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A diamagnetic inequality for
semigroup di¤erences
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Abstract. The diamagnetic inequality for the magnetic Schrödinger semigroup is
extended to the di¤erence of the semigroups of magnetic Schrödinger operators with Neu-
mann and Dirichlet boundary conditions on arbitrary open domains and rather general
magnetic vector potentials A and potentials V . In particular, this bound renders moot all
the technical issues in the recent proofs of the independence of the boundary conditions for
the integrated density of states for magnetic Schrödinger operators: Independence of the
boundary conditions for the free case, that is, for vanishing potentials and vector potentials,
immediately implies independence of the boundary conditions of the integrated density of
states for a large class of magnetic Schrödinger operators.

1. Introduction

Let HðA;VÞ ¼ ð�i‘� AÞ2 þ V be the magnetic Schrödinger operator with electric
potential V and magnetic vector potential A. The diamagnetic inequality of Simon [45],
[46] says that, under some rather general conditions on A and V , the bound

jðe�tHðA;VÞf ÞðxÞje ðe�tHð0;VÞj f jÞðxÞð1:1Þ

holds for all tf 0 and almost all x A Rd . In some sense this inequality shows that the
magnetic operator is dominated by the non-magnetic Schrödinger operator. The impor-
tance of this inequality was already noted in [2], [8]. Its strength lies in the fact that it is
valid for rather arbitrary vector potentials A and a large class of potentials V ; see [19], [51]
and [34] for further developments.

Our interest in the diamagnetic inequalities comes from the recent studies of the inte-
grated density of states (IDS) of magnetic Schrödinger operators, especially the proofs of
independence of the boundary conditions [14], [32], [21]. The integrated density of states is
a fundamental quantity in the theory and applications of random Schrödinger operators
[7], [23], [28], [37]. It is defined as follows: Let LHRd be an open (and bounded) set, for
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example, L ¼ LL ¼ ð�L;LÞd , and consider HLðA;VÞ, the restriction of HðA;VÞ to L2ðLÞ.
Of course, one has to consider boundary conditions in order to get a self-adjoint operator.
This is most conveniently done with the help of quadratic forms; see Section 2. Since L
is bounded, the spectrum of HLðA;VÞ has a good chance of being discrete (at least with
Dirichlet boundary conditions), in which case the eigenvalue distribution function

NLðlÞ ¼
1

jLjKfeigenvalues of HLðA;VÞe lg

is well-defined. The IDS is then given by the macroscopic, or infinite-volume, limit

NðlÞ ¼ lim
L!Rd

NLðlÞ;ð1:2Þ

where L ! Rd is usually interpreted as L ¼ LL ¼ ð�L;LÞd , L ! y, or, more generally,
in the sense of Fisher [16], [43]. We interpret the limit in (1.2) not in a pointwise sense, but
as vague convergence of the corresponding measures. For example, (1.2) holds at all con-
tinuity points of N, in particular, for almost all l. Basic questions are whether this limit
exists at all, is independent of the chosen boundary conditions, and, in case the potential V
is random, that is, given by realizations of some random field, is independent of the real-
izations of the random potential.

For vanishing magnetic vector potentials, these questions had been solved some time
ago [3], [7], [15], [23], [24], [33], [35], [36], [37]. For non-zero magnetic vector potentials, the
existence and non-randomness of the IDS are well-known [5], [31], [56]. However, unique-
ness has only recently been studied. Bounded potentials were considered in [32], extended
to non-negative potentials and arbitrary vector potentials A A L2

locðRd ;RdÞ in [14], and [21]
used the method of [37] and the a priori input from [14] to extend this to some random
potentials which are unbounded from below. All these results have somewhat technical and
complicated proofs.

The main point of this paper is to show that independence of the boundary condi-
tions of the IDS is a very natural property. In the free case, that is, for vanishing A and V ,
it was already known to Weyl [60], see also [41], Chapter XIII.15, and we will show that
the interacting system, for rather general vector potentials A and potentials V f 0, inherits
this property from the free case. Thus it is a geometrical property of (the sequence of ) the
domains L ! Rd .

To study the IDS for di¤erent boundary conditions, it is convenient, follow-
ing Avron-Simon [3], to look at their Laplace transforms. Let NK

L be the finite-
volume IDS for K ¼ N;D, Neumann, respectively Dirichlet boundary conditions and
LK

L ðtÞ ¼
Ð

e�tl dNK
L ðlÞ be its Laplace transform. By the usual Dirichlet-Neumann bracket-

ing,

ND
L ðlÞeNN

L ðlÞð1:3Þ

as long as NN
L is well-defined and consequently,

0eLD
L ðtÞeLN

L ðtÞ:
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Using the uniqueness theorem for Laplace transforms, it is enough to show that, for all
fixed t > 0,

lim
L!Rd

�
LN

L ðtÞ �LD
L ðtÞ

�
¼ 0:ð1:4Þ

Let LK
L; free be the Laplace transforms of the free IDS, that is, for vanishing electric

and vector potentials. From Weyl’s result, we know that

LN
L; freeðtÞ �LD

L; freeðtÞe
CðtÞ
jLj ðjqLj þ 1Þð1:5Þ

for a large class of domains L. Of course, here one has to interpret jqLj correctly,
which is not a problem for domains with nice enough boundaries; see also Remark 1.5(iv)
below, and one should keep in mind that, in our notation, the finite-volume IDS contains
the factor 1=L. If one had a bound of the form

LN
L ðtÞ �LD

L ðtÞeLN
L; free �LD

L; free;ð1:6Þ

then (1.5) would lead to the desired result (1.4), since the di¤erence on the left-hand side is
non-negative by Dirichlet-Neumann bracketing.

