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Abstract: We prove general comparison theorems for eigenvalues of perturbed
Schrödinger operators that allow proof of Lieb–Thirring bounds for suitable non-free
Schrödinger operators and Jacobi matrices.

1. Introduction

Consider a Schrödinger operator,

H0 = −� + V0 (1.1)

on L2(Rν) which we suppose obeys

inf spec(−� + V0) = 0. (1.2)

(By subtracting a constant, we can always arrange this, and by assuming this, the notation
simplifies.) We are interested in controlling the negative eigenvalues of

H = H0 + V . (1.3)

We let

E1(V0; V ) ≤ E2(V0; V ) ≤ · · · ≤ En(V0; V ) ≤ · · · (1.4)

be either the negative eigenvalues or 0, that is,

E j (V0; V ) = min(0; inf{λ, dim P(−∞,λ](H) ≥ j}). (1.5)
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We say that H0 has a regular ground state if and only if there exists a function, u0,
on R

ν obeying

(−� + V0)u0 = 0, (1.6)

0 < c1 ≤ u(x) ≤ c2 < ∞, (1.7)

for some c1, c2. We take c1 = inf u, c2 = sup u, and let

β(V0) =
(

c2

c1

)2

. (1.8)

Our main result is that any bound on the number or sums of eigenvalues for the
operator −�+ V can be carried (with a change in the coupling constant) to the operator
H0 + V. This is based on the following observation:

Theorem 1.1. For any V ≤ 0 and V0 obeying (1.2) with regular ground state, we have
for all j ,

|E j (0;β−1V )| ≤ |E j (V0; V )| ≤ |E j (0;βV )|. (1.9)

This result is remarkable for its generality and also for the simplicity of its proof. We
will see in Sect. 2 that it can be used to compare not only V0 and 0 but two arbitrary V0’s
with relatively bounded ground states.

Of course, (1.9) immediately implies bounds on moments of bound states:

Sγ (V0; V ) =
∞∑
j=1

|E j (V0; V )|γ , (1.10)

where we look at this only for γ ≥ 0 and interpret 00 = 0 so S0 is the number of strictly
negative eigenvalues. Clearly, Theorem 1.1 implies:

Corollary 1.2. For any γ > 0 and β = β(V0) given by (1.8),

Sγ (0;β−1V ) ≤ Sγ (V0; V ) ≤ Sγ (0;βV ). (1.11)

The standard Lieb–Thirring inequalities (reviewed in [8,14]) assert

Sγ (0;βV ) ≤ Lγ,ν

∫
|V (x)|γ+ ν2 dνx (1.12)

for γ ≥ 1
2 in ν = 1, γ > 0 in ν = 2, and γ ≥ 0 in ν ≥ 3. In some cases, the

optimal constants are known, for example, L 1
2 ,1

= 1
2 . (These yield good constants in

our perturbed estimates but we do not claim optimal constants for our situation!) Clearly,
(1.11) implies:

Corollary 1.3.

Sγ (V0; V ) ≤ Lγ,νβ
γ+ ν2

∫
|V (x)|γ+ ν2 dνx (1.13)

and, in particular,
∞∑
j=1

|E j (V0; V )| 1
2 ≤ 1

2 β

∫
|V (x)| dx (1.14)

in ν = 1 dimension.
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One can also obtain logarithmic estimates as in [13] and Hardy–Lieb–Thirring bounds
as in [5]. Since it is known [20,17,14] that for ν = 1 and V ≤ 0,

S 1
2
(0; V ) ≥ 1

4

∫
|V (x)| dx, (1.15)

we conclude that

S 1
2
(V0; V ) ≥ 1

4β

∫
|V (x)| dx . (1.16)

These results are of interest because there are many cases which are known to have
regular ground states.

Example 1.4. If V0 is periodic, then there is a positive periodic ground state. If V0 is
locally L

ν
2 (if ν ≥ 3, locally L1 if ν = 1, and locally L p with p > 1 if ν = 2), then it is

known that eigenfunctions are continuous (see [18]) and thus, H0 has a regular ground
state.

