UNIFORM CROSSNORMS

BARRY SIMON

A crossnorm on a pair of Banach spaces (X, Y) is a norm, α , on the algebraic tensor product $X \odot Y$ obeying $\alpha(x \otimes y) =$ ||x|| ||y|| for all $x \in X, y \in Y$. When Schatten introduced crossnorms, he singled out two general classes of crossnorms: the dualizable crossnorms (called by him "crossnorms whose associates are crossnorms") and the uniform crossnorms. These are crossnorms which induce in a natural way other crossnorms: in the dualizable case, a crossnorm, α_d , on $X^* \odot Y^*$, and in the uniform case, a crossnorm, $\tilde{\alpha}$, on $\mathcal{L}(X) \odot \mathcal{L}(Y)$ where $\mathcal{L}(X)$ is the algebra of bounded operators on X. Our main new result is a proof that if α is a uniform crossnorm, then $\tilde{\alpha}$, the induced crossnorm on $\mathcal{L}(X) \odot \mathcal{L}(Y)$ is dualizable.

This result will be applied to the theory of tensor products of commutative Banach algebras.

§1. Basic definitions and facts. We recall several definitions from Schatten [5]:

DEFINITION 1. A norm α on $X \odot Y$, the algebraic tensor product of two Banach spaces X and Y, is called a *crossnorm* if and only if $\alpha(x \otimes y) = ||x|| ||y||$ for all $x \in X, y \in Y$.

DEFINITION 2. A crossnorm, α , on $X \odot Y$ is called *dualizable* if and only if for all $l \in X^*$, $\mu \in Y^*$, $z \in X \odot Y$:

$$|(l \otimes \mu)(z)| \leq ||l|| ||\mu|| \alpha(z)$$
.

REMARKS. 1. We have replaced Schatten's awkward "crossnorm whose associate is a crossnorm" whith the term "dualizable crossnorm".

2. It is a simple exercise [5] to show that if α is dualizable, and $\lambda \in X^* \odot Y^*$, then

$$\alpha_d(\lambda) \equiv \sup_{z \in X \textcircled{O} Y} |\lambda(z)| / \alpha(z)$$

defines a crossnorm, α_d , on $X^* \odot Y^*$.

DEFINITION 3. α_d is called the *dual* crossnorm of α (Schatten uses the term associated crossnorm).

We will use $\mathscr{L}(X)$ to denote the Banach algebra of all bounded operators on X.

DEFINITION 4. A crossnorm, α , on $X \odot Y$ is called *uniform* if and only if for all $A \in \mathcal{L}(X)$, $B \in \mathcal{L}(Y)$ and $z \in X \odot Y$:

$$\alpha((A \otimes B)z) \leq ||A|| ||B|| \alpha(z)$$
.

Similar to dualizable crossnorms, for $C \in \mathscr{L}(X) \odot \mathscr{L}(Y)$, the quantity

$$\widetilde{lpha}(C) = \sup_{z \in X \odot Y} lpha(Cz) / lpha(z)$$

defines a crossnorm $\tilde{\alpha}$ on $\mathscr{L}(X) \odot \mathscr{L}(Y)$.

DEFINITION 5. $\tilde{\alpha}$ is called the induced *crossnorm* of α .

There is an elementary fact about crossnorms which does not seem to have been noted in the literature:

THEOREM 1. Every uniform crossnorm is dualizable.

Proof. Let $l \in X^*$, $\mu \in Y^*$. Pick $x \neq 0$ in $X, y \neq 0$ in Y. Let $A \in \mathscr{L}(X)$ be given by Ax' = l(x')x and $B \in \mathscr{L}(Y)$ by $By' = \mu(y')y$. Then $||A|| = ||l|| ||x||, ||B|| = ||\mu|| ||y||$ and

$$\alpha((A \otimes B)z) = |(l \otimes \mu)(z)| (\alpha(x \otimes y) = ||x|| ||y|| |(l \otimes \mu)(z)|.$$

It follows that if

$$\alpha((A \otimes B)z) \leq ||A|| ||B||\alpha(z) ,$$

then

$$l \otimes \mu(z) \leq ||l|| ||\mu|| \alpha(z)$$
.