By the functional calculus, LK
l ðtÞ ¼ 1

jLj tr½e�tHK

L
ðA;VÞ�. Assume for the moment that

the diamagnetic inequality (1.1) also holds for the operators restricted to L2ðLÞ, at least for
Dirichlet and Neumann boundary conditions. Then some standard estimates on integral
kernels [49] imply that

tr½e�tHK

L
ðA;VÞ�e tr½e�tHK

L
ð0;VÞ�e tr½e�tHK

L
ð0;0Þ�

for K ¼ D or N. The last inequality holds as long as V f 0. In particular,
LK

L ðtÞeLK
L; freeðtÞ. From this point of view, the inequality (1.6) looks rather strange,

since it is in general not true that a� be jaj � jbj. However, as for the usual diamagnetic
inequality (1.1), there is a simple probabilistic heuristic for the inequality (1.6): Let b be the
usual Brownian motion process in Rd and T ¼ inffsf 0 : bs B Lg, the hitting time of the
complement of L. The Feynman-Kac-Itô formula for the Dirichlet semigroup e�tH D

L
ðA;VÞ

then reads

ðe�tH D
L
ðA;VÞf ÞðxÞ ¼ Ex½e

iI tðbÞ�
Ðt
0

VðbsÞ ds
1fT<tgðbÞ f ðbtÞ�:ð1:7Þ

Here Ex stands for integrating with respect to Brownian motion starting at x, 1A is the
indicator function of the set A, and I t is the line integral of A along Brownian paths. Since
Brownian paths are not of finite variation, this needs some interpretation; see, e.g., [49],
Chapters 14 and 15, [42], Chapter 6, and [6]. Usually one also has to impose some addi-
tional conditions on the divergence of A for this probabilistic approach. In any case, since

both I tðbÞ and
Ðt
0

VðbsÞ ds are real-valued random variables, the Feynman-Kac-Itô formula

together with the triangle inequality immediately implies (1.1). So from a probabilistic
point of view, the diamagnetic inequality is, at least for Dirichlet boundary conditions, just
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the triangle inequality for integrals. This point of view of the diamagnetic inequalities goes
back to Nelson; see [49], Chapter 15.

Assume for the moment that a Feynman-Kac-Itô type formula also holds for the
Neumann semigroup, that is,

ðe�tH N
L
ðA;VÞf ÞðxÞ ¼ ~EEx½e

iI tð~bbÞ�
Ðt
0

Vð~bbsÞ ds
f ð~bbtÞ�;ð1:8Þ

where ~bb is reflected Brownian motion. The magnetic phase I t and
Ðt
0

VðbsÞ ds depend only

locally on the paths. Moreover, one has bs ¼ ~bbs for se t and paths in fT e tg, since, at
least morally, reflected Brownian motion up to the stopping time T has not reached the
boundary and hence is not reflected, yet. Accordingly, we can extend the integration in
(1.7) to all reflected paths ~bb and, subtracting it from (1.8), one gets

jðe�tH N
L
ðA;VÞ � e�tH D

L
ðA;VÞÞ f ðxÞj ¼

��~EEx�e iI tð~bbÞ�
Ðt
0

Vð~bbsÞ ds�
1 � 1fT<tgð~bbÞ

�
f ð~bbtÞ

���ð1:9Þ

e ~EEx
�
e
�
Ðt
0

Vð~bbsÞ ds�
1 � 1fT<tgð~bbÞ

�
j f ð~bbtÞj

�

¼ ðe�tH N
L
ð0;VÞ � e�tH D

L
ð0;VÞÞj f jðxÞ;

since 1 � 1fT<tg ¼ 1fTftg f 0. Arguing the same way, one also sees

jðe�tH N
L
ð0;VÞ � e�tH D

L
ð0;VÞÞ f ðxÞje ðe�tH N

L
ð0;0Þ � e�tH D

L
ð0;0ÞÞj f jðxÞð1:10Þ

for all non-negative potentials V . Taking traces, (1.9) and (1.10) imply (1.6), at least on a
formal level. Hence, independence of the boundary conditions of the integrated states
should follow from the free case.