Example 1.5. We will discuss Jacobi matrices in Sects. 3 and 4. It is known (see [3,
15,19]) that elements in the isospectral torus of finite gap Jacobi matrices have regular
ground states.

Example 1.6. If u is any function obeying (1.7), then V0 = �u
u has a regular ground

state.

In Sect. 2, we will review the ground state representation and prove a stronger theorem
than Theorem 1.1. As hinted, it is the ground state representation that is critical. In this
regard, we should emphasize that the variational argument we use in Sect. 2 has appeared
earlier in work of the Birman school—we would mention, in particular, Lemma 6.1 of
Birman, Laptev, and Suslina [2], although it may have appeared earlier in their work.
Our novelty here is the wide applicability, the use in CLR and Lieb–Thirring bounds,
and the applicability to the discrete case and Szegő estimates.

As we will explain in Sect. 4, an initial motivation for this work was critical
Lieb–Thirring bounds for finite gap almost periodic Jacobi matrices in connection with
Szegő’s theorem for such situations. Ground state representations do not seem to be in
the literature for Jacobi matrices, so we do this first in Sect. 3, and then prove an analog
of Theorem 1.1 for Jacobi matrices in Sect. 4. Section 5 discusses some other cases.

2. Comparison for Schrödinger Operators

Fundamental to our results is the ground state representation that if (1.6) holds for u0,
continuous and strictly positive on R

ν , then

〈gu0, H0gu0〉 =
∫

|∇g|2u2
0 dνx . (2.1)

Ground state representations go back to Jacobi [11]. For Schrödinger operators, it
appears at least as far back as Birman [1] and it was used extensively in construc-
tive quantum field theory (especially by Segal, Nelson, Gross, and Glimm–Jaffe; see
Glimm–Jaffe [7]). As a basis for comparison theorems, it was used by Kirsch–Simon
[12] and, as noted above, in a similar context by Birman–Laptev–Suslina [2].
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We will be cavalier about technical assumptions needed for (2.1). From one point of
view, we can use (2.1) as a definition of H0! Namely, the right side of (2.1) defined for
g’s with distributional derivative making the right side finite is easily seen to be a closed
quadratic form on Hu0 ≡ L2(Rν, u2

0dνx) defining a positive selfadjoint operator H̃0

on Hu0 . The unitary operator W : L2(Rν, dνx) → Hu0 by Wg = u−1
0 g lets us define

H0 = W −1 H̃0W and our results hold for perturbations of that.
It is not hard to prove that if V0 = V0,+ + V0,− with V0,+ ∈ L1

loc(R
ν, dνx) and

V0,− ∈ Kν , the Kato class, then the selfadjoint operator H0 defined as the form closure
of −� + V0 on C∞

0 obeys (2.1) if u0 is a positive distributional solution of (1.6).
Notice that we do not need (1.2), but only inf spec(H0) ≥ 0 for this to work, and

Theorem 2.1 below holds in that case (although inf spec(H0) = inf spec(H1)) under the
hypothesis of the theorem. Here is our main result:

Theorem 2.1. Let H0, H1 have the form (2.1) for positive continuous functions u0, u1.
Suppose

0 < inf

(
u0

u1

)
≤ sup

(
u0

u1

)
< ∞ (2.2)

and let

β ≡
[

sup( u0
u1
)

inf( u0
u1
)

]2

. (2.3)

For any V ≤ 0, let E j be given by (1.5). Then

|E j (V0; V )| ≤ |E j (V1;βV )|. (2.4)

Remark. By interchanging V0 and V1 and replacing V by β−1V, we get the comple-
mentary inequality

|E j (V1;β−1V )| ≤ |E j (V0; V )|. (2.5)

