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1 Introduction

In this paper, we want to describe some new results in the spectral and inverse spectral

theory of half-line Schrödinger operators and Jacobi matrices. Given V ∈ L1
loc(0,∞) with

a mild regularity condition at infinity (ensuring limit-point case there, cf. [22]), one can

define a unique selfadjoint operator which is formally

H = −
d2

dx2
+ V(x) (1.1)

with the boundary condition u(0) = 0 (see, e.g., [22]). For any z /∈ R, there is a solution

u+(x; z) of −u ′′ + Vu = zu which is L2 at infinity and unique up to a constant. The Weyl

m-function is then defined by

m(z) =
u ′

+(0; z)
u+(0; z)

. (1.2)

It obeys Im m(z) > 0 when Im z > 0, which implies that Im m(E+ iε) has a boundary value

as ε ↓ 0 in distributional sense:

dρ(E) = w-lim
ε↓0

1

π
Im m(E + iε)dE. (1.3)

We call dρ the spectral measure.
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In this way, each V gives rise to a spectral measure dρ. In fact, the correspon-

dence is one to one: Gel’fand and Levitan [11, 12] (see also Simon [29]) found an inverse

procedure to go from dρ to V.

Similarly, given a Jacobi matrix, an > 0, bn ∈ R,

J =




b1 a1 0 0 · · ·
a1 b2 a2 0 · · ·
0 a2 b3 a3 · · ·
...

...
...

...
. . .


 (1.4)

on �2(Z+), we define dµ to be the measure associated to the vector δ1 by the spectral the-

orem; that is,

m(z) ≡ 〈δ1, (J − z)−1δ1

〉
=

∫
dµ(E)
E − z

. (1.5)

In this setting, the inverse procedure dates back to Jacobi, Chebychev, Markov,

and Stieltjes. It is easy to describe: by applying Gram-Schmidt to {1, E, E2, . . . } in L2(dµ),

we obtain the orthonormal polynomials pn(E). These obey the three-term recursion rela-

tion

Epn(E) = an+1pn+1(E) + bn+1pn(E) + anpn−1(E). (1.6)

Alternatively, one can obtain an and bn from a continued fraction expansion of m (see

[33, 40]).

The main subject of spectral theory is to find relations between general proper-

ties of the spectral measures dρ or dµ and of the differential/difference equation param-

eters V or an and bn. Clearly, the gems of the subject are ones that provide necessary and

sufficient conditions, that is, a one-to-one correspondence between some explicit family

of measures and some explicit set of parameters. In this paper, we announce three such

results (one involving asymptotics of orthogonal polynomials rather than the measures)

whose details will appear elsewhere [4, 5, 21].

In the context of orthogonal polynomials on the unit circle [31], Verblunsky’s

form [39] of Szegő’s theorem [35, 36, 37] is such a one-to-one correspondence between

a measure and the recurrence coefficients for its orthogonal polynomials. Baxter’s theo-

rem [1, 2] and Ibragimov’s theorem [15, 19] can be viewed as other examples.

Our work here is related to and motivated by the more recent result of Killip and

Simon [20].



Necessary and Sufficient Conditions 1089

Theorem 1.1 (see [20]). The matrix J − J0 is Hilbert-Schmidt, that is,

∞∑
n=1

(
an − 1

)2
+ b2

n < ∞ (1.7)

if and only if the spectral measure dµ obeys the following:

(i) (Blumenthal-Weyl) supp(dµ) = [−2, 2]∪{E+
j }

N+

j=1∪{E−
j }

N−

j=1 with E+
1 > E+

2 > · · · > 2

and E−
1 < E−

2 < · · · < −2 with limj→∞ E±
j = ±2 if N± = ∞;

(ii) (normalization) µ is a probability measure;

(iii) (Lieb-Thirring bound)

∑
±,j

(∣∣E±
j

∣∣ − 2
)3/2

< ∞; (1.8)

(iv) (quasi-Szegő condition) let dµac(E) = f(E)dE. Then

∫2

−2

log
[
f(E)

]√
4 − E2dE > −∞. (1.9)

�

Our first result is the analog of this theorem for Schrödinger operators. This is

discussed in Section 2.

