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Abstract

We prove a general canonical factorization for meromorphic Herglotz functions on the unit

disk whose notable elements are that there is no restriction (other than interlacing) on the

zeros and poles for their Blaschke product to converge and there is no singular inner function.

We use this result to provide a significant simplification in the proof of Killip–Simon (Ann.

Math. 158 (2003) 253) of their result characterizing the spectral measures of Jacobi matrices, J;
with J � J0 Hilbert-Schmidt. We prove a nonlocal version of Case and step-by-step sum rules.

r 2003 Elsevier Inc. All rights reserved.
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1. Introduction

The canonical factorization for Nevanlinna functions, f ; that is, functions obeying

sup
0oro1

Z 2p

0

logþj f ðreiyÞj dy
2p

oN ð1:1Þ

says that [8]

f ¼ BOI : ð1:2Þ
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Here B is a Blaschke product of the zeros fzkgNk¼1 of f ; BðzÞ ¼
Q

N

k¼1 bðz; zkÞ with

bðz; zkÞ ¼
jzkj
zk

zk � z

1� %zkz
ð1:3Þ

(with jzkj=zk interpreted as �1 if zk ¼ 0Þ; bðz; 0Þ ¼ z). O is the outer factor, that is,

OðzÞ ¼ exp

Z 2p

0

eiy þ z

eiy � z
logðj f ðeiyÞjÞ dy

2p

� �
ð1:4Þ

and I is a singular inner function, that is, I has no zeros and limrm1 jIðreiyÞj ¼ 1 for

Lebesgue a.e. y:
One of our goals in this paper is to prove an analog of this result for a rather

different class of functions:

Theorem 1.1. Let f be a meromorphic function on D ¼ fz j jzjo1g so that Im f40
(resp. o0) if Im z40 (resp. o0). Then for a.e. yA½0; 2pÞ;

f ðeiyÞ 
 lim
rm1

f ðreiyÞ ð1:5Þ

exists and is a.e. nonzero. Moreover,Z 2p

0

jlogj f ðeiyÞjjp dy
2p

oN ð1:6Þ

for all poN: If pþ
1 opþ

2 o? are the poles of f in ½0; 1Þ; zþ1 ozþ2 o? the zeros there

and p�
1 4p�

2 4? and z�1 4z�2 4? the poles and zeros in ð�1; 0Þ; then

BðzÞ ¼ lim
n-N

Yn

j¼1

bðz; zþj Þbðz; pþ
j Þ

�1
bðz; z�j Þbðz; p�

j Þ
�1 ð1:7Þ

converges uniformly on compact subsets on D\fp7
j g and

f ðzÞ ¼ 7BðzÞ exp
Z 2p

0

eiy þ z

eiy � z
logj f ðeiyÞj dy

2p

� �
; ð1:8Þ

where the 7 sign in front is sgnð f ð0ÞÞ if f ð0Þa0 and þ if f ð0Þ ¼ 0:

Three aspects of this theorem should be emphasized. First, unlike the Nevanlinna
function case, where one proves

P
ð1� jzjjÞoN and needs this to assure

convergence of the product defining that B; our f ’s can have arbitrary interlaced
poles and zeros on ð�1; 1Þ since the interlacing will assure convergence. Second, (1.8)
has no singular inner part. This is connected with (1.6).

Third, Theorem 1.1 is related to but distinct from results on functions, f ; which
obey Im f40 on all ofD (usually phrased instead for f ’s with Re f40)—namely, the
celebrated result of Kolmogorov [6] that any such f lies in Hp for all po1; and the
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less well-known result of Smirnov [11] that such functions have no singular inner
part. These results and conformal mapping of half-disks to the disk provide some
information on the functions of Theorem 1.1, but say nothing about the Blaschke
product (1.7) nor about a singular inner component supported at f71g: It should,
however, be emphasized that Kolmogorov’s result and conformal mapping do imply
(1.5) and a stronger result than (1.6), namelyZ 2p

0

ðj f ðeiyÞj þ j f ðeiyÞj�1Þp dy
2p

oN ð1:9Þ

for po1
2
: The example f ðxÞ ¼ �ð1þ zÞ�2 shows that (1.9) is optimal in that the

integral is infinite for p ¼ 1
2
:

Also interesting is that the proof of Theorem 1.1 has fewer technicalities; for
example, the product defining B will actually converge on all of Cþ ¼ fz j Im z40g;
so jBðeiyÞj ¼ 1 will be immediate without the separate argument needed in the
Nevanlinna function case (see [8, p. 312]).

