and T (n, n;x, ω) = 1 and, for m < n, T (m,n;x, ω) = T (n,m;x, ω)−1. Thus,
solutions of (7.3) obey

(7.6)

(
um+1

am+1um

)
= T (m,n;x, ω)

(
un+1

an+1un

)

In particular, for n ≥ 1,

(7.7)

(
pn+1(x, ω)
an+1pn(x, ω)

)
= T (n,−1;x, ω)

(
1
0

)

The ergodic and subadditive ergodic theorems produce the following well-known
facts:

Theorem 7.1. There exists Ω0 ⊂ Ω of full σ measure so that for ω ∈ Ω0,

(a) σ(J̃(ω)) = E, a fixed perfect subset of R independent of ω (in Ω0). Moreover,

for any ω ∈ Ω0, each J±
k obeys

(7.8) σess(J
±
k (ω)) = E
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(b) There is a measure dν∞ with

(7.9) supp(dν∞) = E

If dνk,±,ω
n is the zero counting measure for J±

k (ω), then for any ω ∈ Ω0, as

n→ ∞,

(7.10) dνk,±,ω
n

ω−→ dν∞

(c) Define the Lyapunov exponent γ(z) for z by

(7.11) γ(z) = lim
n→∞

E( 1
n log ‖T (n− 1,−1; z, ω)‖)

where

(7.12) E(f) =

∫
f(ω) dσ(ω)

and (7.11) includes that the limit exists. Moreover, for any k ∈ Z,

γ(z) = lim
n→∞

E( 1
n log ‖T (n+ k, k; z, ω)‖)(7.13)

γ(z) = lim
n→∞

E( 1
n log ‖T (k − n, k; z, ω)‖)(7.14)

(d) For any ω ∈ Ω0 and z /∈ E and k fixed,

lim
n→∞

1
n log ‖T (n+ k, k; z, ω)‖ = γ(z)(7.15)

lim
n→∞

1
n log ‖T (k − n, k; z, ω)‖ = γ(z)(7.16)

(e) For any z ∈ E and σ-a.e. ω ∈ Ω0, (7.15) and (7.16) hold.

(f) For ω ∈ Ω0, limn→∞(a1 . . . an)1/n = A exists and is ω-independent, and one

has the Thouless formula,

(7.17) γ(z) = log(A−1) +

∫
log(|z − x|) dν∞(x)

Moreover, for all z,

(7.18) γ(z) ≥ 0

Remarks. 1. For proofs, see [21, 26, 87, 99]. (7.17) is due (in the physics literature)
to Herbert–Jones [51] and Thouless [110]. It is, of course, just (1.4) for z /∈ cvh(Σ).
Almost everything else here is a simple consequence of the Birkhoff ergodic the-
orem/the Kingman subadditive ergodic theorem and translation invariance which
implies, for example, that the expectation in (7.13) is k-independent for each n.

2. There are two subtleties to OP readers. First, (7.14) comes from ‖A−1‖ = ‖A‖
for 2× 2 matrices A with det(A) = 1. It implies that the Lyapunov exponent is the
same in both directions. det(T ) = 1 also implies (7.18).

3. The second subtlety concerns equality in (7.17) for all z, including those in
Σ. This was first proven by Avron–Simon [12]; the simplest proof is due to Craig–
Simon [25] who were motivated by work of Herman [52]. The point is that, in gen-
eral, lim sup 1

n log ‖T (n+ k, k; z, ω)‖ (and lim sup 1
n log|pn(z, ω)|) may not be upper

semicontinuous but E( 1
n log ‖T (n+ k, k; z, ω)‖) is because of translation invariance,

Hölder’s inequality, and

(7.19) T (n+ ℓ+ k, k; z, ω) = T (n+ ℓ+ k, ℓ+ k; z, T ℓω)T (ℓ+ k, k; z, ω)

This implies that the expectation is subadditive so the limit is an inf.
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Two main examples are the Anderson model and almost periodic functions. For
the former, (an(ω), bn(ω)) are independent (0,∞)×R-valued (bounded with a−1

n also
bounded) identically distributed random variables. In the almost periodic case, Ω

is a finite- or infinite-dimensional torus with dσ Haar measure and Ã, B̃ continuous
functions. A key observation (of Avron–Simon [12]) is that in this almost periodic
case, the density of states exists for all, not only a.e., ω ∈ Ω so we can then take
Ω0 = Ω in Theorem 7.1.

Here is the first consequence of potential theory ideas in this setting:

Theorem 7.2. E has positive capacity; indeed,

(7.20) C(E) ≥ A

Moreover, E is always potentially perfect (as defined in Appendix A). Each dµω

(ω ∈ Ω0) is regular if and only if equality holds in (7.20).

Proof. Use γ ≥ 0 in (7.17), integrating dν∞, to see that

(7.21) E(ν∞) ≤ log(A−1)

so E(ν∞) <∞, implying C(E) > 0. By (7.21), we get (7.20).
By (7.21), ν∞ has finite energy and so, by Proposition A.6, ν∞ gives zero weight

to any set of capacity zero. It follows that if x ∈ supp(dν∞), then C((x−δ, x+δ)) > 0
for all δ. By (7.9), E is potentially perfect.

By definition of A, regularity for all ω ∈ Ω0 is equivalent to C(E) = A.

Proof of Theorem 1.15. We will prove that (1.37) holds. By (7.21), ν∞ has finite
Coulomb energy, so ν∞ gives zero weight to sets of zero capacity. Since equality
holds in (A.23), q.e. on E, we conclude that

log(C(E)−1) =

∫
dν∞(x)ΦρE

(x)

=

∫
dρE(x)Φν∞

(x) (by (A.2))

=

∫
dρE(x) [log(A−1) − γ(x)] (by (7.17))

This is (1.37).
By (1.37), we have (1.35) ⇔

∫
γ(x) dρE(x) = 0 which, given that γ(x) ≥ 0, holds

if and only if γ(x) = 0 for ρE-a.e. x.
If (1.35) holds, then each dµω is regular, so by Theorem 1.7, dν∞ = dρE . The

converse part follows from Theorem 1.9.

Note: Remling remarked to me that Theorem 1.15 has a deterministic analog
with essentially the same proof.

Kotani theory says something about when γ(x) = 0 but we have not succeeded in
making a tight connection, so we will postpone the precise details until we discuss
conjectures in the next section. As a final topic, we want to prove Theorem 1.16
and a related result.

Proof of Theorem 1.16. By (4.14) for dµω-a.e. x, we have

(7.22) lim sup|pn(x)|1/n ≤ 1

On the other hand, by the upper envelope theorem and (1.4) for q.e. x,

lim |pn(x)|1/n = A−1 exp(−Φν∞
(x))(7.23)

Inverse Problems and Imaging Volume 1, No. 4 (2007), 713–772



744 Barry Simon

= exp(γ(x))(7.24)

by (7.17). Let Qω be the capacity zero set where (7.24) fails.
On S, exp(γ(x)) > 1, so since (7.22) holds for a.e. x, we have dµω(S \ Qω) = 0

as claimed.

Remark. All we used was that dν∞ is the limit of dνn, so this holds for all ω ∈ Ω0.
In particular, in the almost periodic case, it holds for all ω in the hull.

One is also interested in the whole-line operator.

Theorem 7.3. Let J̃(ω) be the whole-line Jacobi matrix associated with

{an(ω), bn(ω)}∞n=−∞ and dµω,k its spectral measures. Let S ⊂ R be the Borel set of

x with γ(x) > 0. Then for each ω ∈ Ω0, there exists a set Q̃ω of capacity zero so

that

(7.25) µω,k(S \ Q̃ω) = 0

for all k.

Proof. By (7.7), the transfer matrix T (n,−1;x, ω) has matrix elements given by
pn+1, pn and the second kind polynomials qn+1, qn. As in the last proof, there is a

set Q̃
(1)
ω of capacity zero so for x /∈ Q

(1)
ω ,

(7.26) lim |pn(x)|1/n = exp(γ(x))

and (zeros of pn and qn interlace, so the zero counting measure for qn also converges
to dν∞)

(7.27) lim |qn(x)|1/n = exp(γ(x))

In particular, for x /∈ Q̃
(1)
ω , we have

(7.28) lim
n→∞

1
n log ‖T (n,−1;x, ω)‖ = γ(x)

By the Ruelle–Osceledec theorem (see, e.g., [99, Sect. 10.5]), for any w 6= 0 ∈ C2,
either

(7.29) ‖T (n,−1;x, ω)w‖1/n → eγ(x)

or

(7.30) ‖T (n,−1;x, ω)w‖1/n → e−γ(x)

Similarly, there is a set Q̃
(2)
ω of capacity zero with similar behavior as n→ ∞.

This says that every solution of (7.3) for x /∈ Q̃
(1)
ω ∪Q̃(2)

ω either grows exponentially
at ±∞ or decays exponentially. Thus, polynomial boundedness implies ℓ2 solutions.

If Q̃
(3)
ω is the set of eigenvalues of J̃(ω) which is countable and so of capacity zero,

and if Q̃ω = Q̃
(1)
ω ∪ Q̃(2)

ω ∪ Q̃(3)
ω , then

J̃(ω)u = xu with u polynomially bounded ⇒ x ∈ Q̃ω

By the BGK expansion discussed in Section 4, this implies the spectral measures of
J̃(ω) are supported on Q̃ω, that is, (7.25) holds.

Remarks. 1. The reader will recognize this proof as a slight variant of the Pastur–
Ishii argument [86, 53] that proves absence of a.c. spectrum on S.

2. As above, in the almost periodic case, this holds for all ω in the hull.
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3. This is the first result on zero Hausdorff dimension in this generality.
But for suitable analytic quasi-periodic Jacobi matrices, the result is known; see
Jitomirskaya–Last [59] and Jitomirskaya [56].

8. Examples, Open Problems, and Conjectures. Here we consider a number
of illustrative examples and raise some open questions and conjectures. The con-
jectures are sometimes mere guesses and could be wrong. Indeed, when I started
writing this paper, I had intended to make a conjecture for which a counterexample
appears below as Example 8.12. So the reader should regard the conjectures as an
attempt to stimulate work with my own guesses. I will try to explain my guesses,
but they are not always compelling.

