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Abstract: We show that whole-line Schrödinger operators with finitely many bound
states have no embedded singular spectrum. In contradistinction, we show that embed-
ded singular spectrum is possible even when the bound states approach the essential
spectrum exponentially fast.

We also prove the following result for one- and two-dimensional Schrödinger oper-
ators, H , with bounded positive ground states: Given a potential V , if both H ± V are
bounded from below by the ground-state energy of H , then V ≡ 0.

1. Introduction

This paper has its roots in the following result of Killip and Simon [14]: A discrete
whole-line Schrödinger operator has spectrum [−2, 2] if and only if the potential van-
ishes identically.

To be more precise, given a potential V : Z → R, we define the Schrödinger operator

[hV φ](n) = φ(n+ 1)+ φ(n− 1)+ V (n)φ(n) (1)

on �2(Z). The theorem mentioned above, [14, Theorem 8], says that σ(hV ) ⊆ [−2, 2]
implies V ≡ 0. A simple variational proof of this theorem was given in [4], where the
result was also extended to two dimensions; it does not hold in three or more dimensions,
nor on the half-line.

It was also shown in [4] that, for bounded potentials, the essential spectrum of hV is
contained in [−2, 2] if and only if V → 0. This shows that σess(hV ) = [−2, 2] in this
case.
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Damanik and Killip, [6], investigated half-line Schrödinger operators with spec-
trum contained in [−2, 2]. By a half-line Schrödinger operator we mean an operator
of the form (1), acting on �2(Z+), with φ(−1) = 0. We will denote this operator by
h+
V . It was shown that if σ(h+

V ) = [−2, 2], then h+
V has purely absolutely continuous

spectrum. Using the methods developed to prove this result, it was also shown that
half-line Schrödinger operators with finitely many bound states (i.e., eigenvalues lying
outside [−2, 2]) have purely absolutely continuous spectrum on [−2, 2]. See also Simon
[23].

Several people have asked, in private, whether one can deduce absence of embedded
singular spectrum from

∑

n

√
|En| − 2 < ∞.

(This condition often arises as a natural borderline condition for regular behavior of the
spectral measure near the points −2 and 2; see for example [17, 25]. It is equivalent to
the convergence of the Blaschke product associated with the eigenvalues after the cut
plane is mapped to the unit disk by the inverse of z �→ z+ z−1.)

In fact, embedded singular spectrum can occur even when the bound states approach
±2 exponentially fast. This is our first result.

Theorem 1. There is a discrete half-line Schrödinger operator with zero as an eigen-
value, whose bound states obey |En| − 2 ≤ cn for a suitable c < 1.

Remark. As we will show, |En| − 2 also admits an exponential lower bound. We do not
know whether the existence of embedded singular spectrum places a lower bound on the
rate at which the eigenvalues can approach [−2, 2]. On the other hand, recent work of
Damanik and Remling, [8], shows that finiteness of the pth eigenvalue moment implies
that the embedded singular spectrum must be supported on a set of Hausdorff dimension
4p.

The Damanik–Killip paper, [6], discussed earlier also considered half-line continuum
Schrödinger operators with a Dirichlet boundary condition. That is, given a potential V
we define an operator on L2(R+) by

[H+
V φ](x) = −φ′′(x)+ V (x)φ(x) (2)

with φ(0) = 0. In this case it was proved that if V belongs to the space �∞(L2) of
uniformly locally square-integrable functions and both H+

V and H+
−V have only finitely

many bound states, then both have purely absolutely continuous spectrum on [0,∞).
This is the continuum analogue of the Damanik–Killip theorem discussed above, as we
will now explain: the unitary map φ(n) �→ (−1)nφ(n) conjugates h−V to −hV ; conse-
quently, hV has finitely many bound states if and only if both 2 −h±V have only finitely
many bound states below zero.

It is natural to ask what one may say for whole-line Schrödinger operators with
finitely many bound states. (We write HV for the operator on L2(R) defined through
(2).) The analogous results hold:

Theorem 2. If the operator hV has only finitely many bound states, then it has purely
absolutely continuous spectrum of multiplicity 2 on [−2, 2].
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Theorem 3. Suppose V ∈ �∞(L2). If both HV and H−V have only finitely many
eigenvalues below energy zero, then both operators have purely absolutely continuous
spectrum of multiplicity 2 on the interval [0,∞).