While this theorem is interesting for its own sake, we found it in the course of
simplifying some recent results of Killip–Simon [5] on Jacobi matrices.

We will consider Jacobi matrix spectral and inverse spectral theory, mainly using
the notation of Killip–Simon [5]. A Jacobi matrix, J; is a tridiagonal self-adjoint
matrix

J ¼

b1 a1 0 0 ?

a1 b2 a2 0 ?

0 a2 b3 a3 ?

^ ^ ^ ^ &

0
BBB@

1
CCCA ð1:10Þ

with an40 and supnjanj þ jbnjoN: J0 is the special case with bn 
 0; an 
 1:
mJ (often just m) is the spectral measure for J and vector d1; that is,

mðEÞ 

Z

dmðxÞ
x � E

¼ /d1; ðJ � EÞ�1d1S ð1:11Þ

for EACþ ¼ fE j Im E40g: The a’s and b’s are then the recursion coefficients for the
orthonormal polynomials for m; that is, if pnðxÞ is defined recursively by

xpnðxÞ ¼ anþ1pnþ1ðxÞ þ bnþ1pnðxÞ þ anpn�1ðxÞ ð1:12Þ

then pnðxÞ ¼ gnxnþ lower order with gn ¼ ða1yanÞ�140 andZ
pnðxÞpcðxÞ dmðxÞ ¼ dnc: ð1:13Þ

Note that for J ¼ J0; the dm is

dm0 ¼ ð2pÞ�1w½�2;2�ðEÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� E2

p
dE: ð1:14Þ
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Write

dmðxÞ ¼ f ðxÞ dx þ dmsðxÞ; ð1:15Þ

where dmsðxÞ is singular with respect to Lebesgue measure. Our main goal here is to
present a simple self-contained proof of the main theorem of Killip–Simon [5], but in
doing so, we will prove a general nonlocal sum that has other applications.

Theorem 1.2. J � J0 is Hilbert-Schmidt, that is,

XN
n¼1

½2ðan � 1Þ2 þ b2
n�oN ð1:16Þ

if and only if dm obeys the following four conditions:

(i) (Blumenthal-Weyl)

supp½dm� ¼ ½�2; 2�,fE�
j g

N�
j¼1,fEþ

j g
Nþ
j¼1; ð1:17Þ

where

E�
1 oE�

2 o?o� 2 and Eþ
1 4Eþ

2 4?42 ð1:18Þ

are discrete pure points of dm; and if Nþ ¼ N (resp. N� ¼ N), then Eþ
j -2 (resp.

E�
j -� 2).

(ii) (Lieb-Thirring)

XNþ

j¼1

jEþ
j � 2j3=2 þ

XN�

j¼1

jE�
j þ 2j3=2oN: ð1:19Þ

(iii) (Quasi-Szeg +o) Z 2

�2

logð f ðEÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� E2

p
dE4�N: ð1:20Þ

(iv) (Normalization)

mðRÞ ¼ 1: ð1:21Þ

An important thing is that, like Szeg +o’s theorem [2,4,9,12], the only condition on
the singular part of ms is the one given by (1.21).
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As in [5], this theorem follows immediately from a sufficiently general form of a
sum rule.