The catch in the above argument is that we do not know whether a Feynman-Kac-Itô
type formula holds for the Neumann case. Although this is conceivably the case, it will
pose strong restrictions on the domain L. It is well-known that Neumann boundary con-
ditions are a tricky business and even the free Neumann operator on bounded domains can
have some surprising spectral properties, like non-trivial essential spectrum or even non-
trivial ‘‘scattering’’ asymptotics [12], [18], [52]. In particular, reflected Brownian motion
will exist only for nice enough domains [55], [61], [62]. Moreover, some restrictions on L
will already have to be imposed in order that the finite-volume IDS, NN

L , is well defined,
see Remark 1.5(ii), but we do not want to impose these restrictions from the beginning in
the proof of the diamagnetic inequalities. So instead, we use the probabilistic heuristic as
a guiding principle for the right kind of inequality to be proven, that is, (1.9) and (1.10),
and will give an analytic proof for them. Moreover, it is conceivable that a probabilistic
approach will also need some regularity assumptions on A near the boundary of L,
whereas the analytic approach we propose will only need L open and A A L2

locðL;RdÞ, a
condition which is already very convenient for the definition of the operators HN

L ðA;VÞ
and HD

L ðA;VÞ via quadratic forms, see Section 2, and thus poses no further restriction on
the class of vector potentials to be considered. As a bonus, we obtain a new proof of the
normal diamagnetic inequalities which is ‘‘form theoretic’’ rather than the operator theo-
retic proof of Simon [46], [51].
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The main result of this paper is given by the following two theorems:

Theorem 1.1. Let LHRd be open, A A L2
locðL;RdÞ, and V ¼ Vþ � V� with VGf 0

and Vþ A L1
locðLÞ, V� relatively form bounded w.r.t. HN

L ð0; 0Þ. Then, for all f A L2ðLÞ and
almost all x A L,

je�tH N
L
ðA;VÞf ðxÞje e�tH N

L
ð0;VÞj f jðxÞe e�tH N

L
ð0;�V�Þj f jðxÞ:

Remarks 1.2. (i) Given the discussion above, this result is certainly to be expected,
but, maybe somewhat surprisingly, no regularity assumptions on A and Vþ are made close
to the boundary of L. Also, since L is an arbitrary open set, its boundary can be quite wild.
Following the approach in [50], a weaker version of the first inequality is proven in [20]
under the condition that A and the positive part of the potential Vþ are restrictions of a
vector potential in L2

locðRd ;RdÞ and a potential in L1
locðRdÞ.

(ii) Choosing for f an approximate delta-function, Theorem 1.1 implies the bound

je�tH N
L
ðA;VÞðx; yÞje e�tH N

L
ð0;VÞðx; yÞ for almost all ðx; yÞ A L�L for the integral kernel of

the Neumann semigroup (as long as it exists).

(iii) Of course, the analogous result for Dirichlet boundary conditions also holds.

The second theorem shows that the probabilistic heuristic, suggesting a diamagnetic
inequality for the di¤erence of the Neumann and Dirichlet semigroup, is, indeed, correct.

Theorem 1.3. Let LHRd be open, A A L2
locðL;RdÞ, and V ¼ Vþ � V� with VGf 0

and Vþ A L1
locðLÞ, V� relatively form bounded w.r.t. HN

L ð0; 0Þ. Then

jðe�tH N
L
ðA;VÞ � e�tH D

L
ðA;VÞÞ f ðxÞje ðe�tH N

L
ð0;VÞ � e�tH D

L
ð0;VÞÞj f jðxÞ

e ðe�tH N
L
ð0;�V�Þ � e�tH D

L
ð0;�V�ÞÞj f jðxÞ

for all f A L2ðLÞ and almost all x A L.

Recall that an open set L has the extension property if, with W 1;pðLÞ denoting the
usual Sobolev space, there exists a bounded extension operator E : W 1;pðLÞ ! W 1;pðRdÞ
for all 1e p < y. If L has the extension property, then it is known that the free Neumann
semigroup e�tH N

L
ð0;0Þ is an integral operator, see [11], Theorem 2.4.4. If, moreover, L is also

bounded, then e�tH N
L
ð0;0Þ is a trace class operator for all t > 0; see Remarks 1.5(ii) and

1.5(iii) below. An immediate corollary of the two theorems above is given by

Corollary 1.4. Let L be a bounded set having the extension property.

(i) For any t > 0, e�tH N
L
ðA;VÞ is a trace class operator for arbitrary vector potentials

A A L2
locðL;RdÞ, and potentials V ¼ Vþ � V� with VGf 0, Vþ A L1

locðLÞ, and V� form small

with respect to HN
L ð0; 0Þ. Moreover,

trL2ðLÞ½e�tH N
L
ðA;VÞ�e trL2ðLÞ½e�tH N

L
ð0;VÞ�e trL2ðLÞ½e�tH N

L
ð0;�V�Þ�

for all t > 0.
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(ii) The bounds

0e trL2ðLÞ½e�tH N
L
ðA;VÞ � e�tH D

L
ðA;VÞ�e trL2ðLÞ½e�tH N

L
ð0;VÞ � e�tH D

L
ð0;VÞ�

e trL2ðLÞ½e�tH N
L
ð0;�V�Þ � e�tH D

L
ð0;�V�Þ�

hold for all A A L2
locðL;RdÞ.

The proof of this corollary is given at the end of Section 3.

Remarks 1.5. (i) For the free Dirichlet semigroup e�tH D
L
ð0;0Þ to be trace class for

t > 0, it is enough that L is bounded, see [41], Theorem XIII.76. The analog of Corollary
1.4(i) holds for the Dirichlet semigroup assuming only boundedness of L.