Recall that if the operators h±V are required to have no bound states above 2, then
V must be identically 0—this is the result of Killip–Simon. We will prove the contin-
uum analogue of this result by revisiting the variational approach of [4]. Moreover, the
refinements we introduce permit us to treat more general background potentials.

We begin with some notation. Expanding our previous usage, we let HV denote the
Schrödinger operator with potential V in L2(Rd) for any dimension d. By a ground
state for HV , we mean a (distributional) solution of −∇2ψ + Vψ = Eψ , where E
is the ground-state energy, that is, the infimum of the spectrum. We use the analogous
terminology in the discrete case; however, here we define the ground state energy to be
the supremum of the spectrum.

Theorem 4. Let d = 1 or 2. Suppose thatQ,V are functions on Z
d such that the oper-

ator hQ has a bounded positive ground state and both hQ±V are bounded above by the
ground state energy of hQ. Then V ≡ 0.

Theorem 5. Let d = 1 or 2. Suppose that Q ∈ L2
loc(R

d) and the operator HQ has a
bounded positive ground state. If V ∈ L2

loc(R
d) and both HQ±V are bounded below by

the ground state energy of HQ, then V ≡ 0.

As noted already in [4], these theorems fail for d ≥ 3 even when Q ≡ 0. This is
an immediate consequence of the Cwikel–Lieb–Rosenblum inequality. However, the
presence of absolutely continuous spectrum may still be deduced in some situations as
a recent result of Safronov shows [21].

The existence of a positive ground state holds under fairly general conditions; see
Simon [24]. Moreover, it is not hard to see that, for periodic potentials Q, the ground
state energy corresponds to zero quasi-momentum (this can also be derived directly from
more general results of Agmon [1]) and hence the operator HQ has a bounded positive
ground state. Thus, as an application of Theorem 5, we may deduce

Corollary 1. Let d = 1 or 2 and suppose thatQ ∈ L2
loc(R

d) is periodic. IfV ∈ L2
loc(R

d)

and both HQ±V are bounded below by the ground state energy of HQ, then V ≡ 0.

The particular case d = 1 and Q ≡ 0 yields the continuum analogue of the
Killip–Simon theorem mentioned at the beginning of the introduction. The discrete
analogue of the corollary also holds and therefore extends the original Killip–Simon
result to the case of periodic background.

Y. Pinchover has explained to us that Theorem 5 represents a statement about the criti-
cality ofHQ (cf. [18, 19]). He also pointed out that through these techniques, Corollary 1
can be derived from Theorem 2 of [20].

We will use Dirac notation for the inner product of the underlying Hilbert space H.
In particular, ifH is a self-adjoint operator in H and φ,ψ belong to the form domain of
H , then we write the quadratic form associated with H as 〈φ|H |ψ〉.

The organization is as follows. In Sect. 2 we discuss an example with an embed-
ded eigenvalue and exponential bound state decay and, in particular, prove Theorem 1.
Theorems 2 and 3 are proven in Sect. 3. Finally, we study perturbations of Schrödinger
operators with positive ground states in Sect. 4 and obtain Theorems 4 and 5.
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2. Embedded Eigenvalue and Exponential Bound State Decay

The following result contains Theorem 1 and also provides an exponential lower bound.

Theorem 6. There is a discrete half-line Schrödinger operator that has zero as an eigen-
value and its eigenvalues {En} outside [−2, 2] obey bn � |En| − 2 � cn for suitable
b ≤ c < 1.

Remark. For functions f, g, we write f � g if f/g is bounded.
We will revisit an example ofWigner–von Neumann type discussed in [6]. It is roughly

of the form V (n) ∼ λ(−1)nn−1. It follows from [4] that λmust be of magnitude greater
than one in order for the operator to have infinitely many eigenvalues outside [−2, 2].

By Weyl’s theorem, the spectrum outside [−2, 2] consists of eigenvalues,En(V ), that
can accumulate only at ±2. We choose an ordering such that |E1(V )| ≥ |E2(V )| ≥ · · · .