Given two measures m and n on a compact Hausdorff space, define their relative
entropy by

Sðm j nÞ ¼
�N if m is not n a:c:;

�
R
log dm

dn

� �
dm if m is n a:c:

(

Let m0 be the measure given by (1.14) and let

QðmÞ ¼ �Sðm0 j mÞ:

We will need the fact [5, Corollary 5.3] that

mn !
w

m ) QðmÞplim infQðmnÞ ð1:22Þ

(semicontinuity of the entropy).
Also define two functions: G on ð0;NÞ by

GðaÞ ¼ a2 � 1� 2 logðaÞ ð1:23Þ

and F on ð2;NÞ by

FðEÞ ¼ 1
4
ðb2 þ b�2 � log b4Þ; ð1:24Þ

E ¼ bþ b�1; b41: ð1:25Þ

The P2 sum rule of Killip–Simon [5] says

QðmÞ þ
X
n;7

FðjE7
n jÞ ¼ 1

4

XN
n¼1

b2
n þ 1

2

XN
n¼1

GðanÞ ð1:26Þ

and the point of [5] is that it always holds in the sense that all terms are
nonnegative and either both sides are finite and equal or both are infinite.
Since the right side of (1.26) is finite if and only if bn and an � 1 are c2 and the left
side is finite if and only if (i)–(iv) of Theorem 1.2 hold, (1.26) immediately implies
Theorem 1.2.

As in [5], one proves (1.26) by showing LHSpRHS and RHSpLHS: The proof in
[5] of the first inequality is conceptually and technically simple—essentially, one
proves (1.26) when only finitely many bn and an � 1 are nonzero and uses (1.22). The
proof in the other direction in [5] is involved and opaque; Simon–Zlatoš [10]
improved this part, but their argument still has several pages of calculations. Instead,
our key technical input will be Theorem 1.1.

As in [5] and related to ideas going back at least as far as Szeg +o [12], we will map

C,fNg\½�2; 2� to the open unit diskD by the inverse of the map z/ðz þ z�1Þ: This
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allows us to define a natural function M on D associated to the m of (1.11) by

MðzÞ ¼ �mðz þ z�1Þ: ð1:27Þ

M is meromorphic in D and has poles at the points ðb7j Þ�1 defined by (1.25). Since

mðEÞBð�EÞ�1 for EBN;

MðzÞ ¼ z þ Oðz2Þ ð1:28Þ

near z ¼ 0: Since Im M40 if Im z40; between any two poles of M is a zero and the
zeros (other than z ¼ 0) are easily seen to be related to the eigenvalues of the Jacobi

matrix Jð1Þ obtained by removing the top row and leftmost column in J: Let M1 be

the M-function for Jð1Þ: Then our main technical result is the following
representation for M:

Theorem 1.3. For any Jacobi matrix, Im M and Im M1 have boundary values a.e. on

@D and up to Lebesgue measure zero sets:

S 
 fy j Im MðyÞa0g ¼ fy j Im M1ðyÞa0g: ð1:29Þ

Moreover, for any poN; Z
S

log
Im M

Im M1

� �����
����
p

dy
2p

oN: ð1:30Þ

Most importantly,

a1M ¼ zBþðzÞB�ðzÞ exp 1

4p

Z 2p

0

log
Im MðyÞ
Im M1ðyÞ

� �
eiy þ z

eiy � z

� �
dy

� �
; ð1:31Þ

where Bþ and B� are suitable convergent products of the zeros and poles.

This theorem not only yields Theorem 1.2 but has other applications [1].
For the case of interest, jSj ¼ 2p and then (1.31) is intended literally. If jSjo2p; we

interpret Im MðyÞ=Im M1ðyÞ for yeS by

Im MðyÞ
Im M1ðyÞ


 lim
rm1

Im MðreiyÞ
Im M1ðreiyÞ þ a�2

1 ðr�1 � rÞsin y
: ð1:32Þ

Part of the theorem is that with this extended definition,
logðIm MðyÞ=Im M1ðyÞÞALpðdy=2pÞ for all poN:

The connection between Theorems 1.1 and 1.3 is evident; essentially, the later is
implied by the former and the formula already used in [5]:

Im MðyÞ
Im M1ðyÞ

¼ a2
1jMðeiyÞj2: ð1:33Þ
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In Section 2, we will discuss Blaschke products of zeros and poles, and
in Section 3, we will prove Theorems 1.1 and 1.3. In Section 4, we will see that
the Taylor coefficients of the logs of the two sides of (1.31) are the step-by-step sum
rules of Killip and Simon [5] and Simon and Zlatoš [10], and use them to prove
(1.26). Section 5 has a few closing remarks, including a brief indication of the analog
of M for orthogonal polynomials on the unit circle.