Example 8.1 (Random and Decaying Random OPRL). Let Ω = ×∞
n=1[(0,∞)×R]

with dσ({an, bn}) = ⊗dη(an, bn), where η is a measure of compact support on
(0,∞) × R. For each ω ∈ Ω, there is an associated Jacobi matrix, and we want
results on J(ω) that hold for σ-a.e. ω. The traditional Anderson model is the
case where an ≡ 1 and bn is uniformly distributed on [α, β], that is, dη(a, b) =
δa1

1
β−αχ(α,β)(b) db. The decaying random model has two extra parameters, λ ∈

(0,∞) and γ ∈ (0, 1), takes ãn(ω) ≡ 1, b̃n(ω) the Anderson model with β = −α = 1,
and takes

bn(ω) = λn−γ b̃n(ω)(8.1)

an(ω) = 1(8.2)

The Anderson model is ergodic; the decaying random model is not. The Anderson
model goes back to his famous work [2] with the first mathematical results by
Kunz–Souillard [72] and the decaying model to Simon [95] (see also [67]).

For the Anderson model, it is known for a.e. ω, σess(J(ω)) = [−2 + α, 2 + β],
while for the decaying random model, σess(J(ω)) = [−2, 2] by Weyl’s theorem (i.e.,
J(ω) is in Nevai class). Clearly, (a1 . . . an)1/n = 1. For the Anderson model,

(8.3) C(σess(J(ω))) = 1
4 (4 + (β − α)) > 1

while for the decaying Anderson model,

(8.4) C(σess(J(ω))) = 1

so the former is not regular, while the latter is.
Of course, for the regular model, the density of zeros is the equilibrium measure

where ρE(x) = dρ
dx = 1

π (4 − x2)−1/2 by (A.34). For the Anderson model, on the

other hand, dν
dx is very different. It is C∞ even at the endpoints (by [103]) and

decays exponentially fast to zero at the ends of the spectrum (Lifshitz tails; see
[66]).

The Anderson model is known to have dense pure point spectrum and so is the
decaying model if γ < 1

2 . It is known for the Anderson model (see [31]) that for
some ω-dependent labeling of the eigenvalues,

(8.5) dµω =
∑

wn(ω)δen(ω)

where for some c > 0,

(8.6) |wn(ω)| ≤ e−c|n|
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The same methods should allow one to prove for the decaying model on each
[−A,A] ⊂ (−2, 2) that there is a labeling so that

(8.7) |wn(ω)| ≤ e−c|n|1−2γ

One expects that there are lower bounds of the same form and that the labels
are such that the en(ω) are quasi-uniformly distributed (i.e., for n≫ m, the first n
ej(ω) are at least within 1

m of each point away from the edge of the spectrum). If
these expectations are met, this example nicely illustrates Theorems 1.13 and 1.14.

In the not regular Anderson case, one expects µω([ j
m ,

j+1
m ]) ∼ e−cm for fixed

c, while in the regular decaying random model, one expects µω([ j
m ,

j+1
m ]) ∼

e−cm1−2γ

> Cηe
−ηm for any η.

Example 8.2 (Generic Regular Measures). Fix an ≡ 1, 0 < γ < 1
2 , and let

B = {{bn} | limnγbn → 0} normed by |||b||| = supn|nγbn|. It is known ([97]; see
also [77, 22]) that for a dense Gδ in B, the associated Jacobi matrix has singular
continuous measure. We believe there is some suitable sense in which a generic
regular measure is singular continuous.

Example 8.3 (Almost Mathieu Equation). Perhaps the most studied model in
spectral theory is the whole-line Jacobi matrix with an ≡ 1 and

(8.8) bn = λ cos(nα+ θ)

where λ, α, θ are parameters with α
π irrational. (See [56] for a review on the state

of knowledge.) We will use some of the most refined results and comment on
whether they are needed for the main potential theoretic conclusions. We fix α, λ.
θ ∈ Ω = [0, 2π) labels the hull of an almost periodic family.

It is known since Avron–Simon [12] that for |λ| > 2, there is no a.c. spectrum
for almost all θ (and by Kotani [71] and Last–Simon [75], for all θ) and by [12] for
α which are Liouville numbers (irrational but very well approximated by rationals)
only singular continuous spectrum for all θ. Jitomirskaya [55] proved that for α’s
with good Diophantine properties and |λ| > 2, there is dense pure point spectrum
for a.e. θ (and there is also singular continuous spectrum for a dense set of θ’s [60]).
On the other hand, Last [74] proved that for |λ| < 2 and all irrational α that the
spectrum is a.c. for almost all θ (now known for all θ [71, 75]). It is now known the
spectrum in this region is purely a.c. (see [9, 8, 6]).

At the special point λ = 2, it is known that for all irrational α, the spectrum has
measure zero [74, 10], and therefore for all irrational α and a.e. θ, the spectrum is
purely singular continuous [49].

An important special feature for our purposes is Aubry duality (found by Aubry
[5]; proven by Avron–Simon [12]) that relates the Lyapunov exponent γ(z) and inte-

grated density of states, k(E) =
∫ E

−∞ dν∞(x), for α fixed (they are θ-independent)

at λ and 4
λ . Making the λ-dependence explicit,

(8.9) k

(
E,

4

λ

)
= k

(
2E

λ
, λ

)
γ

(
z,

4

λ

)
= γ

(
2z

λ
, λ

)
+ log

(
λ

2

)

Kotani theory implies in the a.c. region (i.e., λ < 2) that γ(E) = 0 for a.e.
E ∈ spec(J), and Bourgain–Jitomirskaya [19] proved continuity of γ. So using
(8.9),

(8.10) E ∈ spec(J) ⇒ γ(E) = max

(
0, log

(
λ

2

))
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and, in particular, γ(E) = 0 on the spectrum if |λ| ≤ 2.

We thus have:

Theorem 8.4. The density of zeros for the almost Mathieu equation is the equi-

librium measure for its spectrum. For λ ≤ 2, the measures are regular (for all ω).
For λ > 2, they are not regular since

(8.11) lim(a1 . . . an)1/n = 1 < C(spec(J0(ω))) = log

(
λ

2

)

Proof. By Theorem 1.14, the measures are regular if λ ≤ 2 since γ(E) = 0 on the
spectrum. That the measure is the equilibrium measure even if λ > 2 follows from
(8.9) as does (8.11).

Remarks. 1. Thus we see an example where the density of zeros is the equilibrium
measure even though dµω is not regular. Consistently with Theorem 2.5, dµω lives
on a set of capacity 0 by Theorem 7.3.

2. If we knew a priori that dρσess(Jω) were absolutely continuous, Kotani theory
then would suffice for Theorem 8.4. But as it is, we need the continuity result of
[19].

3. It should be an exceptional situation that J(ω) has some singular spectrum
but the density of states is still dρE . In particular, if there are separate regions in
σ(J) of positive capacity where γ(x) = 0 and where γ(x) > 0, the density of states
cannot be dρE since, for it, γ(x) is constant on supp(dρE). For examples with such
coexistent spectrum (some only worked for the continuum case), see [17, 18, 36, 37].

Example 8.5 (Rotation Invariant Anderson Model OPUC). Let dσ0 be a rotation
invariant measure on the disk, D (i.e., on D with σ0(∂D) = 0). Let σ on ×∞

j=0 D be

⊗∞
j=0dσ0(zj). The ergodic OPUC with Verblunsky coefficients αj distributed by σ

is called the rotation invariant Anderson model, and it is discussed in [99, Sect. 12.6]
and earlier in Teplyaev [109] and Golinskii–Nevai [47].

If

(8.12)

∫
− log(1 − |z|) dσ0(z) <∞

then

(8.13) lim
n→∞

(ρ0 . . . ρn−1)
1/n = exp

(∫
log(1 − |z|2) dσ0(z)

)
> 0

If also

(8.14)

∫
− log|z| dσ0(z) <∞

then, by a use of the ergodic theorem,

lim
n→∞

|αn|1/n = 1

with probability 1. By a theorem of Mhaskar–Saff [82] (see [98, Thm. 8.1.1]), any
limit point of the zero counting measure lives on ∂D so, by the ergodic theorem, νn

has a limit ν∞ on ∂D.
By the rotation invariance of σ0, the distribution of {αj} is invariant under

αj → ei(j+1)θαj . So the collection of measures is rotation invariant and thus, by
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ergodicity, dν∞ is rotation invariant, that is, it is dθ
2π . By the Thouless formula and

(8.13),

γ(eiθ) = −
∫

log(1 − |z|2) dσ0(z) > 0

so long as σ0 6= δz=0. This is constant on ∂D.
Thus, this family of measures is not regular, but the density of zeros is the equi-

librium measure for supp(dµω) = ∂D. This is the simplest example of a nonregular
measure for which the density of zeros is the equilibrium measure. As is proven in
Theorem 12.6.1 of [99], the measure is a pure point measure, so dµw is for a.e. ω
supported on a countable set, so of zero capacity, consistent with Theorem 2.5.

Example 8.6 (Subshifts). This is a rich class of ergodic Jacobi matrices (with
an ≡ 1), reviewed in [28] (see also [99, Sect. 12]). For many of them, it is known
that E ≡ σ(J) is a set of Lebesgue measure zero on which γ(x) is everywhere
0. By Theorem 1.15, C(E) = 1 and a.e. ω has regular dµω, so, in particular,
dν∞ = dρE .

Notice that, by Craig’s argument (see Theorem A.13), if dµ is any probability

measure whose support, E, has measure zero, then G(z) =
∫ dµ(y)

y−z has the form

(8.15) G(z) = − 1√
(z − a)(z − b)

∞∏

j=1

(z − λj)√
(z − ℓj)(z − uj)

where the gaps in E are (ℓj , uj) and a = inf ℓj, b = supµj . This is so regular that
we wildly make the following:

Conjecture 8.7. Any ergodic matrix that has a spectrum of measure zero has
vanishing Lyapunov exponent on the spectrum; equivalently, γ(x) > 0 for some
x ∈ Σ implies |Σ| > 0. Such zero Lyapunov exponent examples would thus be
regular.