(ii) Any bounded convex domain and every bounded domain with a piecewise smooth
boundary has the extension property. In general, a domain which is ‘‘minimally smooth’’
will have the extension property; see [44], page 189, for the precise conditions. The discus-
sion in [11], Chapters 1 and 2, also shows that if L is bounded and has the extension prop-
erty, then the spectrum of HN

L ð0; 0Þ is discrete, since HN
L ð0; 0Þ can be compared with the

Dirichlet Laplacian on a large enough ball containing L. For that reason, one knows also
that the eigenvalues of HN

L ð0; 0Þ go to infinity fast enough such that e�tH N
L
ð0;0Þ is a trace

class operator. In particular, for these domains, the spectrum of HN
L ð0; 0Þ and of HN

L ðA;VÞ
is discrete. Thus the finite-volume IDS for Neumann boundary conditions, NN

L , is well-
defined.

(iii) By the semigroup property, e�tH N
L
ð0;0Þ is a trace class operator for all t > 0 as

soon as it is in some von Neumann-Schatten ideal Ip for all small enough t > 0 and some
finite p. It seems conceivable that, by mimicking the rooms-and-passages construction in
[18], one could construct a bounded open set L, necessarily not having the extension
property, such that for some t0 > 0, e�t0H

N
L
ð0;0Þ is compact but not in any von Neumann-

Schatten ideal for finite p.

(iv) Corollary 1.4 shows that for non-negative (or, more generally, bounded below)
potentials and arbitrary vector potentials, the IDS is independent of the boundary con-
ditions as soon as this is true for the free case. If the sequence of domains is given by boxes,
L ¼ f�Lj=2 < xj < Lj=2; j ¼ 1; . . . ; dg, this again can be seen rather naturally by proba-
bilistic methods. With the help of the method of images, one can give an explicit expression
for e�tH N

L
ð0;0Þ in terms of a Feynman-Kac formula, see [4], Example 6.3.11, and [24]. Using

this, one can easily show that for any e > 0 and with qLe ¼ fx A L j distðx;LcÞe eg,

tr½e�tH N
L
ð0;0Þ � e�tH D

L
ð0;0Þ�eCtðjqLej þ e�e2=ð2tÞjLjÞ;

as was already noticed in [35]. Thus a suitably modified version of (1.5) holds. Hence, for
sequences L ! Rd of boxes (for which one always has jqLej=jLj ! 0 for fixed e > 0), the
IDS is independent of the boundary conditions used in its definition for arbitrary vector
potentials A and non-negative potentials V .

(v) Using the methods of [15], [24] or [37], one can extend this result to certain not
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necessarily non-negative potentials V . The most general result in this direction is in [21],
which uses the a priori information that the IDS is independent of the boundary con-
ditions for non-negative potentials, or equivalently, potentials which are bounded from
below. In particular, it is shown that for Rd -ergodic random potentials, the IDS is inde-
pendent of the boundary conditions as soon as E

��
Voð0Þ

�p
�
�
< y for some p > d þ 1. A

straightforward modification of the result in [25], see also [23], Theorem 1 in Section 5,
shows that for di¤erentiable vector potentials A, the random magnetic Schrödinger opera-
tor ð�i‘þ AÞ2 þ Vo is almost surely self-adjoint on Cy

0 ðRdÞ as long as p > d. This leaves
open the question of uniqueness of the IDS for d < pe d þ 1. We are convinced that
uniqueness holds as soon as one has essential self-adjointness, that is, one should have
uniqueness for p > d.

The organization of the paper is as follows: In Section 2 we give the construction of
the magnetic Schrödinger operator on arbitrary open domains with Neumann and Dirich-
let boundary conditions and gather some technical tools. Theorems 1.1 and 1.3 are proven
in Section 3. In the probabilistic heuristics given above, the main observation was that the
diamagnetic inequality for the di¤erence of semigroups follows from the Feynman-Kac-Itô
representation (1.8). In our analytic proof, this is replaced by the diamagnetic inequality for
the Neumann semigroup: Modulo some approximation arguments, Theorem 1.3 is a cor-
ollary of Theorem 1.1; we first prove a result similar to that in Theorem 1.3 for the di¤er-
ence of two Neumann semigroups whose generators di¤er by a positive potential, see
Lemma 3.5, and then use an approximation argument to recover Dirichlet from Neumann
boundary conditions. The main tool for the proof of Theorem 1.1 is given in Lemma 3.1.
For the convenience of the reader, we present the approximation theorem needed in the
proof of Theorem 1.3 in the appendix.

2. Some preliminaries

We begin with some general preliminaries. Even without magnetic vector potentials,
restricting the Laplacian to an open subset poses the problem of introducing the right
boundary conditions for which the restriction is realized by a self-adjoint operator. This is
most conveniently done with the help of quadratic forms. It turns out that introducing a
magnetic vector potential poses no real di‰culty, except some notational e¤ort.