Proof of Theorem 6. Fix α > 1/2 and define ψ : Z
+ → R as follows: the absolute

value is given by |ψ(n)| = (n+1)−α and the sign depends on the value of nmod 4 with
the pattern +,+,−,−, . . . . Notice that ψ is square-summable and so a zero-energy
eigenfunction for the operator hV with potential given by

V (n) = −ψ(n+ 1)+ ψ(n− 1)

ψ(n)

for n ≥ 1 and V (0) = −ψ(1)/ψ(0). Clearly,

V (n) = −2α(−1)nn−1 +O(n−2). (3)

We now turn to the main part of the proof: controlling the bound states of hV . Both
inequalities rely on results relating operators with sign-indefinite potentials to those with
sign-definite potentials. We begin with upper bounds.

It was shown in [5] (see, in particular, Eq. (4.18)) that if V ± are defined by

V ±(n) = ±2
[
F(n)2 + F(n+ 1)2

]
with F(n) = −

∞∑

j=n
V (j), (4)

then

2 − hV ≥ 1
2 (2 − hV+) and 2 + hV ≥ 1

2 (2 + hV−) .

Thus it suffices to bound the eigenvalues for hV± . To do this we employ the Jacobi matrix
analogue of the Bargmann bound (see [11, Theorem A.1]):

#{|En(V ±)| ≥ λ+ 2} �
∑

(n+ 1)
∣∣|V ±(n)| − λ

∣∣+,

where |x|+ = max{x, 0}. In our case, |V ±(n)| � (n + 1)−2 and so #{|En(V ±)| ≥
λ+ 2} � log(λ), or equivalently, there exists 0 < c < 1 so that |En(V ±)| − 2 � cn.

We now turn to a proof of the lower bound for |En(V )|.We will employ some ideas and
results of [4]. From Eq. (1.7) of that paper we see that in order to prove |En(V )|−2 � bn

for some 0 < b < 1, it suffices to find trial functions ϕn, whose supports are disjoint,
such that

〈ϕn|hṼ − 2|ϕn〉 � bn, (5)
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where Ṽ (n) = 1
4V (n)

2. Note that from (3),

Ṽ (n) = α2n−2 +O
(
n−3

)
.

For convenience, we pick α ≥ √
7 (the construction below can be modified to accom-

modate any α > 1/2). Letmn = 8n. The trial function ϕn is then the function which is 1
atmn, has constant slope on the intervals [mn4 − 1,mn] and [mn,

3mn
2 + 1], and vanishes

outside the interval [mn4 − 1, 3mn
2 + 1]. Mimicking the arguments from the proof of [4,

Theorem 5.5], we see that

〈ϕn|hṼ − 2|ϕn〉 ≥ 1

mn
,

and hence (5) holds with b = 1/8. This concludes the proof. ��
Basically, the argument that the eigenvalues have geometrically fast approach to ±2

comes from the quadratic mapping (4) and the fact that for supercritical r−2 potentials,
the approach is geometric. This was shown in the continuum case by Kirsch and Simon
[15] with explicit constants. It should be possible to compute lim(|En| − 2)1/n in the
discrete setting along similar lines. Bounds of this form can be used in the study of
the Efimov effect; see Tamura [27], for example. The fact that there are infinitely many
bound states for coupling above a critical value was shown in the discrete case by Naı̆man
[16].

3. Whole-Line Operators with Finitely Many Bound States

The purpose of this section is to prove Theorems 2 and 3.
By restricting a whole-line operator hV to �2(Z±) we obtain two half-line operators,

which we denote by h±
V . (Here Z

+ = {0, 1, 2, . . . } and Z
− = {−1,−2,−3, . . . }.)

If hV has finitely many bound states, then so do both h±
V because their direct sum

is a finite-rank perturbation of hV . Thus, it follows from [6] that both h±
V have purely

absolutely continuous spectrum (essentially supported) on [−2, 2]. Using the finite-rank
perturbation property again, it follows that hV has absolutely continuous spectrum of
multiplicity two (essentially supported) on [−2, 2].

Singular spectrum, or its absence, is not stable under finite-rank perturbations.We will
revisit the half-line proof from [6], which proceeded through controlling the behavior of
solutions and then applying the Jitomirskaya–Last version, [13], of the Gilbert–Pearson
theory of subordinacy, [9, 10]. The whole-line extension of the Jitomirskaya–Last
result that we need can be found in [7]. We begin by recalling the necessary results
from [6, 7].