Finally we recall the two "canonical" crossnorms of Schatten and some facts about them:

DEFINITION 6. γ is the function on $X \odot Y$ given by

$$\gamma(z) = \inf \left\{ \sum_{i=1}^n ||x_i|| \, ||y_i|| \, |z = \sum_{i=1}^n x_i \otimes y_i
ight\}$$
 .

DEFINITION 7. Given $z \in X \odot Y$, define $\prod_z \in \mathscr{L}(X^*, Y)$, the bounded operators from X^* to Y by

$$\prod_{ig(\sum\limits_{i=1}^n x_i\otimes y_iig)}(l)\,=\,\sum\limits_{i=1}^n l(x_i)y_i$$
 .

 λ is the function on $X \odot Y$ given by

 $\lambda(z) = ||\prod_{z}||_{\mathscr{L}(X^*,Y)}$

where $|| \cdot ||_{\mathscr{L}(X^*,Y)}$ is the operator norm.

THEOREM 2. (Schatten [5])

- (a) γ and λ are uniform (dualizable) crossnorms.
- (b) If α is any crossnorm $\alpha \leq \gamma$.
- (c) A norm is a dualizable crossnorm if and only if $\lambda \leq \alpha \leq \gamma$.

REMARKS. 1. Schatten calls γ the greatest crossnorm and λ the least crossnorm whose associate is a crossnorm.

2. We will use the symbols $\gamma_{x \odot Y}$ and $\lambda_{x \odot Y}$ where there might be some confusion as to which algebraic tensor tensor product is intended.

3. The completion of $X \odot Y$ in the crossnorm, α , will be denoted $X \bigotimes_{\alpha} Y$.

2. The main result. The main new result of this paper is:

THEOREM 3. Let α be a uniform crossnorm on $X \odot Y$. Then the induced norm $\tilde{\alpha}$ on $\mathcal{L}(X) \odot \mathcal{L}(Y)$ is dualizable.

This is a rather technical looking result but it is motivated by a fairly simple problem which we discuss in §3. The heart of the proof is the following density lemma.

LEMMA 1. Let X be a Banach space. Endow $\mathcal{L}(X)^*$ with the weak-* topology. Given $l \in \mathcal{L}(X)$ and $x \in X$, let $L_{l,x} \in \mathcal{L}(X)^*$ be defined by $L_{l,x}(A) = l(Ax)$. Then the (weak *-) closed convex hull of $\{L_{l,x} | ||l|| = ||x|| = 1\}$ is the entire unit ball in $\mathcal{L}(X)^*$.

Proof. Suppose $L_0 \in \mathscr{L}(X)^*$ and L_0 is not in the closed convex hull of $\{L_{l,x} \mid ||l|| = ||x|| = 1\}$. Then by the Hahn-Banach theorem, there exists a weak *-continuous linear functional, Λ , on $\mathscr{L}(X)^*$ with Re $\Lambda(L_{l,x}) \leq a$ for all l and x with ||l|| = 1, ||x|| = 1, and with Re $\Lambda(L_0) >$ a. Since $L_{l,cx} = cL_{l,x}$ for any scalar c, by rescaling Λ , we can suppose $|\Lambda(L_{l,x})| \leq 1$; $\Lambda(L_0) > 1$. But every weak *-continuous functions Λ is of the form $\Lambda(L) = L(\Lambda)$ for some $\Lambda \in \mathscr{L}(X)$ (see [4], pp. 114–115). Thus $\sup_{||l||=||x||=1} |l(\Lambda x)| \leq 1$ and $L_0(\Lambda) > 1$. The first inequality implies $||\Lambda|| \leq 1$ so the second implies $||L_0|| > 1$.

Proof of Theorem 3. By Theorem 2, we need only show that $\lambda_{\mathscr{L}(X) \odot \mathscr{L}(Y)} \leq \widetilde{\alpha}$. But, by definition, if $C = \sum_{i=1}^{n} A_i \otimes B_i \in \mathscr{L}(X) \odot \mathscr{L}(Y)$, then $\lambda(C) = ||\prod_{c}||$ where $\prod_{c} : \mathscr{L}(X)^* \to \mathscr{L}(Y)$ by $\prod_{c}(L) = \sum_{i=1}^{n} L(A_i)B_i$.