Let LHRd be an open set. For 1e pey, we let LpðLÞ ¼ LpðL;CÞ be the usual
Lebesgue spaces of complex-valued functions whose p th power is integrable, and L

p
locðLÞ be

the space of (measurable) functions f : L ! C for which f 1K A LpðLÞ for all compact sub-
sets KHL. Here 1K denotes the indicator function of the set K . Furthermore, for K being
either R or C, the spaces LpðL;KdÞ, respectively L

p
locðL;KdÞ, are the Lebesgue spaces of

functions f : L ! Kd whose coordinate functions fj : L ! K are in LpðLÞ, respectively
L

p
locðLÞ. For non-negative functions f and g, we write f k g if, for some constant C > 0,

one has f eCg.

We write Cy
0 ðLÞ for the infinitely often di¤erentiable functions with compact support

in L. Like the usual gradient, for a magnetic vector potential A A L2
locðLÞ, the magnetic

gradient DA ¼ ‘� iA is a closable operator on Cy
0 ðLÞ; more precisely, its components

DA; j ¼
q

qxj
� iAj are closable since they are anti-symmetric operators with respect to the
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standard scalar product h f ; gi ¼
Ð
L

f g dx on L2ðLÞ, that is, hj;DA; jci ¼ h�DA; jj;ci for

all j;c A DðDAÞ and j ¼ 1; . . . ; d. By slight abuse of notation, we will use DA; j to
denote this closure. The magnetic Sobolev space H 1

A;0ðLÞ ð¼ W 1;2
A;0ðLÞÞ is then given

by H 1
A;0ðLÞ :¼

Td
j¼1

DðDA; jÞ, which, for A ¼ 0, reduces to the well-known Sobolev space

H 1
0 ðLÞ ¼ W

1;2
0 ðLÞ. The operator HD

L ðA; 0Þ is defined as the unique operator associated
with the closed, non-negative symmetric quadratic form

hD
LðA; 0Þðj;cÞ :¼

Pd
j¼1

hDA; jj;DA; jcið2:1Þ

with form domain D
�
hD
LðA; 0Þ

�
:¼ H 1

A;0ðLÞ. This gives the well-known construction for the

Dirichlet Laplacian HD
L ð0; 0Þ ¼ �DD

L for vanishing magnetic vector potentials.

For the Neumann boundary conditions, we need the maximal magnetic gradient,
which is the magnetic analog of the maximal gradient. Since DA; j is an anti-symmetric opera-
tor, a natural closed extension is given by the negative of its adjoint, DA;max; j ¼ �ðDA; jÞ�,
for j ¼ 1; . . . ; d. That is,

Ð
L

jDA;max; j f dx :¼ �
Ð
L

DA; jj f dxð2:2Þ

for all j A Cy
0 ðLÞHDðDAÞ. The domain of DA;max is given by

H 1
AðLÞ1DðDA;maxÞ :¼

Td
j¼1

DðDA;max; jÞ

with

DðDA;max; jÞ ¼ DðD�
A; jÞ ¼ f f A L2ðLÞ j there exists hf A L2ðLÞ such that

h�DA; jj; f i ¼ hj; hf i for all j A Cy
0 ðLÞg

¼ f f A L2ðLÞ j qj f A L1
locðLÞ;Aj f A L1

locðLÞ

with qj f � iAj f A L2ðLÞg;

where the partial derivative qj f is in the weak sense. D0;max is the well-known max-
imal (or distributional) gradient ‘max. Since A A L2

locðL;RdÞ, by assumption, we have
Af A L1

locðL;CdÞ for all f A L2ðLÞ. Thus,

H 1
AðLÞ ¼ f f A L2ðLÞXW 1;1

loc ðLÞ jDA;max f A L2ðL;CdÞgHL2ðLÞXW 1;1
loc ðLÞ:

Here W
1;1
loc ðLÞ ¼ f f A L1

locðLÞ j‘max f A L1
locðLÞg. Thus, in general, one only knows that

‘max f A L1
locðLÞ for f A DðDA;maxÞ, which is the main reason for some of the technical

di‰culties with magnetic Schrödinger operators.

The Neumann quadratic form is given by the closed, non-negative, symmetric form
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hN
L ðA; 0Þðj;cÞ :¼

Pd
j¼1

hDA;max; jðjÞ;DA;max; jðcÞið2:3Þ

with domain D
�
hN
L ðA; 0Þ

�
:¼ H 1

AðLÞ. Again, it uniquely defines the Neumann magnetic
Laplacian HN

L ðA; 0Þ, which reduces to �DN
L for A ¼ 0.