I would like to thank Leonid Golinskii for a comment that got me thinking
in the right direction, and Rowan Killip for useful comments. Our joint work
extending [5] to the continuum case (in preparation) was an important guide to my
thinking.

2. Alternating Blaschke products

Given real numbers 0op1oz1o?opnozno? with lim pn ¼ lim zn ¼ 1; we
define a sequence BjðzÞ of alternating Blaschke factors as follows:

c2jðzÞ ¼
zj � z

1� zjz
; j ¼ 1; 2;y; ð2:1Þ

c2j�1ðzÞ ¼
1� pjz

pj � z
; j ¼ 1; 2;y; ð2:2Þ

BjðzÞ ¼
Yj

k¼1

ckðzÞ ð2:3Þ

so Bj has poles inside D at p1; p2;y; pc; and zeros at z1;y; zm where c ¼ m ¼ j=2

if j is even and c ¼ ð j þ 1Þ=2; m ¼ ð j � 1Þ=2 if j is odd. Here is the convergence
theorem we will prove in this section.

Theorem 2.1. For all zAC\fpjg,fz�1
j g,f1g 
 S; BNðzÞ ¼ limj-N BjðzÞ exists and

the convergence is uniform on compact subsets of S: BN is nonvanishing on

S\fzjg,fp�1
j g: For jzj ¼ 1 and za1; jBNðzÞj ¼ 1: If log BN is defined on Cþ to be

continuous with limyk0 BNðiyÞ40; then

jIm ðlog BNðzÞÞjpp: ð2:4Þ

Remarks. (1) This should be viewed as a souped-up version of the fact that if an-0;

janjXjanþ1j; and ð�1Þn
anX0; then

PN
n¼1 an converges.

(2) There is no regular Blaschke condition that
P

N

j¼1ð1� jzj jÞoN because we can

instead use XN
j¼1

jzj � pjjoN: ð2:5Þ
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Killip has remarked that this is sufficient for all parts of the theorem to be true,
save (2.4).

(3) Eq. (2.4) holds because there is a cancellation of phases from the zeros and
poles.

(4) This theorem is a close relative to the one in Gesztesy–Simon [3] that if

p1oz1o? with pn-N; then limn-N

Qn
j¼1 ð1� z=zjÞ=ð1� z=pjÞ converges and

defines a Herglotz function. See also [7].

Proof. First, let �1oxo0: All numerators and denominators in (2.1) and (2.2) are
positive so we can unambiguously take logs. Since ckðzÞ-1 as k-N and

@

@a

a � x

1� ax

� �
¼ 1� x2

ð1� axÞ2
40

if aAð0; 1Þ; we have

jlog cjðxÞjXjlog cjþ1ðxÞj; j ¼ 1; 2;

log cjðxÞ-0 as j-N;

ð�1Þ jþ1 log cjðxÞ40

so
P

log cjðxÞ is a convergent alternating series and thus, for xAð�1; 0Þ;
limj-N BjðxÞ exists.

Noting that

zj � z

pj � z
� 1

����
���� ¼ jzj � pjj

jpj � zj ;
1� pjz

1� zjz

�1
����

���� ¼ jzj � pjj jzj
j1� zjzj

;

one sees that

jB2jðzÞjpexp SðzÞ
Xj

k¼1

jzj � pj j
 !