We note that for analytic functions on the circle with irrational rotation, this
result is known to be true [57], following from combining results from Bourgain [16]
and Bourgain–Jitomirskaya [19]. Of two experts I consulted, one thought it was
false and the other, “likely true but too little support to make it a conjecture.”
Fools rush in where experts fear to tread.

Open Question 8.8 (The Classical Cantor Set). Of course, one of the simplest
of measure zero sets is the classical Cantor set. It would be a good first step to
understand its “isospectral tori.” Which whole-line Jacobi matrices have 〈δ0, (J0 −
z)−1δ0〉 = (8.15)? Are they regular? As suggested by Deift–Simon [30], are they
mainly mutually singular? Are any or all almost periodic?

Conjecture 8.9 (Last’s Conjecture). A little more afield from potential theory, but
worth mentioning, is the conjecture of Last that any ergodic Jacobi matrix (whole-
or half-line) with some a.c. spectrum is almost periodic. Does it help to consider
the case where the spectrum is purely a.c.? We note that a result of Kotani [70]
implies Last’s conjecture if an, bn take only finitely many values.

And it links up to the next question:

Open Question 8.10 (Denisov–Rakhmanov Theorem). Let E be an essentially
perfect set, that is, for every x ∈ E and δ > 0, |(x − δ, x + δ) ∩ E| > 0. In [29],
E was called a DR set if any half-line Jacobi matrix with σess(J) = Σac(J) = E
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has a set of right limit points which is uniformly compact (and so the limits are
all almost periodic). A classical theorem of Rakhmanov, as extended by Denisov
(see [99, Ch. 9]), says that [−2, 2] is a DR set. Damanik–Killip–Simon [29] proved
a number of E’s, including those associated with periodic problems, are DR sets.
Remling [90] recently proved any finite union of closed intervals is a DR set, and he
remarks that it is possible to combine his methods with those of Sodin–Yuditskii
[104] to prove that any homogeneous set in the sense of Carleson (see [104] for a
definition) is a DR set.

Following this section’s trend to make (foolhardy?) conjectures:

Conjecture 8.11. Any essentially perfect compact subset of R is a DR set.

A counterexample would also be very interesting. This is relevant to this paper
because, as we have explained, Widom’s theorem (Theorem 1.12) is a kind of poor
man’s DR condition.

Related to this: it would be interesting to find a proof of the almost periodicity of
every reflectionless two-sided Jacobi matrix with spectrum a finite union of intervals
that did not rely on the theory of meromorphic functions on a Riemann surface.

Example 8.12. Remling [90] has some interesting Jacobi matrices that are reg-
ular on [−2, 2], not in Nevai class, and have Σac = [0, 2]. Related examples for
Schrödinger operators appeared earlier in Molchanov [83].

9. Continuum Schrödinger Operators. The theory presented earlier was de-
veloped by the OP community dealing with discrete (i.e., difference) equations.
The spectral theory community knows there are usually close analogies between
difference and differential equations, so it is natural to ask about regularity ideas
for continuum Schrödinger operators—a subject that does not seem to have been
addressed before. We begin this exploration here. This is more a description of a
research project than a final report. We will be discursive without proofs.

The first problem that one needs to address is that there is no natural potential
theory for infinite unbounded sets. log|x − y|−1 is unbounded above and below so
Coulomb energies can go to −∞. Moreover, the natural measures are no longer
probability measures. There is no reasonable notion of capacity, even of renor-
malized capacity. But at least sometimes there is a natural notion of equilibrium
measure and equilibrium potential.

Consider E = [0,∞). We may not know the precise right question but we know
the right answer: For V = 0, the solutions of −u′′ + V u = λu with u(0) = 0 are
u(x) = C sinh(x

√
−λ), and so

(9.1) lim
x→∞

log|u(x)|
x

=
√
−λ

which must be the correct analog of the potential theorist Green’s function. And
there is a huge literature on continuum density of states, which for this case is

(9.2) dρ(λ) = χ[0,∞)(λ)(λ)
−1/2(2π)−1 dλ

This comes from noting the eigenvalues on [0, 1] with u(0) = u(L) = 0 boundary
conditions are (πn

L )2, n = 1, 2, . . . . Here is a first attempt to find the right question.

It is the derivative of
∫

log|x−y|−1 dµ(x) that is a Herglotz function, so we make

Definition. We say dν is an equilibrium measure associated to a set E ⊂ [a,∞) for
some a, if and only if there is a Herglotz function, FE(z), on C so that
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(i) ImF (λ+ i0) is supported on λ ∈ E.
(ii) ReF (λ + i0) = 0 for a.e. λ ∈ E.
(iii) F (λ) → 0 as λ→ −∞.

(iv) π−1F (λ+ iε) dλ
w−→ dν(λ).

(v) For any bounded connected component (a, b) of R \ E, we have

(9.3)

∫ b

a

F (λ) dλ = 0

We will say dν is normalized if

(9.4) F (λ) ∼ 1
2 (−λ)−1/2(1 + o(1))

near −∞.

The reason for choosing (9.3) and (9.4) will be made clear shortly. Once we have
F , we define the equilibrium potential of E by

(9.5) ΦE(z) = Re

(∫ z

x0

F (ω) dω

)

where x0 ∈ E and the integral is in a path in C\ [a,∞) with a = inf{y ∈ R | y ∈ E}.
That ReF = 0 on E and that (9.3) holds show ΦE is independent of x0. (9.3) also

implies ΦE(z) = 0 on E. For this reason, we need to take E = σess(− d2

dx2 + V ), not

σ(− d2

dx2 + V ).
With (9.4), we have

(9.6) ΦE(z) = Re(
√
−z )(1 + o(1))

near −∞. We can explain why we normalize as we do. For regular situations, we
expect that the absolute value of the eigenfunction, ψz(x), analogous to OPs (see
below) is asymptotic to

exp(xΦE(z))

as x→ ∞. This, in turn, is related to integrals of the negative of the real part of

(9.7) m(z, x) =
η′z(x)

ηz(x)

where η is the solution of L2 at infinity.
It is a result of Atkinson [4] (see also [45]) that in great generality that as |z| → ∞,

− d2

dx2 +V is bounded from below in sectors about (−∞, a) and, in general, in sectors
|arg z| ∈ (c, π − ε),

(9.8) m(z, λ) = −
√
−z + o(1)

ψ should grow as the inverse of η, so Φ ∼ −m as z → −∞.
This is stronger than (9.6) (if one can interchange limits x → ∞ and z → ∞)

since the error in (9.6) is o(1)
√−z, while in (9.7) it is o(1). The lack of a constant

term is an issue to be understood.
If we take E = [0,∞) since F ′ > 0 on (−∞, 0), we have F > 0 on (−∞, 0),

and so logF (x + i0) has boundary values 0 on (−∞, 0) and 1
2 on (0,∞). This

plus logF (z) = o(z) at −∞ uniquely determine logF , and so F , up to an overall
constant which is fixed by the normalization yielding

(9.9) F (z) =
1

2
√−z

so there is a unique “potential” for [0,∞) that gives the right Φ(z) =
√−z.
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Similarly, for a finite number of gaps removed from [0,∞), one gets a unique F .
Craig’s argument yields F up to positions of zeros in the gap, which are then fixed
by (9.1).

Open Project 9.1. Develop a formal theory of equilibrium measures and equi-
librium potentials for unbounded sets that are “close” to [0,∞) (e.g., one might
require that E \ [0,∞) has finite Lebesgue measure). Can one understand the o(1)
in (9.8) from this theory?

With potentials in hand, we can define regularity. We recall first that given any
V on [0,∞) which is locally in L1, one can define the regular solution, ψ(x, z),
obeying

−ψ′′(x, z) + V (x)ψ(x, z) = zψ(x, z)(9.10)

ψ(0, z) = 0 ψ′(0, z) = 1(9.11)

Here ψ is C1 (and so, locally bounded), its second distributional derivative is L1,
and obeys (9.10) as a distribution. For fixed x, ψ is an entire function of x of
order 1

2 . If ψ is not L2 at infinity for (one and hence all) z ∈ C+, V is called limit
point at infinity and then there is a unique selfadjoint operator H which is formally

− d2

dx2 +V (x) with u(0) = 0 boundary conditions. We only want to consider the case
where H is bounded below (which never happens if V is not limit point). ηz(x) is
then the solution L2 at ∞ determined up to a constant, so

(9.12) m(x, z) =
η′z(x)

ηz(x)

is determined by V.

Definition. Let E = σess(H). We say H is regular if and only if for all z /∈ σ(H),

(9.13) lim sup
x→∞

1

x
log|ψ(x, z)| = ΦE(z)

Of course, for this to make sense, E has to be a set for which there is a potential.
This will eliminate a case like V (x) = x2 where σess(H) is empty). We expect the
following should be easy to prove:

Metatheorem 9.2. (a) If H is regular, for z /∈ σ(H), lim sup in (9.13) can be

replaced by lim.

(b) H is regular if and only if (9.13) holds q.e. on E (where ΦE(z) is q.e. = 0).
(c) If H is regular, the density of states exists and equals the equilibrium measure

for E.

(d) Conversely, if the density of states exists and equals the equilibrium measure

for E0, either H is regular or else the spectral measure for H is supported on

a set of capacity zero.

(e) If H is regular and

lim
n→∞

∫ n+1

n

|(δV )(x)| dx = 0

then H + δV is also regular.

Remarks. 1. Here capacity zero and q.e. are defined in the usual way, that is,
any probability measure of compact support contained in E has infinite Coulomb
energy.
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2. By density of states, we mean the following (see [11, 13, 54, 61, 65, 84, 85]).

Take HL to be the operator − d2

dx2 + V with u(0) = 0 boundary conditions on

L2([0, L], dx). This has infinite but discrete spectrum E1,L < E2,L < E3,L < . . .
(the solutions of ψ(L, z) = 0). Let dνL be the infinite measure that gives weight
1
L to each Ej,L. If w-limdνL (as functions on continuous functions of compact
support) exist, we say the density of states exists and the limit is called the density
of states.