Remark 2.1. Let K be a boundary condition which leads to a quadratic form
which is sandwiched between the Dirichlet and Neumann forms, that is, for which
D
�
hD
LðA; 0Þ

�
HD

�
hKLðA; 0Þ

�
HD

�
hN
L ðA; 0Þ

�
and hN

L ðA; 0Þ½j; j�e hKLðA; 0Þ½j; j� for all

j A DðhKL½A; 0�Þ together with hKLðA; 0Þ½j; j�e hD
L ðA; 0Þ½j; j� for all j A DðhD

L ½A; 0�Þ
holds. For such a boundary condition, the min-max principle gives the bound
ND
L ðlÞeNK

L ðlÞeNN
L ðlÞ for the finite volume IDS NK and consequently

LD
L ðtÞeLK

L ðtÞeLN
L ðtÞ for the Laplace transforms. Thus, for this type of boundary

conditions, the finite-volume IDS NK
L is well-defined as soon as this is the case for Neu-

mann boundary conditions and its infinite volume limit will not depend on the chosen
boundary condition as soon as the infinite volume limits constructed with the help of the
Neumann and Dirichlet boundary conditions are the same. However, one should note that
there are self-adjoint extensions of ð�i‘þ AÞ2 on finite domains, which have associated
quadratic forms not comparable to the Dirichlet or Neumann form even for vanishing
magnetic vector potential.

To include an electric potential V A L1
locðLÞ, first assume that it is non-negative.

Then, by setting v½j;c� ¼ h
ffiffiffiffi
V

p
j;

ffiffiffiffi
V

p
ci, V can be seen as a closed quadratic form with

domain QðVÞ ¼ Dð
ffiffiffiffi
V

p
Þ which includes Cy

0 ðLÞ. Hence, QðVÞXD
�
hKLðA; 0Þ

�
is dense in

L2ðLÞ and

hKL½A;V �ðj;cÞ :¼ hKL½A; 0�ðj;cÞ þ h
ffiffiffiffi
V

p
j;

ffiffiffiffi
V

p
ci

on DðhKL½A;V �Þ :¼ DðhKL½A; 0�ÞXDð
ffiffiffiffi
V

p
Þ are closed, densely defined quadratic forms,

generating the magnetic Schrödinger operators HK
L ðA;VÞ with Dirichlet, K ¼ D, or Neu-

mann, K ¼ N, boundary conditions.

If the potential is not necessarily non-negative, write V as V ¼ Vþ � V� with
VG :¼ supð0;GVÞ. Assuming Vþ A L1

locðLÞ and V� form small with respect to hKL½A;Vþ�,
hj;V�jie aKh

K½A;Vþ�ðj; jÞ þ bhj; ji for some 0e aK < 1 and 0e b < y, the KLMN
theorem, see, e.g., [40], shows that the form sum

hKL½A;V �ðj;cÞ :¼ hK½A;Vþ�ðj;cÞ � h
ffiffiffiffiffiffi
V�

p
j;

ffiffiffiffiffiffi
V�

p
ci

defines a closed quadratic form which is bounded from below. It again uniquely defines a
self-adjoint magnetic Schrödinger operator HK

L ðA;VÞ.

Remarks 2.2. (i) Since hD
LðA;VþÞ is the restriction of hN

L ðA;VþÞ to H 1
A;0ðLÞXQðVþÞ,

any potential V� which is form small with respect to the Neumann form is also form small
with respect to hD

L ½A;Vþ�.

(ii) As a consequence of the diamagnetic inequality in Theorem 3.3, any potential
which is form small with respect to hK½0;Vþ� with relative bound aK, for K ¼ D or N, is
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also form small with respect to hK½A;Vþ� with relative bound ~aaKe aK for any magnetic
vector potential A A L2

locðL;RdÞ.

(iii) The conditions we impose on the potential are not the weakest possible, but are
general enough to cover all cases of interest for the applications we have in mind. It is
possible to study a larger class of positive perturbations. Without magnetic vector poten-
tials, this has been extensively studied in [53], [54], [57], [58]. For example, the condition
Vþ A L1

locðLÞ can be replaced by the assumption of regularity, that is, QðVþÞXD
�
hKLðA; 0Þ

�
is dense in L2ðLÞ. This allows for somewhat strong local singularities in Vþ, [54]. More
general magnetic vector potentials, relaxing the condition A2 A L1

locðRdÞ somewhat in the
spirit of [57], [58], were discussed in [29].

Our main tool for the diamagnetic inequality is Lemma 3.1 below. We collect some
preparatory technical tools first.

Lemma 2.3. (i) If f ; g A W 1;1
loc ðLÞ with f‘maxg and g‘max f A L1

locðLÞ, then

fg A W
1;1
loc ðLÞ and the product rule

‘maxð fgÞ ¼ f‘maxgþ g‘max f

holds.

(ii) If u A W
1;1
loc ðLÞ is real valued with uf e > 0, then

1

u
A W

1;1
loc ðLÞ and

‘max
1

u
¼ �‘maxu

u2
:

Remark 2.4. Part (i) of this lemma already appeared in [30], Hilfssatz 14.1. The usual

formulation of this result requires f A W
1;p
loc ðLÞ and g A W

1;p 0

loc ðLÞ with 1=pþ 1=p 0 ¼ 1. It
will be very convenient to have it formulated in this generality for the proof of Lemma 2.5
below.

Proof. Since the conclusions of the lemma are local, it is enough to fix some com-
pact subset KHL and to prove the result for almost all x A K . Let jd be an approximate
delta function with suppð jdÞ A Bd ¼ fkxk < dg. We extend all functions to Rd by setting
them to zero on Lc. Thus, for any f A L1

locðLÞ, the convolution fd ¼ jd � f is well-defined.
Moreover, for small enough d, udðxÞf e for all x A K.