Let us write ψθ for the solution of

ψ(n+ 1)+ ψ(n− 1)+ V (n)ψ(n) = Eψ(n) (6)

that obeys the initial condition

ψθ(−1) = sin(θ), ψθ (0) = cos(θ).
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Proposition 3.1. Suppose that the operator h+
V has only finitely many eigenvalues out-

side [−2, 2]. Then for any energy 0 < |E| < 2 and any η > 1/
√

2,

n−η �
∣∣ψθ(n)

∣∣2 + ∣∣ψθ(n+ 1)
∣∣2 � nη (7)

for all θ and n > 0 . The implicit constants depend on E and η, but not θ . For E = 0,
(7) holds with η = 1.

Proof. This follows from Corollary 4.6 and Proposition 5.2 of [6]. While the statement
given there does not describe the dependencies of the constants, they can be deduced
readily from the proof. ��
Proposition 3.2. Suppose that the operators h±

V have only finitely many eigenvalues
outside [−2, 2]. Then the set of energies in (−2, 2) for which (6) has unbounded solu-
tions is of Hausdorff dimension zero.

Proof. As an unbounded solution of (6) must be unbounded on one side of the origin, we
may apply the half-line results of [6], specifically, Corollary 4.6 and Proposition 5.5. ��

The following result can be found in [7]:

Proposition 3.3. Suppose that for some η < 1 and each energy E in a bounded set A,

n−η �
∣∣ψθ(n)

∣∣2 + ∣∣ψθ(n+ 1)
∣∣2 � nη,

for all θ and n > 0. Then any spectral measure for hV gives no weight to subsets of A
of Hausdorff dimension less than 1 − η.

We now complete the proof of Theorem 2 by putting these ingredients together.

Proof of Theorem 2. We saw above that the absolutely continuous spectrum of hV is
essentially supported on [−2, 2] and has multiplicity two. Also, by Proposition 3.1, 0 is
not an eigenvalue.

The singular part of any spectral measure for hV gives no weight to the set of energies
for which all solutions of (6) are bounded (see, e.g., [2, 22, 26]). Thus Proposition 3.2
shows that the singular part must be supported on a set of zero Hausdorff dimension;
while Propositions 3.1 and 3.3 together with the previous paragraph imply that it must
give no weight to any zero-dimensional subset of (−2, 2). Thus it remains only to show
that ±2 are not eigenvalues. To do so, we mimic the proof of Corollary 4.6 from [6].

Assume thatE = 2 is an eigenvalue. Then, after possibly changing the value ofV (0),
we see that h+

V also has an eigenvalue at 2, but only finitely many bound states. This
contradicts [6, Corollary 4.6 (e)]. The same line of reasoning works when one assumes
that E = −2 is an eigenvalue. ��
Proof of Theorem 3. The proof is analogous to that of Theorem 2. Let us write ψθ
for the solution of −ψ ′′(x) + V (x)ψ(x) = Eψ(x) that obeys the initial condition
ψθ(0) = sin(θ), ψ ′

θ (0) = cos(θ).
The analogues of the three propositions above can be found in the literature: In place

of Proposition 3.1 we can use Corollary 6.5(a) and Propositions 7.4 from [6]. Simi-
larly, Corollary 6.5(a) and Proposition 7.7 from [6] substitute Proposition 3.2. That the
continuum analogue of Proposition 3.3 also holds, was noted already in [7].

Finally, showing that zero is not an eigenvalue, can be effected by mimicking the
proof of [6, Corollary 6.5(b)]. ��
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4. Perturbations of Operators with Positive Ground States

In this section we extend the variational technique introduced in [4]: we are able to treat
continuum Schrödinger operators and also allow more general unperturbed operators,
specifically, those with positive ground states. As there is greater novelty in the contin-
uum case, this is what will be presented. Adapting these proofs to the discrete case is a
fairly elementary exercise.

The key computation from [4] is the following, whose proof is straightforward.

Lemma 4.1. If H and V are self-adjoint operators and f and g are vectors in the form
domains of both operators, then

〈f + εg|H + V |f + εg〉 + 〈f − εg|H − V |f − εg〉
= 2〈f |H |f 〉 + 4εRe〈f |V |g〉 + 2ε2〈g|H |g〉.