3. (e) should follow from a standard use of an iterated DuHamel’s formula.

Open Project 9.3. Verify Metatheorem 9.2 and explore, in particular, analogs of
(a) Widom’s theorem, Theorem 1.12
(b) The Stahl–Totik criterion, Theorem 1.13
(c) For ergodic continuum Schrödinger operators, the analog of Theorem 1.16.

Appendix A: A Child’s Garden of Potential Theory in the Complex

Plane. We summarize the elements of potential theory relevant to this paper. For
lucid accounts of the elementary parts of the theory, see the appendix of Stahl–Totik
[105], Martinez-Finkelshtein [81], and especially Ransford [88]. More comprehensive
are Helms [50], Tsuji [113], and especially Landkof [73]. We will try to sketch some
of the most important notions in remarks but refer to the texts, especially for the
more technical aspects.

The two-dimensional Coulomb potential is log|x−y|−1 which has two lacks com-
pared to the more familiar |x− y|−1 of three dimensions: It is neither positive nor
positive definite. We will deal with lack of positivity by only considering measures
of compact support, and conditional positive definitiveness can replace positive
definitiveness in some situations.

If µ is a positive measure of compact support on C, its potential is defined by

(A.1) Φµ(x) =

∫
log|x− y|−1 dµ(y)

Because µ has compact support, log|x− y|−1 is bounded below for x fixed, so if we
allow the value +∞, Φµ is always well defined and Fubini’s theorem is applicable
and implies that for another positive measure, ν, also of compact support, we have

(A.2)

∫
Φµ(x) dν(x) =

∫
Φν(x) dµ(x)

Sometimes it is useful to fix M > 0 and define the cutoff

(A.3) ΦM
µ (x) =

∫
log[min(M, |x− y|−1)] dµ(y)

ΦM
µ is continuous and ΦM

µ is an increasing sequence in M, so

Proposition A.1. Φµ(x) is harmonic on C \ supp(dµ), lower semicontinuous on

C, and superharmonic there.

One might naively think that Φµ(x) only fails to be continuous because it can
go to infinity and that it is continuous in the extended sense—but that is wrong!

Example A.2. Let xn = −n−1 and let

(A.4) dµ =

∞∑

n=1

n−2δxn
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Then Φµ(xn) = ∞ and xn → 0, but

(A.5) Φµ(0) =

∞∑

n=1

n−2 logn <∞

Notice that this is consistent with lower semicontinuity, that is, Φµ(limxn) ≤
lim inf Φµ(xn). Also notice, given Hydrogen atom spectra, that this example is
relevant to spectral theory.

Lest you think this kind of behavior is only consistent with unbounded Φµ,
one can replace δxn

by a smeared out probability measure, ηn (using equilibrium
measures on a small interval, In, about xn), so Φηn

= λn2 on In and have with
µ =

∑
n−2ηn, then Φµ is bounded, Φµ(xn) ≥ λ while Φµ(0) ≤ 2

∑∞
n=1 n

−2 logn.
Hence one loses continuity for λ large.

The following is sometimes useful:

Proposition A.3. If Φµ(x) restricted to supp(µ) is continuous, then Φµ is contin-

uous on C.

Remarks. 1. The general case can be found in [73, Thm. 1.7]. Here we will sketch
the case where supp(µ) ⊂ R which is most relevant to OPRL.

2. By lower semicontinuity, if Φµ fails to be continuous on C, there exists zn →
z∞, so Φµ(zn) → a > Φµ(z∞). Continuity off supp(µ) is easy, so we must have
z∞ ∈ R (since we are supposing supp(µ) ⊂ R).

3. If w, x, y ∈ R, then |w − x− iy|−1 ≤ |w − x|−1, so

Φµ(x + iy) ≤ Φµ(x)

and thus lim inf Φµ(Re zn) ≥ a > Φµ(Re z∞), so without loss, we can suppose zn

are real.

4. If (α, β) ⊂ R \ supp(µ) with α, β ∈ supp(µ), it is easy to see that Φµ(x)
is continuous when restricted to [α, β] (using monotone convergence at the end-
points) and convex on [α, β] since log|x|−1 is convex. Thus, max[α,β] Φµ(x) =
max(Φµ(α),Φµ(β)). From this, it is easy to see that if such a zn ∈ R exists,
one can take zn ∈ supp(µ) and so get a contradiction to the assumed continuity of
Φµ restricted to supp(µ).

The energy or Coulomb energy of µ is defined by

(A.6) E(µ) =

∫
Φµ(x) dµ(x) =

∫
log|x− y|−1 dµ(x) dµ(y)

where, again, the value +∞ is allowed. If E ⊂ C is compact, we say it has capacity

zero if E(µ) = ∞ for all µ ∈ M+,1(E), the probability measures on E. If E does
not have capacity zero, then the capacity, C(E), of E is defined by

(A.7) C(E) = exp(−min(E(ρ) | ρ ∈ M+,1(E)))

One indication that this strange-looking definition is sensible is seen by, as we will
show below (see Example A.17),

(A.8) C([a, b]) = 1
4 (b− a)

It is useful to define the capacity of any Borel set. For bounded open sets, U ,

(A.9) C(U) = sup(C(K) | K ⊂ U, K compact)
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and then for arbitrary bounded Borel X ,

(A.10) C(X) = inf(C(U) | X ⊂ U, U open)

It can then be proven (see [73, Thm. 2.8]) that

(A.11) C(X) = sup(C(K) | K ⊂ X, K compact)

for any Borel sets and that (A.10) holds for compact X . In particular, C(X) = 0 if
and only if E(µ) = ∞ for any measure µ with supp(µ) ⊂ X .

The key technical fact behind Theorem 1.16 is the following:

Proposition A.4. If C(X) > 0 for a Borel set X, there exists a probability mea-

sure, µ, supported in X so that Φµ(x) is continuous on C.

Remarks. 1. Let µ have finite energy so
∫

Φµ(x) dµ(x) <∞. By Lusin’s theorem
(see, e.g., the remark after Theorem 6 of Appendix A of Lax [76] for the truly
simple proof), we can find compact sets K ⊂ supp(dµ) so µ(K) > 0 and Φµ ↾ K is
continuous.

2. Let ν = µ ↾ K, that is, ν(S) = µ(S ∩ K). Since µ(K) > 0, ν is a nonzero
measure. By general principles, both Φν and Φµ−ν are lower semicontinuous on K,
so since Φµ is continuous,

(A.12) Φν = Φµ − Φµ−ν

is upper semicontinuous on K. Thus, Φν is continuous on K (since Φµ is continuous
on K, it is bounded there, so Φν and Φµ−ν are both bounded there, so there are no
∞–∞ cancellations in (A.12)).

3. By Proposition A.3, Φν is continuous on C.

Now suppose µ is an arbitrary measure of compact support and that C({x |
Φµ(x) = ∞}) > 0. Then, by the above proposition, there is an η supported on that
set with Φη continuous and so bounded above on supp(dµ). Thus,

(A.13)

∫
Φη(x) dµ(x) <∞

On the other hand, Φµ(x) = ∞ on supp(dη), so

(A.14)

∫
Φµ(x) dη(x) = ∞

This contradicts (A.2). We thus see that the last proposition implies:

Corollary A.5. For any measure of compact support, µ, {x | Φµ(x) = ∞} has

capacity zero.

A main reason for defining capacity for any Borel set is that it lets us single
out sets of capacity zero (also called polar sets), which are very thin sets (e.g.,
of Hausdorff dimension zero; see Theorem A.20). We say an event (i.e., a Borel
set) occurs quasi-everywhere (q.e.) if and only if it fails on a set of capacity zero.
“Nearly everywhere” is also used. A countable union of capacity zero sets is capacity
zero. Note that if µ is any measure of compact support, with E(µ) < ∞, then
E(µ ↾ E) < ∞ for any compact E (because log|x − y|−1 is bounded below) and
thus, µ(E) = 0 if C(E) = 0. It follows (using (A.11)) that

Inverse Problems and Imaging Volume 1, No. 4 (2007), 713–772



Equilibrium Measures and Capacities in Spectral Theory 755

Proposition A.6. If E(µ) <∞, then µ(X) = 0 for any X with C(X) = 0.

Here is an important result showing the importance of sets of zero capacity. It is
the key to Van Assche’s proof in Section 4 and the proof of our new Theorem 1.16
in Section 7.

Theorem A.7. Let νn, ν be measures with supports contained in a fixed compact

set K and supn νn(K) <∞. If νn → ν weakly, then

(A.15) lim inf
n→∞

Φνn
(x) ≥ Φν(x)

for all x ∈ C and equality holds q.e.

Remarks. 1. (A.15) is called the “Principle of Descent” and the equality q.e. is
the “Upper Envelope Theorem.”

2. Suppose νn has a point mass of weight 1
2n at { j

2n }2n−1
j=0 . Then dνn → dx ≡ dν,

Lebesgue measure. Φνn
( j
2n ) = ∞ so lim inf Φνn

(x) = ∞ at any dyadic ratio-
nal, while Φν(x) < ∞ for all x. This shows equality may not hold everywhere.
This example is very relevant to spectral theory. For the Anderson model, we ex-
pect lim sup|pn(x)|1/n = eγ(x) for almost all x and lim sup|pn(x)|1/n = e−γ(x) at
the eigenvalues. Thus, with νn the zero counting measure for pn, so Φνn

(x) =
− log|pn(x)|1/n, we have lim inf Φνn

(x) = −γ(x) for almost all x and γ(x) at the
eigenvalue consistent with (A.15), and with (A.15) failing on a capacity zero set,
including the countable set of eigenvalues.

3. (A.15) is easy. For ΦM
ν is the convolution with a continuous function so

limn→∞ ΦM
νn

(x) = ΦM
ν (x). Since Φνn

(x) ≥ ΦM
νn

(x), we see lim infn→∞ Φνn
(x) ≥

ΦM
ν (x). Taking M → ∞ yields (A.15).