To prove part (ii), note that for the smoothed function ud, the conclusion of the
lemma is immediate. Now take d ! 0 along a subsequence chosen such that the individual
terms converge almost everywhere and use the definition of the weak derivative.

To prove part (i), first assume that f ; g are bounded. Then k fdky e k f ky and
the same for g. Again choose a subsequence dn ! 0 such that individual terms con-
verge almost everywhere in L. Writing ‘ for ‘max and using dominated convergence,
k fdn‘gdn � f‘gkL1ðLÞe k f kyk‘gdn � ‘gk þ kð fdn � f Þ‘gkL1ðLÞ ! 0 as dn ! 0. Similarly,

gdn‘fdn ! g‘f and fdngdn ! fg as dn ! 0. Since ‘ð fdgdÞ ¼ gd‘fd þ fd‘gd, by the usual
product rule, we see that fg A W 1;1ðLÞ and ‘ð fgÞ ¼ g‘f þ f‘g in the limit dn ! 0. Now
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assume f and g real-valued, but not necessarily bounded. Put fn ¼ 1fj f jeng f and similarly
for g. By the usual arguments in the theory of Sobolev spaces, see, e.g., [17], Lemma 7.6, we
have fn; gn A W 1;1ðLÞ with ‘fn ¼ 1fj f jeng‘f and ‘gn ¼ 1fjgjeng‘g. Thus fngn A W 1;1ðLÞ
with ‘ð fngnÞ ¼ gn1fj f jeng‘f þ fn1fjgjeng‘g. Letting n ! y, using dominated convergence,
gives the claim. For f and g complex-valued the result follows by writing them as a sum of
their real and imaginary parts. r

Following Kato [22], for each e > 0 and u : L ! C measurable, let

ue :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
juj2 þ e2

q
f e and se :¼ u=juje.

Furthermore, set sðxÞ :¼ uðxÞ=juðxÞj where uðxÞ3 0 and sðxÞ ¼ 0 whenever uðxÞ ¼ 0. Then
seðxÞ ! sðxÞ for all x as e ! 0.

Lemma 2.5. Let u A W 1;1
loc ðLÞ. Then:

(i) juj; ue A W
1;1
loc ðLÞ for all e > 0 with ‘maxue ¼ Reðse‘maxuÞ and

‘maxjuj ¼ Reðs‘maxuÞ:

(ii) For all e > 0, se A W 1;1
loc ðLÞ with

‘maxse ¼
‘maxu� se‘maxue

ue
:

(iii) If j A W 1;1
loc ðLÞ with jjjk 1 þ juj, then sej A W 1;1

loc ðLÞ for all e > 0 and

‘maxðsejÞ ¼ j
‘maxu� se‘maxue

ue
þ se‘maxj:

Moreover, assume A A L2
locðL;RdÞ and u A H 1

AðLÞ ð¼ DðDA;maxÞÞ. Then:

(iv) juj; ue A H 1
AðLÞ for all e > 0 with j‘maxueje jDA;maxuj and

��‘maxjuj
��e jDA;maxuj.

(v) If j A H 1
AðLÞ with jjjk 1 þ juj, we have sej A H 1

AðLÞ for all e > 0 and

DA;maxðsejÞ ¼ j
DA;maxu� se‘maxue

ue
þ se‘maxj:

Proof. For simplicity, we will again write ‘ for ‘max and DA for DA;max. The basic
strategy of the proof of (i) is well-known, see [22], [40]. The map R2 C ðs; tÞ !

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ t2 þ e2

p

is di¤erentiable and the chain rule for Sobolev spaces, [17], Lemma 7.5, shows that
ue A W

1;1
loc ðLÞ. Using the same reduction argument as in the proof of Lemma 2.3(ii), we can

assume that u is bounded. Then u‘maxu A L1
locðLÞ, and since u2

e ¼ uuþ e2, Lemma 2.3(i)
implies that u2

e A W 1;1
loc ðLÞ with ‘u2

e ¼ 2ue‘ue ¼ 2 Reðu‘uÞ. Hence ‘ue ¼ Reðse‘uÞ for all
e > 0. The result for juj follows by taking the limit e ! 0, using the definition of the weak
derivative and dominated convergence.

Once part (i) of the lemma holds, (iv) is an immediate consequence, since

H 1
AðLÞHW

1;1
loc ðLÞ and ReðseDAuÞ ¼ Reðse‘uÞ for all e > 0.
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By Lemma 2.3(ii) and part (i) above, we have
1

ue
A W

1;1
loc ðLÞ. Since u

‘ue

u2
e

and
‘u

ue
are

locally integrable, Lemma 2.3(i) shows se ¼ u=ue A W
1;1
loc ðLÞ and

‘se ¼ ‘ u
1

ue

� �
¼ ‘u

ue
� u

‘ue

u2
e

¼ ‘u� se‘ue

ue

which proves (ii).