Since \prod_{c} has this form, it is weak *-continuous, i.e., if $L_{\alpha} \to L$ in the $\mathscr{L}(X)^*$ -weak* topology, then $\prod_{c} (L_{\alpha}) \to \prod_{c} (L)$ in $\mathscr{L}(Y)$ -norm. Thus $||\prod_{c}|| = \sup_{L \in S} ||\prod_{c} (L)||_{\mathscr{L}(Y)}$ for any set S whose closed convex hull is the unit ball of $\mathscr{L}(X)^*$. Using the lemma and

$$||B|| = \sup \{|\mu(By)| | ||\mu|| = ||y|| = 1\}$$
,

we conclude:

$$\begin{split} \lambda_{\mathscr{D}(X) \odot \mathscr{D}(Y)}(C) &= \\ \sup \left\{ |(l \otimes \mu)[C(x \otimes y)]| \mid l \in X^*, \, \mu \in Y^*, \, x \in X, \, y \in Y; \, ||l|| \\ &= ||\mu|| = ||x|| = ||y|| = 1 \right\}. \end{split}$$

Let α be a uniform crossnorm, then since α is dualizable,

$$egin{aligned} &|(l\otimes\mu)[C(x\otimes y)]|&\leq lpha_d(l\otimes\mu)lpha(C(x\otimes y))\ &\leq \widetildelpha(C)lpha_d(l\otimes\mu)lpha(x\otimes y)\ &= \widetildelpha(C)\,||\,l||\,||\mu||\,||x||\,||y||\ . \end{aligned}$$

We conclude $\lambda \leq \tilde{\alpha}$ and with that, the theorem.

3. Tensor products of commutative Banach algebras. Now let $\mathfrak{A}_1, \mathfrak{A}_2$ be Banach algebras with identities.

DEFINITION 8. If \mathfrak{A}_1 and \mathfrak{A}_2 are Banach algebras (with identity) a crossnorm, α , on $\mathfrak{A}_1 \odot \mathfrak{A}_2$ (which is an algebra) is called a *B*algebra crossnorm if and only if $\alpha(xy) \leq \alpha(x)\alpha(y)$ for all $x, y \in \mathfrak{A}_1 \odot \mathfrak{A}_2$.

Surprisingly, the following question is open.

Question 1. Let $\mathfrak{A}_1, \mathfrak{A}_2$ be commutative Banach algebras with identity. Let $\sigma(\cdot)$ denote the spectrum of the algebra \cdot . Let α be a *B*-algebra crossnorm on $\mathfrak{A}_1 \odot \mathfrak{A}_2$. Then $\mathfrak{A}_1 \otimes_{\alpha} \mathfrak{A}_2$ is a commutative *B*-algebra. Is $\sigma(\mathfrak{A}_1 \otimes_{\alpha} \mathfrak{A}_2) = \sigma(\mathfrak{A}_1) \times \sigma(\mathfrak{A}_2)$?

One can be more explicit. If l is a multiplicative linear functional on $\mathfrak{A}_1 \otimes_{\alpha} \mathfrak{A}_2$, then $l(\cdot \otimes 1)$ and $l(1 \otimes \cdot)$ define elements $l_1 \in \sigma(\mathfrak{A}_1)$ and $l_2 \in \sigma(\mathfrak{A}_2)$ with $l = l_1 \otimes l_2$. Thus, to conclude that $\sigma(\mathfrak{A}_1 \otimes_{\alpha} \mathfrak{A}_2) = \sigma(\mathfrak{A}_1) \times \sigma(\mathfrak{A}_2)$, it is sufficient to show that for any $l_1 \in \sigma(\mathfrak{A}_1)$ and $l_2 \in \sigma(\mathfrak{A}_2)$, $l_1 \otimes l_2$ defines an α -bounded linear functional on $\mathfrak{A}_1 \odot \mathfrak{A}_2$ which then extends to $\mathfrak{A}_1 \otimes_{\alpha} \mathfrak{A}_2$ We conclude:

LEMMA 2. [7] If α is a Banach algebra crossnorm on commutative algebras which is dualizable, then $\sigma(\mathfrak{A}_1 \otimes_{\alpha} \mathfrak{A}_2) = \sigma(\mathfrak{A}_1) \times \sigma(\mathfrak{A}_2)$.

Question 2. Is every Banach algebra crossnorm on commutative

558

Banach algebras dualizable?