Our second result concerns Szegő asymptotics for orthogonal polynomials. In

1922, Szegő [38] proved that if dµ = f(E)dE, where f is supported on [−2, 2] and

∫
log

[
f(E)

] dE√
4 − E2

> −∞, (1.10)

then

lim
n→∞ znpn

(
z + z−1

)
(1.11)

exists and is nonzero (and finite) for all z ∈ D = {z ∈ C : |z| < 1}. There are works by

Gončar [16], Nevai [24], and Nikishin [26] that allow point masses outside [−2, 2]. The

following summarizes more recent results on this subject by Peherstorfer and Yuditskii

[27], Killip and Simon [20], and Simon and Zlatoš [32].

Theorem 1.2. Suppose dµ = f(E)dE + dµs with supp(dµsc) ∪ supp(f) ⊂ [−2, 2] and

∑
j,±

(∣∣E±
j

∣∣ − 2
)1/2

< ∞. (1.12)

Then the following are equivalent:
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(i) inf(a1 · · ·an) > 0;

(ii) (a)
∑∞

n=1 |an − 1|2 + |bn|2 < ∞;

(b) limn→∞ an · · ·a1 exists and is finite and nonzero;

(c) limn→∞ ∑n
j=1 bj exists;

(iii) dµ obeys the Szegő condition

∫2

−2

log
[
f(E)

] dE√
4 − E2

> −∞. (1.13)

Moreover, if these hold, then the limit (1.11) exists and is finite for all z ∈ D and

is nonzero if z + z−1 /∈ {E±
j }. �

Because (1.12) is required a priori here, this result is not a necessary and suffi-

cient condition with only parameter information on one side and only spectral informa-

tion on the other. In Section 3, we will discuss a necessary and sufficient condition for

the asymptotics (1.11) to hold, thereby closing a chapter that began in 1922.

Finally, in Section 4, we discuss necessary and sufficient conditions on the mea-

sure for the a’s and b’s to obey

lim sup
(∣∣an − 1

∣∣ + ∣∣bn

∣∣)1/2n ≤ R−1 (1.14)

for some R > 1. Namely, dµ must give specified weight to those eigenvalues Ej with |Ej| <

R+R−1, and the Jost function must admit an analytic continuation to the disk {z : |z| < R}.

The Jost function is naturally defined in terms of scattering; however, there is a

simple procedure for determining it from the measure and vice versa; see (4.2).

2 Schrödinger operators with L2 potential

The proofs of the results in this section will appear in [21]. Given a measure dρ on R,

define σ̃ on [0,∞) by

∫∞
0

g
(√

E
)
dρ(E) =

∫∞
0

g(k)dσ̃(k), (2.1)

that is, formally dσ̃(k) = χ(0,∞ )(k2)dρ(k2). For the Schrödinger operator with V = 0,

dρ0(E) = π−1χ[0,∞ )(E)
√

EdE,

dσ̃0(p) = 2π−1χ[0,∞ )(p)p2dp.
(2.2)
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Given ρ, define F̃ by

F̃(q) = π−1/2

∫
p≥1

p−1e−(q−p)2[
dσ̃(p) − dσ̃0(p)

]
. (2.3)

Since dρ obeys

∫
dρ(E)
1 + E2

< ∞, (2.4)

the integral in (2.3) is convergent.

If dρ is the spectral measure corresponding to the potential V, dρ and m are re-

lated by the Herglotz representation:

m(z) = c +

∫ [
1

λ − z
−

λ

1 + λ2

]
dρ(λ). (2.5)

The constant c is determined by the known asymptotics (see [14]), m(−k2) = −k + o(1).

Define M(k) by M(k) = m(k2). Here is our main result on L2 potentials.