Lemma 2.2. Let V ≤ 0. Let τ > 0. If for some g,

〈gu0, (H0 + V )gu0〉 ≤ −τ 〈gu0, gu0〉, (2.6)

then

〈gu1, (H1 + βV )gu1〉 ≤ −τ 〈gu1, gu1〉. (2.7)

Proof. Let

β+ = sup

(
u0

u1

)2

=
[

inf

(
u1

u0

)]−2

, (2.8)

β− = inf

(
u0

u1

)2

=
[

sup

(
u1

u0

)]−2

, (2.9)

so

β+ = ββ− ⇒ ββ−1
+ = β−1− . (2.10)
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Since −V g2 ≥ 0 and |∇g|2 ≥ 0, we have∫
(∇g)2u2

1 dx ≤ β−1−
∫
(∇g)2u2

0 dx (2.11)

−
∫

V g2u2
1 dx ≥ −β−1

+

∫
V g2u2

0 dx (2.12)

so, by (2.10) and (2.1),

〈gu1, (H1 + βV )gu1〉 ≤ β−1− 〈gu0, (H0 + V )gu1〉
≤ −τβ−1− 〈gu0, gu0〉. (2.13)

But

〈gu0, gu0〉 ≥ β−〈gu1, gu1〉 (2.14)

and τ > 0, so

RHS of (2.13) ≤ −τ 〈gu1, gu1〉,
proving (2.7). ��
Proof of Theorem 2.1. If E j (V0; V ) = 0, there is nothing to prove. If τ ≡ |E j (V0; V )| >
0, there is a space, H j , of dimension at least j so

〈ψ, (H0 + V )ψ〉 ≤ −τ 〈ψ,ψ〉 (2.15)

for ψ ∈ H j . By the lemma, if ϕ = u1
u0
ψ , we have

〈ϕ, (H1 + βV )ϕ〉 ≤ −τ 〈ϕ, ϕ〉. (2.16)

Thus, there is a space of dimension at least j where (2.16) holds. By the min-max
principle (see [16]),

E j (V1;βV ) ≤ −τ, (2.17)

which is (2.4). ��

3. Ground State Representation for Jacobi Matrices

While we are interested mainly in semi-infinite one-dimensional Jacobi matrices, that
is, tridiagonal semi-infinite matrices, we can consider the higher-dimensional case as
well, so we will. So far as we know, there is no prior literature on the ground state
representation for discrete operators, so we start with that in this section.

In Z
ν , we let δ j , j = 1, . . . , ν, be the ν component vectors with 1 in the j th place and

0 elsewhere. So k ±δ j are the 2ν neighbors of k ∈ Z
ν . A Jacobi operator is parametrized

by a symmetric a j� > 0 for each j , � ∈ Z
ν with | j − �| = 1 and a real number bk for

each k ∈ Z
ν . We will suppose

sup
k

|bk | + sup
�

|ak�| < ∞.

The Jacobi operator associated with these parameters is the operator J on �2(Zν)

with

(Jϕ)� =
∑

±, j=1,...,ν

a� �±δ jϕ�±δ j + b�ϕ�. (3.1)

We will use J ({a�m}, {b�}) if we want to make the dependence on a and b explicit.
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Lemma 3.1. Let f be a bounded real-valued function on Z
ν and M f the diagonal matrix

on �2(Zν) which is multiplication by f . Then

[M f , J ({a�m}, {b�})] = J ({a�m( f� − fm), b� ≡ 0}), (3.2)

[M f , [M f , J ({a�m}, {b�})]] = J ({a�m( f� − fm)
2, b� ≡ 0}). (3.3)

Proof. Equation (3.2) is an elementary calculation and it implies (3.3). ��
Theorem 3.2. Let J be a Jacobi operator on �2(Zν) with parameters {a�m}, {b�}.
Suppose u is a positive “sequence” parametrized by Z

ν so that
∑

|m−�|=1

a�mum + b�u� = 0 (3.4)

for all � ∈ Z
ν . Then for any f with f u ∈ �2(Zν), we have

〈 f u, (−J ) f u〉 =
∑
m,�

|m−�|=1

a�mu�um( f� − fm)
2. (3.5)

Remark. In particular, this shows −J ≥ 0.