4. Let X be the set of x for which the inequality in (A.15) is strict. Suppose
C(X) > 0. Then, by Proposition A.2, there is η supported on X with Φη(x)
continuous so

(A.16) lim
n→∞

∫
Φη(x) dνn =

∫
Φη(x) dν

By (A.2) and Fatou’s lemma (Φνn
(x) is uniformly bounded below),

lim
n→∞

∫
Φη(x) dνn = lim

∫
Φνn

(x) dη

≥
∫

lim inf Φνn
(x) dη

>

∫
Φν(x) dη(A.17)

=

∫
Φη(x) dν

where (A.17) comes from the assumptions supp(dη) ⊂ X and (A.15) is strict on X .
This contradiction to (A.16) shows C(X) = 0, that is, equality holds in (A.15) q.e.

If EM (µ) =
∫

ΦM
µ dµ(x), then it is easy to prove EM is weakly continuous and

conditionally positive definite in that

(A.18) µ(C) = ν(C) ⇒ EM (µ− ν) ≥ 0

where boundedness of log(min(|x−y|−1,M)) implies EM makes sense for any signed
measure. By taking M to infinity, one obtains
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Theorem A.8. The map µ 7→ E(µ) is weakly lower semicontinuous on M+,1(E)
for any compact E ⊂ C. Moreover, it is conditionally positive definite in the sense

that for µ, ν ∈ M+,1(E), E(µ) <∞ and E(ν) <∞ imply

(A.19)

∫
Φν(x) dµ(x) ≤ 1

2 E(µ) + 1
2 E(ν)

with strict inequality if µ 6= ν.

Remark. The strict inequality requires an extra argument. One can prove that if
µ, ν ∈ M+,1(E) with finite energy, then µ̂(k) − ν̂(k) is analytic in k vanishing at
k = 0 and

(A.20) E(µ) + E(ν) − 2

∫
Φν(x) dµ(x) =

1

2π

∫ ∣∣∣∣
µ̂(k) − ν̂(k)

k

∣∣∣∣
2

d2k

Since the inequality in (A.19) is strict and

(A.21) E(1
2 µ+ 1

2 ν) = 1
4 E(µ) + 1

4 E(ν) + 1
2

∫
Φν(x) dµ(x)

we see that E(µ) is strictly convex on M+,1(E), and thus

Theorem A.9. Let E be a compact subset of C with C(E) > 0. Then there exists

a unique probability measure, dρE, called the equilibrium measure for E, that has

(A.22) E(ρE) = log(C(E)−1)

The properties of ρE are summarized in

Theorem A.10. Let E ⊂ C be compact. Let Ω be the unbounded component of

C \E and Ω̃ = C \ (Ω∪E) the union of the bounded components of C \E. Suppose

C(E) > 0 and dρE is its equilibrium measure. Then

(a) For all x ∈ C,

(A.23) ΦρE
(x) ≤ log(C(E)−1)

(b) Equality holds in (A.23) q.e. on E and on Ω̃.

(c) Strict inequality holds in (A.23) on Ω.

(d) ρE is supported on ∂Ω, the boundary viewed as a set in C.

(e) ΦρE
is continuous on C if and only if it is continuous when restricted to

supp(dρE) if and only if equality holds in (A.23) on supp(dρE).
(f) If I ⊂ E ⊂ R with I = (a, b), then dρE ↾ I is absolutely continuous with respect

to Lebesgue measure, dρE

dx ↾ I is real analytic, and equality holds in (A.23) on

I.

Remarks. 1. For example, if E = ∂D, Ω = C \ D and Ω̃ = D.
2. See [73, 88] for complete proofs.

3. (a)+(b) is called Frostman’s theorem.

4. Equality in (A.23) may not hold everywhere on E; for example, if E =
[−1, 1] ∪ {2}, the equilibrium measure gives zero weight to {2}, so is the same as
the equilibrium measure for [−1, 1] and that dρE has inequality on C \ [−1, 1] by
(c).

5. If f is supported on supp(dρE) and f bounded and Borel, and
∫
f dρE = 0,

then (1+εf)dρE is a probability measure for ε small with E((1+εf) dρE) <∞. Since
d
dεE((1 + εf)dρE) = 2

∫
f(x)ΦρE

(x) dρE(x), we see ΦρE
(x) is a constant for dρE-

a.e. x. Since E(ρE) =
∫
dρE ΦρE

(x), the constant must be E(ρE) = log(C(E)−1).
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By lower semicontinuity, (A.23) holds on supp(dρE). Since ΦρE
is harmonic on

C\supp(dρE) and goes to −∞ as |x| → ∞, (A.23) holds by the maximum principle.

6. Let η be a probability measure on E with E(η) <∞. Then

(A.24) E((1 − t)dρE + tdη) = E(dρE) + t

(∫
ΦρE

(x)[dη − dρE ]

)
+O(t2)

Since
∫
dρEΦρE

(x) = E(dρE) = log(C(E)−1), if η is supported on a set where
strict inequality holds in (A.23), E((1− t)dρE + tdη) < E(dρE) for small t, violating
minimality. Thus the set where (A.23) has inequality cannot support a measure of
finite energy, that is, it has zero capacity, proving (b).

7. Since ΦρE
is harmonic on Ω and goes to −∞ at ∞, the maximum principle

implies ΦρE
(x) cannot take its maximum (which is log(C(E)−1)) on Ω. (e) follows

from Proposition A.3. (d) is left to the references; see [73, 88].

8. If I ⊂ E ⊂ R, one first shows equality holds in (A.23) on I and that Φ is
continuous there. (This uses the theory of “barriers”; see [73, 88]. One can also
prove this using periodic Jacobi matrices and approximations; see [102].) Then
one can apply the reflection principle to see that ΦρE

has a harmonic continuation
across I. Indeed, ΦρE

is then the real part of a function analytic on I with zero
derivative there. That derivative for Im z > 0 is the real part of

(A.25) F (z) =

∫
dρE(x)

x− z

so, by the standard theory of boundary values of Herglotz functions (see [98,
Sect. 1.3]), we have that dρE ↾ I is absolutely continuous and

(A.26)
dρE

dx
=

1

π
ImF (x+ i0)

proving real analyticity of this derivative.

9. The same argument as in Remark 8 applies if I is replaced by an analytic arc
with a neighborhood N obeying N ∩ E = I. In particular, if I is an “interval” in
∂D and I ⊂ E ⊂ ∂D, we have absolute continuity and analyticity on I.

Here is an interesting consequence of (A.2):

Theorem A.11. Let ν be a measure of compact support, E, so that C(E) > 0.
Then

(A.27) Φν(x) <∞ for dρE a.e. x

Remarks. 1. This can happen even if E(ν) = ∞ so
∫

Φν(x) dν(x) = ∞.

2. For (A.23) implies
∫

ΦρE
(x) dν ≤ log(C(E)−1)ν(E) <∞

so (A.2) implies

(A.28)

∫
Φν(x) dρE(x) <∞

The following illustrates the connection between potential theory and polynomi-
als:
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Theorem A.12 (Bernstein–Walsh Lemma). Let E be a compact set in C with

C(E) > 0 and let Ω be the unbounded component of C \ E. Let pn be a polynomial

of degree n and let

(A.29) ‖pn‖E = sup
z∈E

|pn(z)|

Then for all z ∈ Ω,

(A.30) |pn(z)| ≤ C(E)−n‖pn‖E [exp(−nΦρE
(z))]

Remarks. 1. This is named after Bernstein and Walsh [121], although the result
appears essentially in Szegő [107].

2. Let {zj}n
j=1 be the zeros of pn. Define

(A.31) g(z) = log|pn(z)| + nΦρE
(z) + n log(C(E))

on Ω∪{∞}\{zj}n
j=1 = Ω′. g is harmonic on Ω′ including at ∞ since both log|pn(z)|

and −nΦρE
(z) are n log|z| plus harmonic near ∞. Since gn(z) → −∞ at the zj ∈ Ω,

we see

(A.32) sup
z∈Ω′

|g(z)| ≤ lim
δ↓0

[
sup

dist(w,E)=δ
w∈Ω

|g(w)|
]

But, by (A.23), g(z) ≤ log|pn(z)|, so

g(z) ≤ log ‖pn‖E

which is (A.30) on Ω′ \ {∞}. (A.30) holds trivially at the zj, completing the proof.

Following ideas of Craig [24], one can say much more about dρE

dx when E contains
an isolated closed interval:

Theorem A.13. Let E ⊂ R be compact and a < c < d < b so E ∩ (a, b) = [c, d].
Then there exists g real, real analytic, and strictly positive on [c, d] so that

(A.33) dρE ↾ [c, d] = g(x)[(d− x)(x − c)]−1/2 dx

If E = ∪ℓ+1
j=1[aj , bj] with a1 < b1 < a2 < · · · < bℓ+1, there are xj ∈ (bj , aj+1) for

j = 1, 2, . . . , ℓ so that

(A.34) dρE(x) =
1

π

[ ℓ∏

j=1

x− xj√
(x− bj)(x − aj+1)

]
1√

(x− a1)(bℓ+1 − x)
dx

Remarks. 1. (A.34) is from Craig [24].

2. The idea behind the proof is simple. One lets F (z) =
∫ dρE(x)

x−z . By the

arguments above, F is pure imaginary on [c, d] as the derivative of ΦρE
(x). Thus,

argF (x + i0) is π
2 on [c, d], and by a simple argument, 0 on [c − δ, c) and π on

(d, d+ δ]. A Herglotz representation for logF (x+ i0) yields (A.33) and (A.34).

3. The xj ’s are uniquely determined by

(A.35)

∫ aj+1

bj

F (x) dx = 0

Recall a set S is called perfect if it is closed and has no isolated points. A standard
argument shows that any compact E has a unique decomposition into disjoint sets,
D∪S where D is a countable set and S is perfect (similarly, any compact E ⊂ R can
be written Z ∪ F where Z has Lebesgue measure zero and F is essentially perfect,
that is, |F ∩ (x− δ, x+ δ)| > 0 for any x ∈ F and δ > 0).
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Similarly, we call a set P potentially perfect (the terminology is new) if P is closed
and C(P ∩ {x | |x − x0| < δ}) > 0 for all x0 ∈ P and δ > 0. It is easy to see that
any compact E ⊂ C can be uniquely written as a disjoint union E = Q ∪ P where
C(Q) = 0 and P is potentially perfect.