Theorem 2.1. Let dρ be the spectral measure associated to a potential V. Then V ∈ L2([0,

∞)) if and only if

(i) (Weyl) supp(dρ) = [0,∞) ∪ {Ej}
N
j=1 with E1 < E2 < · · · < 0 and limj Ej = 0 if

N = ∞;

(ii) (local solubility)

∫∞
0

∣∣F̃(q)
∣∣2dq < ∞; (2.6)

(iii) (Lieb-Thirring)

∑
j

∣∣Ej

∣∣3/2
< ∞; (2.7)

(iv) (quasi-Szegő)

∫
log

[∣∣M(k) + ik
∣∣2

4k Im M(k)

]
k2 dk < ∞. (2.8)

�

Remark 2.2. (1) While there is a parallelism with Theorem 1.1, there are two significant

differences. First, the innocuous normalization condition is replaced by (2.6) and, sec-

ond, (2.8) involves M and not just µ.
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(2) Inequality (2.6) (assuming (2.8) holds) is an expression of the fact that dρ is

the spectral measure of an L2
loc potential essentially because it implies (by [14]) that the

A-function of [29] is in L2
loc.

(3) That M has a.e. boundary values is standard; compare [8, Chapter 1] or [28,

Chapter 17].

(4) The integrand in (2.8) is − log(1 − |R(k)|2), where R is a reflection coefficient.

Weak lower semicontinuity of the negative of the entropy used in [20] is replaced by lower

semicontinuity of the L2n-norm.

(5) The key to the proof of Theorem 2.1 is a strong version of the Zaharov-Faddeev

[41] sum rules. Essentially following [20, 30, 32], we provide a step-by-step sum rule for

V ∈ L2
loc and take suitable limits. What is interesting is that we use a whole-line, not

half-line, sum rule.

We note that prior to our work, V ∈ L2 ⇒ (2.7) was proved by Gardner, Greene,

Kruskal, and Miura in [10]. Bounds of this type are often called Lieb-Thirring inequali-

ties after their work on moments of eigenvalues for V ∈ Lp(Rd); see [23]. Deift and Killip

[6] proved that V ∈ L2 implies f(E) > 0 for a.e. E > 0. There are related works when

−d2/dx2 + V ≥ 0 in Sylvester and Winebrenner [34] and Denisov [7].

3 Szegő asymptotics

The proofs of the results in this section will appear in [4]. For the study of Szegő asymp-

totics, it is useful to map D = {z : |z| < 1} to C \ [−2, 2] by z → E = z + z−1. Our main result

on this issue uses the following conditions:

∞∑
n=1

∣∣an − 1
∣∣2 +

∣∣bn

∣∣2 < ∞, (3.1)

lim
N→∞

N∑
n=1

log
(
an

)
exists (and is finite), (3.2)

lim
N→∞

N∑
n=1

bn exists (and is finite). (3.3)

Theorem 3.1. If for some ε > 0, znpn(z + z−1) converges uniformly on compact subsets

of {z : 0 < |z| < ε} to a nonzero value, then (3.1), (3.2), and (3.3) hold.

Conversely, if (3.1), (3.2), and (3.3) hold, then znpn(z + z−1) converges uniformly

on compact subsets of D and has a nonzero limit for those z �= 0, where z + z−1 is not an

eigenvalue of J. �
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Remark 3.2. (1) By Theorem 1.1, (3.1) implies only the quasi-Szegő condition (1.9)

whereas all prior discussions of Szegő asymptotics have assumed the stronger Szegő

condition (1.13). We have examples in [4] where (3.1), (3.2), and (3.3) hold and
∑

(|E±
n | −

2)1/2 = ∞ which, by [32], implies that (1.13) fails; so we have examples where Szegő

asymptotics hold, although the Szegő condition fails.

(2) The first step in the proof is to show that for fixed z ∈ D, Szegő asymptotics

hold if and only if there is a solution with Jost asymptotics, that is, for which lim z−nun(z)

exists and is nonzero.

(3) We have two constructions of the Jost solution when (3.1), (3.2), and (3.3)

hold; one using the nonlocal step-by-step sum rule of [30], and the other using perturba-

tion determinants [20]. In either case, one makes a renormalization: in the first approach,

one renormalizes Blaschke products and Poisson-Fatou representations, and, in the sec-

ond case, one uses renormalized determinants for Hilbert-Schmidt operators.