We will also need the following little computational lemma that appears to go back
to Jacobi [12] (see also Courant–Hilbert [3, p. 458]):

Lemma 4.2. Let a be anH 1 = W 1,2 function of compact support on R
d . IfQ is locally

L1 and ψ ∈ W 1,1
loc is a real-valued solution of −∇2ψ +Qψ = 0, then

∫
‖∇(aψ)‖2 +Q(aψ)2 =

∫
‖∇a‖2ψ2. (8)

Proof. Integrating by parts and using −∇2ψ +Qψ = 0,
∫
a2‖∇ψ‖2 = −

∫
ψ∇ · (a2∇ψ) = −

∫
2aψ(∇a) · (∇ψ)+Qa2ψ2.

And consequently,
∫

‖∇(aψ)‖2 +Q(aψ)2 =
∫

‖a∇ψ + (∇a)ψ‖2 +Qa2ψ2

=
∫
a2‖∇ψ‖2 + 2aψ(∇a) · (∇ψ)+ ‖∇a‖2ψ2 +Qa2ψ2

=
∫

‖∇a‖2ψ2

as promised. ��
Proof of Theorem 5. Without loss of generality, we assume that the ground state energy
ofHQ is zero. Let ψ be a bounded positive ground state forHQ and assume that V �≡ 0.
Then there exist M > 0 and a smooth function g, supported in the ball of radius M
centered at the origin, such that

∫
ψVg < 0. (9)

Given N > M , define a as follows: in one dimension,

a(x) =






0 |x| ≥ N

1 |x| ≤ M

1 − |x|−M
N−M M < |x| < N

(10)
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and in two dimensions,

a(x) =






0 |x| ≥ N

1 |x| ≤ M
logN − log |x|
logN − logM

M < |x| < N.

(11)

Applying Lemma 4.2 with f = aψ , we obtain

〈f |H |f 〉 =
∫

‖∇f ‖2 +Qf 2 =
∫

‖∇a‖2ψ2 �
∫

‖∇a‖2.

In both one and two dimensions, the right-hand side converges to zero as N → ∞; in
one dimension it is easily seen to be O(N−1), for two dimensions,

∫
‖∇a‖2 =

∫
‖∇a‖2 r dr dθ

= 2π [log(N/M)]−2
∫ N

M

r−1dr

= 2π [log(N/M)]−1.

This shows that 〈f |H |f 〉 → 0 as N → ∞.
By (9), we can choose ε > 0 small enough so that

4εRe〈f |V |g〉 + 2ε2〈g|H |g〉 = 4εRe〈ψ |V |g〉 + 2ε2〈g|H |g〉 < 0.

Therefore, Lemma 4.1 shows that, for N large enough,

〈f + εg|HQ + V |f + εg〉 + 〈f − εg|HQ − V |f − εg〉 < 0.

Thus, at least one of HQ±V has spectrum below zero. ��
The proof shows that we need not have assumed that the ground state is bounded,

but merely has sufficiently slow growth at infinity. For example, |ψ(r, θ)| = o(log(r))
would suffice in two dimensions. In one dimension, however, we can refine this idea and
prove the following:

Theorem 7. Suppose thatQ ∈ L2
loc(R) and the operatorHQ has a positive ground state

whose reciprocal is not square-integrable both at +∞ and at −∞. If V ∈ L2
loc(R) and

both HQ±V are bounded below by the ground state energy of HQ, then V ≡ 0.

Proof. The main idea is to choose a in a manner that is adapted to ψ :

a(x) =






0 |x| ≥ N

1 |x| ≤ M

1 −
∫ x
M
ψ(t)−2 dt

∫ N
M
ψ(t)−2 dt

M < x < N

1 −
∫ −M
x

ψ(t)−2 dt
∫ −M
−N ψ(t)−2 dt

−N < x < −M.

(12)
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This necessitates only one change to the proof, namely, the calculation which shows that
〈f |H |f 〉 → 0 as N → ∞.

Note that a is compactly supported and belongs to H 1; in fact, a′ ∈ L∞ (as a distri-
bution). Therefore, we can apply Lemma 4.2 to obtain
∫
(f ′)2 +Qf 2 dx =

∫
(a′)2ψ2 dx

=
∫ N

M

dx

ψ(x)2
{∫ N
M
ψ(t)−2 dt

}2 +
∫ −M

−N
dx

ψ(x)2
{∫ −M

−N ψ(t)−2 dt
}2

=
{∫ N

M

ψ(t)−2 dt

}−1

+
{∫ −M

−N
ψ(t)−2 dt

}−1

.

By assumption, the right-hand side goes to zero as N → ∞. ��
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