;

where

SðzÞ ¼ max
aAðp1;1Þ

1

ja� zj;
jzj

j1� azj

� �
:

Since

jc2j�1ðzÞjp max
aAðp1;1Þ

j1� azj
jz � aj

we see that on C\½p1; p�1
1 �; supjjBjðzÞjoN and so we get the uniform convergence. A

small modification handles the points in ½p1; p�1
1 � other than fpjg,fz�1

j g: Since

jbcðzÞj ¼ 1 if jzj ¼ 1 and Bj-BN uniformly, jBNðzÞj ¼ 1 on @D\f�1g:
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That proves everything but (2.4). To prove that, note that

Yk

j¼1

zj � z

pj � z

1

pkþ1 � z
¼
Xk

c¼1

ac
pc � z

;

where each ac is positive, and so it defines a Herglotz function. Thus B2j�1

is a ratio of Herglotz functions and so jIm½logðB2j�1Þ�jop: Taking limits,

we get (2.4). &

3. Factorization of meromorphic Herglotz functions

Here we will prove Theorems 1.1 and 1.3.

Proof of Theorem 1.1. Since an analytic function gðzÞ has points with Im go0 in any
neighborhood of a polar singularity or zero, f is analytic and nonvanishing in Dþ 

D-Cþ and D� ¼ D-fz j Im zo0g: Similarly, since each half-neighborhood of a
zero or pole of degree larger than 1 has points with Im go0; we conclude that f has
only simple poles and zeros on ð�1; 1Þ:

Since Im f is 0 on ð�1; 1Þ; we have @ Im f
@y

X0 so, by the Cauchy–Riemann

equations, @ Re f
@x

¼ f 0ðx þ i0ÞX0: That implies the zeros and poles interlace. Using

slightly different labelling of zeros and poles from Section 1, let z0 be the smallest

zero in ½0; 1Þ and pþ
1 ozþ1 o? and p�

1 4z�1 4? the poles and zeros in ðz0; 1Þ and

ð�1; z0Þ: Define

BðzÞ ¼ bðz; z0ÞBþðzÞB�ðzÞ; ð3:1Þ

where Bþ (resp. B�) are the product defined by Theorem 2.1 for zþj ; pþ
j (resp. B� is a

similar product for z�j ; p�
j ). It is easy to see that this agrees with slightly reordered

product in (1.7).
Define

GðzÞ ¼ f ðzÞBðzÞ�1: ð3:2Þ

Then GðzÞ

(i) Is analytic and nonvanishing on D since we have explicitly removed all the
zeros and poles.

(ii) Has

lim
rm1

GðreiyÞ
f ðreiyÞ

����
���� ¼ 1 ð3:3Þ

for ya0; p since jBðeiyÞj ¼ 1:
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(iii) We have that in D

jIm logðGðzÞÞjp4p: ð3:4Þ

For this holds in D-Cþ since f and 7b are Herglotz functions (for which
Im log gðzÞAð0; pÞ) and B7 obey (2.4).

GðzÞ as a nonvanishing function has an analytic logarithm. By (3.4) and the
boundedness of the conjugate harmonic function map (see [8]), we have that

log GðzÞAHp all poN ð3:5Þ

so that

log GðzÞ ¼ 1

2p

Z 2p

0

logjGðeiyÞj eiy þ z

eiy � z
dy: ð3:6Þ

Since (3.3) holds, we have that for all poN;

1

2p

Z 2p

0

jlog ½j f ðeiyÞj�jp dyoN

and, by (3.1) and (3.6), (1.8) holds. &

Proof of Theorem 1.3. We use the continued fraction expansion for M (see [5]):

MðzÞ ¼ ðz þ z�1 � b1 � a2
1M1ðzÞÞ�1: ð3:7Þ

Since Im ð�MðzÞ�1Þ ¼ Im MðzÞ=jMðzÞj2; we see for zAD;