These notions are related to equilibrium measures. If cap(E) > 0 and E = Q∪P
is this decomposition, then

(A.36) P = supp(dρE)

In particular, supp(dρE) = E if and only if E is potentially perfect.
Just as one writes σ(dµ) = σdisc(dµ) ∪ σess(dµ), we single out the potentially

perfect part of σ(dµ) and call it σcap(dµ).
Next, we want to state a kind of converse to Frostman’s theorem.

Theorem A.14. Let E ⊂ C be compact. Suppose E is potentially perfect. Let

η ∈ M+,1(E) be a probability measure on E with supp(dη) ⊆ E so that for some

constant, α,

(A.37) Φη(x) = α dρE-a.e. x

Then η = ρE, the equilibrium measure, and α = log(C(E)−1).

Remark. By lower semicontinuity, Φη(x) ≤ α on supp(dρE) = E by hypothesis.
Thus,

(A.38) E(η) =

∫
Φη(x) dη(x) ≤ α <∞

so η must give zero weight to zero capacity sets. Thus, ΦρE
(x) = log(C(E)−1) for

dη-a.e. x and thus,

(A.39)

∫
ΦρE

(x) dη(x) = log(C(E)−1)

By (A.2) and (A.37),

LHS of (A.39) =

∫
Φη(x) dρE(x) = α

Thus, α = log(C(E)−1), and by (A.38) and uniqueness of minimizers, η = ρE .

Next, we note that the Green’s function for a compact E ⊂ C is defined by

(A.40) GE(z) = −ΦρE
(z) + log(C(E)−1)

It is harmonic on C \E, GE(z)− log|z| is harmonic at infinity, and GE(z) has zero
boundary values q.e. on E. Notice that GE(z) ≥ 0 on C. If

(A.41) lim
z→E

GE(z) = 0

in the sense that

(A.42) lim
δ↓0

sup
dist(z,E)<δ

GE(z) = 0

we say E is regular for the Dirichlet problem (just called regular). By Theo-
rem A.10(c), this is true if and only if ΦρE

(x) = log(C(E)−1) for all x ∈ E. By
Theorem A.13, this is true for finite unions of disjoint closed intervals.

Notice that the Bernstein–Walsh lemma (A.30) can be rewritten

(A.43) |pn(z)| ≤ ‖pn‖E exp(nGE(z))
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Closely related are comparison theorems and limit theorems. We will state them
for subsets of R:

Theorem A.15. Let E1 ⊂ E2 ⊂ R be compact sets. Then

(i) C(E1) ≤ C(E2)
(ii)

(A.44) GE2(z) ≤ GE1(z)

for all z ∈ C
(iii)

(A.45) dρE2 ↾ E1 ≤ dρE1

(iv) If I = (a, b) ⊂ E1, then on I,

(A.46)
dρE2

dx
≤ dρE1

dx

for all x ∈ I.

Theorem A.16. Let E1 ⊃ E2 ⊃ . . . be compact subsets of R. Let E∞ = ∩∞
j=1Ej.

Then

(i)

(A.47) lim
n→∞

C(En) = C(E∞)

(ii) ρEn
→ ρE∞

weakly.

(iii) For z ∈ C \ E∞,

(A.48) lim
n→∞

GEn
(z) = GE∞

(z)

and (A.48) holds q.e. on E∞.

(iv) If I = (a, b) ⊂ E∞, then uniformly on compact subsets of I,

(A.49) lim
n→∞

dρEn

dx
=
dρE∞

dx

Remarks. 1. (A.45) has the pleasing physical interpretation that if one conduc-
tor is connected to another, charge leaks out in a way that there is less charge
everywhere in the original conductor.

2. Part (i) of each theorem is easy. For Theorem A.15, it follows from the
minimum energy definition. For Theorem A.16(i), we note that if U is open with
E∞ ⊂ U , then eventually En ⊂ U , so (A.10) implies (A.47).

3. One proves (ii)–(iv) of Theorem A.15 first for E, a finite union of closed
intervals, then proves Theorem A.16, and then for general compact E∞ ⊂ R defines
En = {x | dist(x,E∞) ≤ 1

n} and proves ∩nEn = E∞ and each En is a finite union
of closed intervals. Theorem A.16 then yields Theorem A.15 for general E’s (see
[102]).

4. For E1, E2 finite union of closed intervals and z /∈ E2, one gets (A.44) by
noting the difference GE1(z) − GE2(z) is harmonic on C \ E2, zero on E1, and
positive on E2 \ E1, where GE1 > 0 and GE2 = 0. The inequality for z ∈ E2 then
follows from the fact that any subharmonic function h obeys

(A.50) h(z0) = lim
r↓0

1

2πr

∫ 2π

0

h(z0 + reiθ) dθ
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5. For this case, one gets (A.45)/(A.46) by noting that (A.26) can be rewritten

(A.51)
dρE(x0)

dx
=

1

π
lim
ε↓0

ε−1GE(x0 + iε)

for x0 ∈ E and using (A.44) for x ∈ E1.

6. If {En}∞n=1, E∞ are as in Theorem A.16 and dη is a weak limit point of dρEn
,

then η is supported on E∞, and by lower semicontinuity of the Coulomb energy E ,

E(η) ≤ lim E(ρEn
)

= lim log(C(En)−1)

= log(C(E∞)−1)

by (A.47), so η = ρE∞
, that is, ρEn

→ ρE∞
weakly. (A.48) then follows for

z /∈ E∞ from (A.47) and continuity of Φν(z) in ν for z /∈ supp(dν). (A.50) implies
convergence for z ∈ E∞.

7. (A.49) follows from ρEn
→ ρE∞

and uniform bounds on derivatives of dρ
dx on

I, which in turn follow from the proof of (A.33).

Example A.17. Harmonic functions are conformally invariant, which means (since
Green’s functions are normalized by GE(z) = log|z|+O(1) near infinity and bound-
ary values of 0 on E), if Q is an analytic bijection of C \D ∪ {∞} to Ω∪ {∞} with
Q(z) = Cz+O(1) near infinity, then, since log|z| is the Green’s function for E = ∂D,
log|Q−1(z)| is the Green’s function for E and C its capacity. In particular, with
Q(z) = z + 1

z , we see

(A.52) C([−2, 2]) = 1

and consistent with (A.34)

(A.53) dρ[−2,2](x) =
1

π

dx√
4 − x2

Notice that, by scaling, if λ > 0 and λE = {λz | z ∈ E} and µ ∈ M+,1(E) is
mapped to µλ in M+,1(λE) by scaling, then

(A.54) E(µλ) = − log(λ) + E(µ)

so

(A.55) C(λE) = λC(E)

This plus translation invariance shows

C([a, b]) = 1
4 (b− a)

Now, let E ⊂ R, E− = E∩(−∞, 0), E+ = E\E−, and for a > 0, let E(a) = E−∪
(E++a). Let dρE be equilibrium measure for E. Since log|x+a−y|−1 < log|x−y|−1

for x > 0, y < 0, a > 0, we see

(A.56) E(ρ ↾ E− + Ta(ρ ↾ E+)) < E(ρ)

(where Taµ is the translate of µ). Thus

C(E(a)) ≥ C(E)

This is an expression of the repulsive nature of the Coulomb force! Thus, by joining
together all the pieces of E (via a limiting argument), one sees that if |E| is the
Lebesgue measure of E ⊂ R, then

(A.57) C(E) ≥ 1
4 |E|
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and sets of capacity zero have Lebesgue measure zero.

Example A.18. Let dµ be the conventional Cantor measure on [0, 1] which can be

thought of as writing x =
∑ an(x)

3n with an = 0, 1 or 2 and taking dµ as the infinite

product of measures given weight 1
2 to an = 0 or 2. Looking at a1, we get the usual

two pieces of mass 1
2 with minimum distance 1

3 between them. Look at a1, . . . , ak

and we have 2k pieces of mass 2−k and minimum distance 3−k. Given x, y in the
Cantor set, dist|x− y| < 3−k if and only if they are in the same pieces, that is,

µ({x | |x− y| < 3−k}) = 2−k

Thus ∫
log|x− y|−1 dµ(x) dµ(y) ≤

∑

k

(k + 1)(log 3)µ({x, y | |x− y| < 3−k})

=
∑

k

(k + 1)(log 3) 2−k <∞

This shows the Cantor set has positive capacity. Generalizing, we get sets of any
Hausdorff dimension α > 0 with positive capacity. In fact, as we will see shortly,
any set of positive Hausdorff dimension has positive capacity.

Example A.19. Fix a > 0 and let E = (−a
2 − ∆,−a

2 ) ∪ (a
2 ,

a
2 + ∆) where ∆ = 4

a .
When a is very large, the equilibrium measure is very close to the average of the
equilibrium measure for the two individual intervals. This measure has energy
approximately

2
1

4
log

(
4

∆

)
+ 2

1

4
log(a) = 0

so the asymptotic capacity is 1. This phenomenon of distant pieces of individually
small capacity having total capacity bounded away from zero is a two-dimensional
phenomenon.

Sets of capacity zero not only have zero Lebesgue measure, but they also have
zero α-dimensional Hausdorff measure for any α > 0:

Theorem A.20. Any compact set E of capacity zero has zero Hausdorff dimension.

Remarks. 1. We will sketch a proof where E ⊂ R. What one needs to do, for any
α > 0, ε > 0, is to find a cover of E by intervals I1, . . . , In . . . of length |Ij | so that

(A.58)
∑

|Ij |α < ε

2. We begin by noting that there is a measure µ (not necessarily supported by
E) so that Φµ(x) = ∞ for all x ∈ E (we do not care that E is exactly the set where
Φµ = ∞ but note that by combining the ideas here with Corollary A.5, one can
show E is the set where some potential is infinite if and only if E is a Gδ-set of
zero capacity). Here is how to construct µ. Let Em = {x ∈ R | dist(x,E) ≤ 1

m}.
Em is a finite union of closed intervals and, by (A.10), C(Em) ↓ 0. Pass to a

subsequence Ẽm, so C(Ẽm) ≤ exp(− 1
m2 ) so ΦρẼm

(x) ≥ m2 on Ẽm and so on E.