An affirmative answer to Question 2 would, of course, imply an affirmative answer to Question 1. Our main remark is that Theorem 3 implies that question 1 has an affirmative answer in a situation which arises quite often in practice.

THEOREM 4. Let X and Y be Banach spaces and let α be a uniform crossnorm. Let \mathfrak{A}_1 be a commutative subalgebra of $\mathscr{L}(X)$ and let \mathfrak{A}_2 be a commutative subalgebra of $\mathscr{L}(Y)$. Let \mathfrak{A} be the subalgebra of $\mathscr{L}(X \otimes_{\alpha} Y)$ generated by

$$\{A \otimes B \,|\, A \in \mathfrak{A}_{\scriptscriptstyle 1}; \, B \in \mathfrak{A}_{\scriptscriptstyle 2}\}$$
 .

Then

$$\mathfrak{A} = \mathfrak{A}_{_1} \bigotimes_{\,\widetilde{lpha}} \mathfrak{A}_{_2}, \, \sigma(\mathfrak{A}) = \sigma(\mathfrak{A}_{_1}) imes \sigma(\mathfrak{A}_{_2}) \; .$$

Proof. That $\mathfrak{A} = \mathfrak{A}_1 \bigotimes_{\widetilde{\alpha}} \mathfrak{A}_2$ is a trivial fact. That $\sigma(\mathfrak{A}) = \sigma(\mathfrak{A}_1) \times \sigma(\mathfrak{A}_2)$ follows from Theorem 3 and Lemma 2.

REMARKS. 1. This theorem is not new in the case X and Y are Hilbert spaces and α is the Hilbert space inner product. For $\tilde{\alpha}$ on $\mathscr{L}(X) \otimes \mathscr{L}(Y)$ is a C*-norm, so by a result of Takesaki [6] $\tilde{\alpha} \geq \lambda_{\mathscr{L}(X) \otimes \mathscr{L}(Y)}$. By the "local nature" of $\lambda[5]$, one concludes $\tilde{\alpha} \geq \lambda_{\pi_1 \otimes \pi_2}$.

2. The special case of this theorem where X and Y are commutative Banach algebras and $\mathfrak{A}_1 = \{L_x \mid x \in X\}, \mathfrak{A}_2 = \{L_y \mid y \in Y\}$ with $L_a b = ab$, is due to J. Gil de Lamadrid [2]. He proves in his special case that $\tilde{\alpha} \geq \lambda$ without requiring a Hahn-Banach argument as in Lemma 1.

3. The special case of this theorem where \mathfrak{A}_1 and \mathfrak{A}_2 are generated by the resolvents of a single operator has been proven by Reed-Simon [4] using the fact that the only compact analytic subvarieties of C^2 are points. We note in passing that Theorem 3 does not allow a simplification of [4] since the machinery needed to prove the special use of Theorem 4 is needed to prove other results.

4. Under the hypotheses of the theorem it is also quite easy to prove $\partial_{\mathfrak{A}} = \partial_{\mathfrak{A}_1} \times \partial_{\mathfrak{A}_2}$ where ∂ is the Shilov boundary. The proof is the same as in the special case $\mathfrak{A}_1 \otimes_7 \mathfrak{A}_2$ [1].

REFERENCES

1. B. R. Gelbaum, Tensor products and related questions, Trans. Amer. Math. Soc., 103 (1962), 525-548.

2. J. Gil de Lamadrid, Uniform crossnorms and tensor products of Banach algebras, Duke Math. J., **32** (1965), 359-368.

BARRY SIMON

3. M. Reed and B. Simon, Tensor products of closed operators on Banach spaces, J. Func. Anal. to appear and A spectral mapping theorem for tensor products of unbounded operators, Bull. Amer. Math. Soc., **78** (1972), 730-733.

4. _____, Methods of Modern Mathematical Physics, I: Functional Analysis, Academic Press, 1972.

5. R. Schatten, A *Theory of Cross Spaces*, Ann. Math. Study No. 26, Princeton University Press, 1950.

6. M. Takesaki, On the crossnorm of the direct product of C*-algebras, Tôhoku Math. J., 16 (1964), 111-122.

7. J. Tomiyama, Tensor products of commutative Banach algebras, Tôhoku Math. J., (2), **12** (1960), 147-154.

Peceived April 18, 1972. A Sloan Foundation Fellow.

PRINCTON UNIVERSITY