Im MðzÞ
jMj2

¼ a2
1 Im M1ðzÞ � Im ðz þ z�1Þ ð3:8Þ

so, since Im MðzÞ and Im M1ðzÞ are nonzeros on D-Cþ; we have there that

a2
1jMðreiyÞj2 ¼ Im MðreiyÞ

½Im M1ðreiyÞ þ a�2
1 ðr�1 � rÞsinðyÞ�: ð3:9Þ

Taking boundary values and using the fact that M is Herglotz on D so that

limjMðeiyÞj is finite and nonzero for a.e. y (by Theorem 1.1), we see that (1.29) holds
and that on S;

a2
1jMðeiyÞj2 ¼ Im MðeiyÞ

Im M1ðeiyÞ: ð3:10Þ

Off S; this formula holds if we interpret the right side by (1.32). We have proven
(1.31) by combining (1.8) and (3.10). &
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We will see in the next section that Taylor coefficients of (1.31) are a step-by-step
sum rule. We can think of (1.31) as a kind of global (i.e., not just Taylor coefficients
at z ¼ 0) step-by-step sum rule. It will be used in [1].

4. The P2 sum rule

Our goal in this section is to prove (1.26) in the strong sense indicated in Section 1,
which then, as explained there, implies Theorem 1.2. The arguments follow those in
[5,10] and are presented here because our subsidiary results are stronger here and
because, by specializing to P2; some details are easier. The initial step is a general
step-by-step sum rule.

Theorem 4.1. Let J be an arbitrary Jacobi matrix which obeys condition (i) of

Theorem 1.2 (e.g., J � J0 is compact). Let Jð1Þ be the matrix with one row and column

removed. Then

(i) If E7
n and E

ð1Þ7
n are the eigenvalues for J and Jð1Þ; then with F given by (1.24)/

(1.25), X
jFðE7

n Þ � FðEð1Þ7
n ÞjoN; ð4:1Þ

where FðE7
n Þ is interpreted as 0 if n4N7; and similarly for FðEð1Þ7

n Þ:
(ii) logðIm M1ðyÞ=Im MðyÞÞ (interpreted as (1.32) if Im MðyÞ ¼ 0) lies in all Lp for

poN:

(iii)
1

4p

Z 2p

0

log
Im M1ðyÞ
Im MðyÞ

� �
sin2 y dyþ

X
n;7

FðEþ
n Þ � FðE7ð1Þ

n Þ ¼ 1
4

b2
1 þ 1

2
Gða1Þ

ð4:2Þ

with G given by (1.23).

Remark. This proof is essentially the same as Theorem 4.2 of [5] given our
Theorem 1.3.

Proof. By (1.28) and (3.7), one finds

log
MðzÞ

z

� �
¼ 1þ b1z þ 1

2
b2
1 þ a2

1 � 1
� �

z2 þ Oðz3Þ: ð4:3Þ

Computing the Taylor series for BNðzÞ up to order 2; one finds by taking logs of
(1.31) and looking at the zeroth and second Taylor coefficient that

1

4p

Z 2p

0

log
Im M1ðeiyÞ
Im MðeiyÞ

� �
dy�

X
n;7

½logjb7n ðJÞj � logjb7n ðJð1ÞÞj� ¼ �logða1Þ ð4:4Þ
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and

� 1

2p

Z 2p

0

log
Im M1ðeiyÞ
Im MðeiyÞ

� �
cos 2y dyþ 1

2

X
n;7

fb7n ðJÞ2 � b7ðJnÞ2 � ðb7n ðJÞ�2

þ ðb7ðJnÞÞ�2g ¼ 1
2

b2
1 þ ða2

1 � 1Þ: ð4:5Þ

In these formulae, the
P

n;7 converge because jE7
n jpjEð1Þ7

n jpjE7
nþ1j so the sums

are alternating sums since logjbj and b2 � b�2 are monotone. (4.3) is obtained by

adding 1
2� (4.5) to (4.4). &

Remark. For cases where M has a meromorphic continuation past @D; (4.2) was

proven by Killip–Simon [5], and if
R
�log½Im MðeiyÞ�sin2 y dy

4poN; it was proven by

Simon–Zlatoš [10]. In this generality, it is new.