Let µ =
∑

mm−2ρẼm
. µ is a finite measure with Φµ = ∞ on E.

3. Let x ∈ E. Suppose for some α > 0 and c > 0, we have with Ix
r = (x−r, x+r),

(A.59) µ(Ix
r ) ≤ c(2r)α
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Then picking r = 2−n, we see (with n0 large and negative so supp(dµ) ⊂ Ix
2−n)

∫
log|y − x|−1 dµ(y) ≤

∞∑

n=n0

[(n+ 1) log 2]µ(Ix
2−n)

<∞
We thus conclude (A.59) always fails, that is, for any x ∈ E and any α,

(A.60) lim sup
r↓0

(2r)−αµ(Ix
r ) = ∞

4. Given α > 0, δ > 0 fixed, by (A.60), we can find for each x ∈ E, so Ix
rx

with

(A.61) µ(Ix
rx

) ≥ δ−1(2rx)α

5. There is standard covering lemma used in the proof of the Hardy–Littlewood
maximal theorem (see [64], p. 74, the proof of the lemma) that we can find a suitable
sequence xj with

(A.62) Ixj
rxj

∩ Ixk
rxk

= ∅
and

(A.63)
⋃

x

Ix
rx

⊂
∞⋃

j=1

I
xj

4rxj

6. Thus, {Ixj

4rxj
} cover E and, by (A.61),

∑

j

|Ixj

4rxj
|α ≤ 4α

∑

j

|Ixj
rxj

|α

≤ 4αδ
∑

j

µ(Ixj
rxj

)

≤ 4αδµ(R)

by (A.62). Since δ is arbitrary, we have the required covers to see dim(E) = 0.

A final comparison result will be needed in Appendix B:

Theorem A.21. Let µ, ν be two probability measures on R so that for all z near

infinity,

(A.64) Φµ(z) ≥ Φν(z)

Then µ = ν. In particular, if either Φµ(z) ≥ ΦρE
(z) or Φµ(z) ≤ ΦρE

(z) for all z
near infinity, then µ = ρE.

Remark.

Φµ(z) + log|z| = −Re

∫
log(1 − w

z ) dµ(w)

= Re

[ ∞∑

n=1

z−n

∫
wn dµ(w)

]

Thus Φ̃µ(z) ≡ Φµ(z) + log|z| is harmonic near infinity with Φ̃µ(∞) = 0. Thus,

Φµ − Φν = Φ̃µ − Φ̃ν is harmonic and vanishing at ∞. The only way it can have a
definite sign near infinity is if it is identically 0. By harmonicity off R, Φµ = Φν

on C \ R and then, by (A.50), on R. Thus, Φµ = Φν as distributions. Since
−∆Φµ = 2πµ, we see µ = ν.
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Appendix B: Chebyshev Polynomials, Fekete Sets, and Capacity. For fur-
ther discussion of the issues in this appendix, see Andrievskii–Blatt [3], Goluzin
[48], and Saff–Totik [91] whose discussion overlaps ours here. Let E ⊂ C be com-
pact and infinite. The Chebyshev polynomials, Tn(x), are defined as those monic
polynomials of degree n which minimize

(B.1) ‖Tn‖E = sup
z∈E

|Tn(z)|

By TR
n , the restricted Chebyshev polynomials, we mean the monic polynomials,

all of whose zeros lie in E, which minimize ‖ · ‖E among all such polynomials.
They can be distinct: for example, if E = ∂D, Tn(z) = zn while TR

n (z) = 1 + zn

(not unique). It can be proven (see [113, Thm. III.23]) that Chebyshev (but not
restricted Chebyshev) polynomials are unique.

Clearly,

(B.2) ‖Tn‖E ≤ ‖TR
n ‖E

and since TnTm is a monic polynomial of degree n+m,

(B.3) ‖Tn+m‖E ≤ ‖Tn‖E‖Tm‖E

so limn→∞ ‖Tn‖1/n
E exists, and similarly, so does limn→∞ ‖TR

n ‖1/n
E .

An n point Fekete set is a set {zj}n
j=1 ⊂ E that maximizes

(B.4) qn(z1, . . . , zn) =
∏

i6=j

|zi − zj|

There are n(n− 1) terms in the product and the Fekete constant is defined by

(B.5) ζn(E) = qn(z1, . . . , zn)1/n(n−1)

for the maximizing set. The set may not be unique: for example, if E = ∂D and
ωn is an nth root of unity, {zk = z0ω

k
n} is a minimizer for any z0 ∈ ∂D.

Let z1, . . . , zn+1 be an n+ 1-point Fekete set. For each j,

(B.6)
∏

k,ℓ 6=j
ℓ 6=k

|zk − zℓ| ≤ ζn(n−1)
n

Thus, taking the product over the n + 1 values of j and noting that each zk − zℓ

occurs n− 1 times,

(B.7) [ζ
(n+1)n
n+1 ]n−1 ≤ [ζn(n−1)

n ]n+1

so ζn is monotone decreasing. Thus ζn has a limit, called the transfinite diameter.
The main theorem relating these notions and capacity is

Theorem B.1. For any compact set E ⊂ C, we have

(B.8) C(E) ≤ ‖Tn‖1/n
E ≤ ‖TR

n ‖1/n
E ≤ ζn+1(E)

Moreover,

(B.9) lim
n→∞

ζn(E) ≤ C(E)

(so all limits equal C(E)). Finally, if C(E) > 0,
(i) The normalized density of Fekete sets converges to dρE , the equilibrium measure

for E.

(ii) If E ⊂ R, the normalized zero counting measure for Tn and for TR
n converges

to dρE.
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Remarks. 1. Normalized densities and zero counting measure are the point mea-
sures that give weight k/n to a point in the set of multiplicity k (for Fekete sets,
k = 1, but for polynomials there can be zeros of multiplicity k > 1).

2. If E = ∂D, Tn(z) = zn, so (ii) fails for Tn. If E = D, TR
n (z) = zn and (ii) fails

for TR
n also. It can be shown that if E ⊂ ∂D, E 6= ∂D, (ii) also holds.

3. Fekete sets have the interpretation of sets minimizing the point Coulomb
energy

∑
j 6=k log|zj − zk|−1. Parts of this theorem can be interpreted as saying

the point minimizer and associated energy without self-energies converge to the
minimizing continuum distribution and energy, which is physically pleasing!

4. The equality of lim ζn and lim ‖Tn‖1/n is due to Fekete [38]. The rest is due
to Szegő [107], whose proof we partly follow.

5. Stieltjes [106] considered what we call Fekete sets for E = [−1, 1], proving
that, in that case, the set is unique and consists of 1, −1, and the n− 2 zeros of a
suitable Jacobi polynomial (see [108]). The general set up is due to Fekete [38].

6. When E ⊂ ∂D, there are two other sets of polynomials related to minimizing
‖Pn‖∞,E. We can restrict to either
(a) “Quasi-real” monic polynomials, that is, degree n polynomials, so for some ϕ,

e−iϕe−inθ/2Pn(eiθ) is real for θ real (these are exactly polynomials for which
P ∗

n(z) = e−2iϕPn(z) where ∗ is the Szegő dual). Equivalently, zeros are sym-
metric about ∂D.

(b) Monic Pn all of whose zeros lie on ∂D. These Chebyshev-like polynomials are
used in [100].

Since there are classes of polynomials between all monic and monic with zeros
on E, the nth roots of the norms also converge to C(E).

‖Tn‖1/n
E ≤ ‖TR

n ‖1/n
E is (B.2). Here is the last inequality in (B.8):

Proposition B.2.

(B.10) ‖TR
n ‖E ≤ ζn+1(E)n

Proof. Let {zj}n+1
j=1 be an (n+ 1)-Fekete set. Let

(B.11) Pk(z) =
∏

j 6=k

(z − zj)

called a Fekete polynomial. (Note: There is a different set of polynomials occurring
in a different context also called Fekete polynomials.) By the maximizing property
of Fekete sets,

(B.12) ‖Pk‖E =
∏

j 6=k

|zk − zj |

since if z′j = zj (j 6= k), z′k = z, then
∏

ℓ 6=k|z′ℓ − z′k| ≤ ∏
ℓ 6=k|zℓ − zk|. Since

‖TR
n ‖E ≤ ‖Pk‖E (by the minimizing property of ‖TR

n ‖E), taking the n+ 1 choices
of k,

‖TR
n ‖n+1

E ≤
n+1∏

k=1

‖Pk‖E =
∏

all j 6=k

|zk − zj| = ζ
n(n+1)
n+1

which is (B.10).

The following completes the proof of (B.8):
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Proposition B.3. For any monic polynomial Pn(z),

(B.13) ‖Pn‖E ≥ C(E)n

Proof. There is nothing to prove if C(E) = 0, so suppose C(E) > 0. By the
Bernstein–Walsh lemma (A.30),

(B.14) |Pn(z)| ≤ ‖Pn‖EC(E)−n exp(−nΦρE
(z))

Divide by |z|n and take z → ∞. The left side of (B.14) goes to 1. Since ΦρE
(z) =

− log|z| + o(1), the right side goes to ‖Pn‖EC(E)−n.

Next we turn to the convergence of Fekete set counting measures to dρE .