Proof. It suffices to prove (3.5) for f of finite support and take limits. For the left side
converges since −J is a bounded operator, and by positivity, the right side converges (a
priori perhaps to ∞, but by the equality to a finite limit; it is only here that positivity of
u is used).

For finite sequences, f , use (3.3), taking expectations in a vector ũ which equals
u on {� | f (m) is non-zero for some m with |m − �| ≤ 1}. Then M f J ũ = 0, so
〈ũ, [M f , [M f , J ]]ũ〉 = −2〈 f u, J f u〉. ��

4. Comparison for Jacobi Operators

In this section, we will prove an analog of Theorem 1.1 for Jacobi operators. One
difference that we have to expect is that of sup spec(J ) = 0; the same is true of λJ for
any λ > 0, but the ground states are the same. Thus, comparison of the two J ’s cannot
involve only the ground state ratio but also a setting of scales which will enter as a ratio
of a’s. In the Schrödinger case, the scale is set by the −� rather than −λ�.

For notation, we let E j ({a�m, b�}) be the max of zero and the j th eigenvalue of
J ({a�m, b�}) counting from the top. Here is our main result:

Theorem 4.1. Let {a(0)�m , b(0)� } and {a(1)�m , b(1)� } be two sets of bounded Jacobi parameters
with positive sequences u(0), u(1) obeying (3.4) for {a(0), b(0)}, {a(1), b(1)}, respectively.
Let

β+ = sup
�

(
u(0)�
u(1)�

)2

, (4.1)

β− = inf
�

(
u(0)�
u(1)�

)2

, (4.2)
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γ− = inf

(
a(0)j� u(0)j u(0)�

a(1)j� u(1)j u(1)�

)
. (4.3)

Suppose β+ < ∞ and β− > 0. Then for perturbations {δa�m, δb�} with a(0)�m +δa�m > 0,

E j ({a(0)�m +δa�m, b(0)� +δb�}) ≤ E j

⎛
⎝

⎧⎨
⎩ηa(1)�m , ηb(1)� + β

⎡
⎣|δb�| +

∑
|m−�|=1

|δa�m |
⎤
⎦

⎫⎬
⎭

⎞
⎠ ,

(4.4)

where

η = γ−
β−

β = β+

β−
. (4.5)

Remark. 1. We only have a one-sided inequality as we would in the Schrödinger case if
we did not demand V ≤ 0. Since δa terms are never of a definite sign, we cannot have
them in a two-sided comparison. But there is clearly a two-sided comparison if δa = 0
and δb > 0.

2. Note that rescaling u(0) or u(1) which changes β+, β−, γ− does not change η or β.
Similarly, η scales properly under changes of the scale of a.

Following Hundertmark–Simon [9], we begin with a reduction to the case δa = 0,
δb ≥ 0:

Lemma 4.2. One has

E j ({a(0)�m + δa�m, b(0)� + δb�}) ≤ E j

⎛
⎝

⎧⎨
⎩a(0)�m , b(0)� + |δb�| +

∑
|m−�|=1

|δa�m |
⎫⎬
⎭

⎞
⎠ . (4.6)

Thus, it suffices to prove (4.4) when δa�m = 0 and δb� ≥ 0.