While these are the first results we know for Szegő/Jost asymptotics for Jacobi

matrices with only L2 conditions, Hartman [17] and Hartman and Wintner [18] (see also

Eastham [9, Chapter 1]) have found Jost asymptotics for Schrödinger operators with V ∈
L2 with conditionally convergent integral.

4 Jacobi parameters with exponential decay

The proofs of the results in this section will appear in [5].

If m is given by (1.5), we define M(z) by

M(z) = −m
(
z + z−1

)
. (4.1)

Suppose that M(z) is the M-function of a Jacobi matrix and that it has an analytic con-

tinuation to a neighborhood of D̄ with the only poles in D̄ lying in D̄∩R and all such poles

are simple. Then we can define

u(z) =

N∏
k=1

b
(
z, zk

)
exp

( ∫ (
eiθ + z

eiθ − z

)
log

(
sin θ

Im M
(
eiθ
))dθ

4π

)
, (4.2)

where {zk}∞k=1 are the poles of M in D. This agrees with the Jost function from scattering

theory (see [20]), so we call it by this name.
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Given M and the Jost function u, suppose u is analytic in {z : |z| < R} and z0 is a

zero of u (pole of M) with R−1 < |z0| < 1. We say that M has a canonical weight at z0 if

lim
z→z0
z�=z0

(
z − z0

)
M(z) =

(
z0 − z−1

0

)[
u ′(z0

)
u
(
z−1

0

)]−1
. (4.3)

Theorem 4.1. Let M be the M-function of a Jacobi matrix J. Then J − J0 is finite rank if

and only if

(i) M is rational and has only simple poles in D̄ with all such poles in R;

(ii) u is a polynomial;

(iii) M has canonical weight at each z ∈ D which is a pole of M. �

Theorem 4.2. Let M be the M function of a Jacobi matrix J. Then the parameters of J

obey

(∣∣an − 1
∣∣ + ∣∣bn

∣∣) ≤ Cε

(
R−1 + ε

)2n
(4.4)

for some R > 1 and all ε > 0 if and only if

(i) M is meromorphic on {z : |z| < R} with only simple poles inside D̄ with all such

poles in R;

(ii) u is analytic in {z : |z| < R};

(iii) M has canonical weight at each pole of M, z0 ∈ D, with R−1 < |z0| < 1. �

Given u and not m, there is a normalization issue, so it is easier to discuss the

perturbation determinant [20] which obeys

L(z) =
u(z)
u(0)

=

( ∞∏
n=1

an

)
u(z). (4.5)

Theorem 4.3. Let L be a polynomial with L(0) = 1. Then L is a perturbation determinant

of a Jacobi matrix J, with J − J0 finite rank if and only if

(1) L(z) is real if z ∈ R;

(2) the only zeros of L in D̄ lie on D̄ ∩ R and are simple.

In this case, there is a unique J with J−J0 finite rank, so L is its perturbation determinant.

�

Remark 4.4. (1) While there is a unique J with J− J0 finite rank, if L has k zeros in D, there

is a k-parameter family of other J’s with L as their perturbation determinant (each such

J has |an − 1| + |bn| decaying exponentially, but only one has J − J0 finite rank).

(2) There is an analog of Theorem 4.3 if L is only analytic in {z : |z| < R}.
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(3) The proofs of these results depend on analyzing the map (u,M) → (u(1),M(1)),

where u(1), M(1) are the Jost function and M-function for J(1), the Jacobi matrix with the

top row and leftmost column removed. We control |||u(1)||| in terms of |||u|||, where

|||u|||2 =

∫ ∣∣u(R1eiθ
)

− u(0)
∣∣2 dθ

2π
(4.6)

with R1 < R, and are thereby able to show that |||u(n)||| goes to zero exponentially.

While we are aware of no prior work on the direct subject of this section, we note

that Nevai and Totik [25] solved the analogous problem for orthogonal polynomials on

the unit circle, that Geronimo [13] has related results for Jacobi matrices (but only un-

der an a priori hypothesis on M), and that there are related results in the Schrödinger

operator literature (see, e.g., Chadan and Sabatier [3]).
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