Proposition B.4. Let dνn be finite point probability measures supported at

{z(n)
j }Nn

j=1 with weight νn,j = ν({z(n)
j }). Suppose dνn → dη weakly for some measure

η. Suppose there is a compact K ⊂ C containing all the {z(n)
j } and that as n→ ∞,

(B.15)
∑

j

ν2
n,j → 0

Then

(B.16) lim sup
n→∞

∏

j 6=k

|z(n)
j − z

(n)
k |νn,jνn,k ≤ exp

(∫
dη(z)dη(w) log|z − w|

)

Remark. Since
∑

j νn,j = 1,

(B.17) (max
j
νn,j)

2 ≤
∑

j

ν2
n,j ≤ max νn,j

(B.15) is equivalent to

max
j
νn,j → 0

Proof. Fix m ≥ 0 and let

(B.18) gm(z, w) ≡ log(max(m, |z − w|))
Then

(B.19) m
∑

j ν2
n,j

∏

j 6=k

|z(n)
j − z

(n)
k |νn,jνn,k ≤ exp

(∫
dνn(z)dνn(w)gm(z, w)

)

Now take n → ∞. By (B.15), m
∑

ν2
n,j → 1, and by continuity of gm(z, w) and

the weak convergence,

(B.20)

∫
dνn(z)dνn(w)gm(z, w) →

∫
dη(z)dη(w)gm(z, w)

we have

(B.21) LHS of (B.16) ≤ exp

(∫
dη(x)dη(y)gm(z, w)

)

Now take m→ 0 using monotone convergence to get (B.16).

Lemma B.5. Let E ⊂ R. Let (a, b) ∩ E = ∅. Then Tn(z) has at most one zero in

(a, b) which is simple. If (a, b)∩cvh(E) = ∅, Tn has no zero in (a, b) (where cvh(E)
is the convex hull of E). In particular, if dη is a limit point of the normalized zero

counting measure for Tn, then supp(dη) ⊂ E.
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Proof. Suppose x1, x2 are two zeros in (a, b) with x1 < x2. Then

(z − (x1 − δ))(z − (x2 + δ)) = (z − x1)(z − x2) − δ(x2 − x1) − δ2

so uniformly on E where (z − x1)(z − x2) > 0,

|(z − (x1 − δ))(z − (x2 + δ))| < |(z − x1)(z − x2)|
for δ small. Thus, ‖Tn(z)‖E is decreased by changing those two zeros. Similarly, if
x is a zero below cvh(E), Tn is decreased by moving the zero up slightly. If xj is a
complex zero, ‖Tn(z)‖E is decreased by replacing xj by Rexj .

The final statement is immediate if we note that if f is a continuous function
supported in (a, b), then

∫
f dη = 0.

Proof of Theorem B.1. We have already proved (B.8). The Fekete points are dis-
tinct, so νn,j = 1/n, in the language of Proposition B.4. So if we pass to a subse-
quence for which dνn(j) has a weak limit η, we see (using lim ζn exists)

lim ζn = lim
j→∞

ζ
(n(j)−1)/n(j)
n(j) ≤ exp(−E(dη))

≤ exp
(
− inf

all dρ
E(dρ)

)
(B.22)

= C(E)

By (B.8), lim ζn ≥ C(E), so we have equality in (B.22) and dη = dρE . Thus,
any limit point is dρE . By compactness, we have (i).

That leaves the proof of (ii). By the Berstein–Walsh lemma (A.30), for z ∈ C\E,

(B.23)
1

n
log|Tn(z)| ≤ log

(‖Tn‖1/n
E

C(E)

)
− ΦρE

(z)

and similarly for TR
n .

Now let dη be a limit point of the normalized density of zeros of Tn(z). By the

last lemma, dη is supported on E, so (B.23) plus lim ‖Tn‖1/n
∞ = C(E) implies

(B.24) Φη(z) ≥ ΦρE
(z)

for z ∈ C \ E. By Theorem A.21, this implies dη = dρE . Thus, dρE is the only
limit point of the zeros, and so the limit is dρE .

Note added in proof. Since completion of this manuscript, I have found a result
(to appear in “Regularity and the Cesàro–Nevai class,” in prep.) relevant to the
subject of the current review. In the simplest case, it states that if a measure has
[−2, 2] as its essential support and is regular, then (1.25) holds.
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[108] G. Szegő, “Orthogonal Polynomials,” Amer. Math. Soc. Colloq. Publ., 23, American Math-
ematical Society, Providence, R.I., 1939; 3rd edition, 1967.

[109] A. V. Teplyaev, The pure point spectrum of random orthogonal polynomials on the circle,
Soviet Math. Dokl. 44 (1992), 407–411; Russian original in Dokl. Akad. Nauk SSSR, 320

(1991), 49–53.
[110] D. J. Thouless, Electrons in disordered systems and the theory of localization, Phys. Rep.,

13 (1974), 93.
[111] V. Totik, Orthogonal polynomials with ratio asymptotics, Proc. Amer. Math. Soc., 114

(1992), 491–495.
[112] V. Totik and J. L. Ullman, Local asymptotic distribution of zeros of orthogonal polynomials,

Trans. Amer. Math. Soc., 341 (1994), 881–894.
[113] M. Tsuji, “Potential Theory in Modern Function Theory,” reprinting of the 1959 original,

Chelsea, New York, 1975.

Inverse Problems and Imaging Volume 1, No. 4 (2007), 713–772

http://www.ams.org/mathscinet-getitem?mr=0901683&return=pdf
http://www.ams.org/mathscinet-getitem?mr=0582507&return=pdf
http://www.ams.org/mathscinet-getitem?mr=1223779&return=pdf
http://www.ams.org/mathscinet-getitem?mr=1334766&return=pdf
http://www.ams.org/mathscinet-getitem?mr=1485778&return=pdf
http://www.ams.org/mathscinet-getitem?mr=0670130&return=pdf
http://www.ams.org/mathscinet-getitem?mr=0684102&return=pdf
http://www.ams.org/mathscinet-getitem?mr=0709464&return=pdf
http://www.ams.org/mathscinet-getitem?mr=1314033&return=pdf
http://www.ams.org/mathscinet-getitem?mr=2105088&return=pdf
http://www.ams.org/mathscinet-getitem?mr=2105089&return=pdf
http://www.ams.org/mathscinet-getitem?mr=0814540&return=pdf
http://www.ams.org/mathscinet-getitem?mr=1674798&return=pdf
http://www.ams.org/mathscinet-getitem?mr=1163828&return=pdf
http://www.ams.org/mathscinet-getitem?mr=1554723&return=pdf
http://www.ams.org/mathscinet-getitem?mr=1544698&return=pdf
http://www.ams.org/mathscinet-getitem?mr=0310533&return=pdf
http://www.ams.org/mathscinet-getitem?mr=1151514&return=pdf
http://www.ams.org/mathscinet-getitem?mr=1065095&return=pdf
http://www.ams.org/mathscinet-getitem?mr=1150019&return=pdf
http://www.ams.org/mathscinet-getitem?mr=0414898&return=pdf


772 Barry Simon

[114] J. L. Ullman, On the regular behaviour of orthogonal polynomials, Proc. London Math. Soc.
(3), 24 (1972), 119–148.

[115] J. L. Ullman, Orthogonal polynomials for general measures. I, in “Rational Approximation
and Interpolation” (Tampa, FL, 1983), 524–528, Lecture Notes in Math., 1105, Springer,
Berlin, 1984.

[116] J. L. Ullman, Orthogonal polynomials for general measures. II, in “Orthogonal Polynomials
and Applications” (Bar-le-Duc, 1984), 247–254, Lecture Notes in Math., 1171, Springer,
Berlin, 1985.

[117] J. L. Ullman, Orthogonal polynomials for general measures, in “Orthogonal Polynomials and
Their Applications” (Laredo, 1987), 95–99, Lecture Notes in Pure and Appl. Math., 117,
Dekker, New York, 1989.

[118] J. L. Ullman and M. F. Wyneken, Weak limits of zeros of orthogonal polynomials, Constr.
Approx., 2 (1986), 339–347.

[119] J. L. Ullman, M. F. Wyneken and L. Ziegler, Norm oscillatory weight measures, J. Approx.
Theory, 46 (1986), 204–212.

[120] W. Van Assche, Invariant zero behaviour for orthogonal polynomials on compact sets of the
real line, Bull. Soc. Math. Belg. Ser. B, 38 (1986), 1–13.

[121] J. L. Walsh, “Interpolation and Approximation by Rational Functions in the Complex Do-
main,” fourth edition, American Mathematical Society Colloquium Publications, XX, Amer-
ican Mathematical Society, Providence, R.I., 1965.

[122] H. Widom, Polynomials associated with measures in the complex plane, J. Math. Mech., 16

(1967), 997–1013.
[123] M. F. Wyneken, On norm and zero asymptotics of orthogonal polynomials for general mea-

sures. I, in “Constructive Function Theory” (Edmonton, AB, 1986), Rocky Mountain J.
Math., 19 (1989), 405–413.

Received August 2007.

E-mail address: bsimon@caltech.edu

Inverse Problems and Imaging Volume 1, No. 4 (2007), 713–772

http://www.ams.org/mathscinet-getitem?mr=0291718&return=pdf
http://www.ams.org/mathscinet-getitem?mr=0783300&return=pdf
http://www.ams.org/mathscinet-getitem?mr=0838990&return=pdf
http://www.ams.org/mathscinet-getitem?mr=1006221&return=pdf
http://www.ams.org/mathscinet-getitem?mr=0892160&return=pdf
http://www.ams.org/mathscinet-getitem?mr=0839102&return=pdf
http://www.ams.org/mathscinet-getitem?mr=0871299&return=pdf
http://www.ams.org/mathscinet-getitem?mr=0218588&return=pdf
http://www.ams.org/mathscinet-getitem?mr=0209448&return=pdf
http://www.ams.org/mathscinet-getitem?mr=1016191&return=pdf

	1. Introduction
	2. Regular Measures for OPRL
	3. Regular Measures for OPUC
	4. Van Assche's Proof of Widom's Theorem
	5. The Stahl--Totik Criterion
	6. Structural Results
	7. Ergodic Jacobi Matrices and Potential Theory
	8. Examples, Open Problems, and Conjectures
	9. Continuum Schrödinger Operators
	Appendix A: A Child's Garden of Potential Theory in the Complex Plane
	Appendix B: Chebyshev Polynomials, Fekete Sets, and Capacity
	REFERENCES