As in [9], this follows from

(
0 a
a 0

)
≤

(
a 0
0 a

)

and b ≤ |b|.
Proof of Theorem 4.1. The proof is identical to the proof in Sect. 2, the sole change
being that (2.11) needs to be replaced by

∑
�,m

|�−m|=1

a(1)�m u(1)� u(1)m | f� − fm |2 ≤ γ−1−
∑
�,m

|�−m|=1

a(0)�m u(0)� u(0)m | f� − fm |2. (4.7)

So instead of a β−
β− = 1, we get η = γ−

β− . ��
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Let W : �2(Zν) → �2(Zν) by

(W f )n = (−1)|n| fn (4.8)

with |n| = |n1| + · · · + |nν |. Then

WJ ({a�m, b�})W −1 = −J ({a�m,−b�}). (4.9)

This allows one to control eigenvalues below inf spec(J ) in the same way. We define
E−

j to be the min of 0 and the j th eigenvalue of J counting from the bottom. We call a

sequence u on Z
ν alternating positive if (−1)|m|um > 0 for all m. The result is:

Theorem 4.3. Let {a(0)�m , b(0)� } and {a(1)�m , b(1)� } be two sets of bounded Jacobi parameters

with alternating positive sequences u(0)m , u(1)m obeying (3.4) for {a(0), b(0)}, {a(1), b(1)},
respectively. Define β+, β−, γ−, η, β as in (4.1)–(4.3) and (4.5). Then (4.4) holds with
E j replaced by |E−

j |.

Corollary 4.4. Let {a(0)�m , b(0)� } be a one-dimensional periodic set of Jacobi parameters
or the almost periodic parameters associated with a finite gap spectrum (see [19]). Let
J0 be the associated half-line Jacobi matrix. Let J be the Jacobi matrix associated with
{a(0)�m + δa�m, b(0)� + δb�}, where

∑
|�−m|=1
�=1,2,3,...

|δa�m | +
∞∑
�=1

|δb�| < ∞. (4.10)

Let E−
1 < E−

2 < · · · < inf spec(J0) < sup spec(J0) < · · · < E+
2 < E+

1 be the
eigenvalues of J outside the convex hull of spec(J0). Then

∑
k,±

dist(E±
k , σ (J0))

1
2 ≤ C

∑
(|δa�m | + |δb�|) (4.11)

for a constant C depending only on J0.

Proof. We only need that J0 and WJ0W −1 have regular ground states. This follows
from Floquet theory for the periodic case and from the detailed analysis of Jost solutions
for the almost periodic case; see [3,15,19]. Then compare to the free J0 (a�m = 1 if
|�− m| = 1, b� = 0) and use the bound of [9]. ��

For the periodic case, this is proven by Damanik, Killip, and Simon [4], who also
prove this where the sum in (4.11) is over all eigenvalues including the ones in gaps.

It remains an interesting question relevant to the study of the Szegő condition (see
[3,10]) to get the bound in the almost periodic case. In [10], Hundertmark and Simon
prove the weaker bounds where the 1

2 power is replaced by any p > 1
2 or where p = 1

2 ,
but there is an �ε added to the sum.
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5. Some Final Remarks

All we needed for our arguments is some kind of ground state representation. That means
we can replace −� by

L0 = −
ν∑

j,k=1

∂ j A jk(x) ∂k (5.1)

with {A jk(x)}1≤ j,k≤ν a strictly positive matrix. Hence, if (L0 + V )u0 = 0, then

〈 f u0, (L0 + V ) f u0〉 =
∫

〈∇ f, A∇ f 〉|u0(x)|2 dνx,

and we can still compare to −� although sup ‖A‖ and inf ‖A‖ will enter.
We can compare magnetic field operators where the magnetic field is fixed but V0, V

vary. For if (−� + V0)u0 = 0 for some positive u0, then for Ha ≡ −(∇ − ia)2 + V0
we have that

〈 f u0, Ha f u0〉 =
∫

|(∇ − ia) f |2|u0|2 dνx .

For the discrete case, the key was not tridiagonal matrices, but ones with a ground
state representation. For example, non-negative off-diagonal will do.

Using the representation of Frank, Lieb, and Seiringer [6], one can treat some
perturbations of (−�)α , 0 < α < 1.

Acknowledgements. It is a pleasure to thank Fritz Gesztesy, Yehuda Pinchover, Robert Seiringer, and Simone
Warzel for useful comments, and Michael Aizenman for being a sensitive editor.
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