Proof of (1.26). We can iterate (4.2) to get

Z 2p

0

1

4p
log

Im Mðeiy; JðcÞÞ
Im MðeiyÞ

� �
sin2y dy

þ
X
n;7

FðE7
n Þ � FðE7ðcÞ

n Þ ¼
Xc
j¼1

½14 b2
j þ 1

2 GðajÞ� ð4:6Þ

with JðcÞ the matrix with the top c rows and leftmost c columns removed. In

particular, if JðcÞ ¼ J0 for some c; we have (1.26) in that case.
Given a general J; let Jc be defined by having a values (a1; a2;y; ac�1; 1; 1;y) and

b values (b1;y; bc; 0; 0y) so ðJcÞðcÞ ¼ J0: Thus (1.26) holds for Jc: The limit of the
right side of (1.26) converges as c-N: By (1.22), the left sides obey an inequality.
The result is

RHS of ð1:26ÞpLHS of ð1:26Þ: ð4:7Þ

Suppose J is such that RHS of (1.26) oN: Then each term is finite, so we can
separate the logs and infinite sums, and (4.6) becomes

RHS of ð1:26Þ for J ¼
Xc
j¼1

1
4

b2
j þ 1

2
GðajÞ

" #
þRHS of ð1:26Þ for JðcÞ

X

Xc
j¼0

1
4

b2
j þ 1

2
GðajÞ

since the right-hand side of (1.26) is always nonnegative. Taking c-N; we find

RHS of ð1:26ÞXLHS of ð1:26Þ: &
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5. Remarks

The ideas of this paper also provide a proof of Theorem 9.14 of [5] that when
J � J0 is trace class, we have that the Jost function uðz; JÞ has no singular inner
component. This proof avoids Lemma 9.13 and its several pages of argument (plus
the need to prove (2.50) of [5]).

For, as in [5], uðz; JÞ is a Nevanlinna function, so it has a factorization (1.26)

u ¼ B0O0S0: ð5:1Þ

Similarly, u1 
 uðz; Jð1ÞÞ has a factorization

u1 ¼ B1O1S1: ð5:2Þ

But the m-function obeys

a1MðzÞ ¼ zu1ðz; JÞ
u0ðz; JÞ :

Recognizing that B1=B0 is exactly the product zBþB� for the canonical product for
M and that this product has no singular part, we see that

S0 ¼ S1: ð5:3Þ

Let

un ¼ BnOnSn ð5:4Þ

be the Nevanlinna factorization for uðz; JðnÞÞ: Since J is trace class, Bn-1; and using
estimates from Section 2 of [5], un-1; On-1: It follows that Sn-1: But S0 ¼ S1 ¼
? ¼ Sn so S0 
 1: This theme will be further pursued in [1].

The second topic concerns analogs of Theorem 1.3 in the case of orthogonal

polynomials on the unit circle [2,4,9,12]. If dm ¼ wðyÞ
2p dyþ dms is a measure on @D;

wðyÞ is the analog of Im MðeiyÞ: Just as dm in the real line case is associated to a set of
Jacobi parameters, an40 and bnAR; dm in the circle case is associated to a sequence
fa0; a1; a2;yg of complex Verblunsky coefficients (also called Schur parameters or
reflection coefficients). There is a measure, dm1; associated with Verblunsky
coefficients fa1; a2;yg analogous to mJð1Þ in the real line case and a weight w1:
There is a natural analog of the M-function, viz., the Carathéodory function

FðzÞ ¼
Z

eiy þ z

eiy � z
dmðeiyÞ

and wðyÞ ¼ limrm1 Re FðreiyÞ:
Alas, there is nothing as simple as (3.9) and no sense in which boundary values of

jFðreiyÞj are related to wðyÞ=w1ðyÞ: F is simply not the proper analog of M for single-
step sum rules. Instead, the function that replaces a1M in the step-by-step sum rules
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for this case is

ðd0DÞðzÞ ¼ 1� a0 f

r0

1� z f1

1� z f
; ð5:5Þ

where f is the Schur function for dm; that is, F ¼ ð1þ z f Þ=ð1� z f Þ; f1 is the Schur

function of dm1; and r0 ¼ ð1� ja0j2Þ1=2: This d0D is an outer function and that
produces suitable step-by-step sum rules. The details will appear in [9].
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