(iii) Since se is bounded, se‘j A L1
locðLÞ. By assumption, j=ue is also bounded. Hence,

with part (ii), j‘se A L1
locðLÞ and consequently, using Lemma 2.3(i) again, we see that

sej A W 1;1
loc ðLÞ with

‘ðsejÞ ¼ j
‘u� se‘ue

ue
þ se‘j:

Part (v) follows from this, by adding �i
j

ue
Au to the above equation. r

3. The diamagnetic inequalities

Lemma 3.1. Let A A L2
locðL;RdÞ and jf 0, j A Dð‘maxÞ, u A DðDA;maxÞ with

jk 1 þ juj. Then sej A DðDA;maxÞ and the pointwise inequality

Re
�
DA;maxðsejÞ �DA;maxðuÞ

�
f jsej‘maxj � ‘maxjuj

holds for all e > 0.

Remark 3.2. A similar inequality to the one given in Lemma 3.1, more precisely its
e ¼ 0 limit, has already been used in [27], proof of Lemma 6, for L ¼ Rd and in [13] to
prove a diamagnetic inequality for the Dirichlet operator on open subsets LHRd . There it
is enough to consider j; u A Cy

0 , which simplifies some calculations.

Proof. That sej A DðDA;maxÞ follows from Lemma 2.5(iv). We claim

Re
�
DA;maxðsejÞ �DA;maxðuÞ

�
¼ j

jDA;maxuj2 � j‘maxuej2

ue
þ jsej‘maxj � ‘maxjujð3:1Þ

from which the inequality in the lemma follows, since jf 0 and j‘maxueje jDA;maxuj by
Lemma 2.5(iv). Using Lemma 2.5(v) gives

Re
�
DA;maxðsejÞ �DA;maxðuÞ

�
¼ j

jDA;maxuj2 � ‘maxue ReðseDA;maxuÞ
ue

þ ‘maxjReðseDA;maxuÞ

¼ j
jDA;maxuj2 � j‘maxuej2

ue
þ ‘maxj‘maxue
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where we also used Lemma 2.5(i). From the above equality, (3.1) follows, since

‘maxue ¼
1

ue
‘maxu

2
e ¼ 1

ue
‘maxjuj2 ¼ juj

ue
‘maxjuj ¼ jsej‘juj: r

Theorem 3.3 (Slight generalization of Theorem 1.1). Let LHRd be open,
A A L2

locðL;RdÞ, and 0eV A L1
locðLÞ. Then, for all tf 0 and f A L2ðLÞ,

je�tH N
L
ðA;VÞf je e�tH N

L
ð0;VÞj f j

and

je�tH N
L
ð0;VÞf je e�tH N

L
ð0;0Þj f j:

Moreover, if V ¼ Vþ � V� with VGf 0 and Vþ A L1
locðLÞ, then V� relatively form bounded

w.r.t. HN
L ð0; 0Þ with relative bound a < 1 implies that V� is relatively form bounded w.r.t.

HN
L ðA; 0Þ with relative bound ~aae a < 1. Moreover, the two bounds

je�tH N
L
ðA;VÞf je e�tH N

L
ð0;VÞj f j

and

je�tH N
L
ð0;VÞf je e�tH N

L
ð0; ~VVÞj f j

hold for all f A L2ðLÞ and all potentials ~VV eV for which ~VV� is form small with respect to

HN
L ð0; 0Þ.

Remarks 3.4. (i) The same result holds for the Dirichlet semigroup, that is,
je�tH D

L
ðA;VÞf je e�tH D

L
ð0;VÞj f je e�tH D

L
ð0; ~VVÞj f j. For example, see [6] where this is proven

under slightly more restrictive conditions on the vector potential A using the Feynman-
Kac-Itô formula. With (3.11) below, the Dirichlet case is an immediate corollary of the
result for Neumann boundary conditions.

(ii) What we call diamagnetic inequality is often rephrased by semigroup people
saying the magnetic semigroup is dominated by the non-magnetic one. In this direction one
can find, e.g., in [29], [30], more general (as far as the singularities of V and A are con-
cerned) diamagnetic inequalities for the Dirichlet semigroup.

(iii) The other proofs of the diamagnetic inequality mainly use the e ¼ 0 limit of
Lemma 3.1 or similar bounds; see [27], [13], [29], [34]. This forces one to assume jk juj.
We deviate from this line of reasoning by trying to take the limit e ! 0 as late as possible in
the proof.

Proof. We start with the following well-known remark: Let A;B be self-adjoint
operators which are bounded from below. Then the bounds

je�tBf je e�tAj f jð3:2Þ

Hundertmark and Simon, Diamagnetic inequality 119



for all f and tf 0, and

jðBþ EÞ�n
f je ðAþ EÞ�nj f jð3:3Þ

for all f ; n A N, and E > 0 large enough, are equivalent. This follows from the representa-
tions

e�tB ¼ s-lim
n!y

ðn=tÞðBþ n=tÞ�n

and

ðBþ EÞ�a ¼ ca
Ðy
0

ta�1e�tðBþEÞ dt

with c�1
a ¼

Ðy
0

ta�1e�t dt. In particular, once (3.3) holds for n A N, it holds for all n A ð0;yÞ.

As a final preliminary, we note that for V ¼ Vþ � V� with 0eVþ A L1
loc and V� form

small with respect to hN
L ð0;VþÞ, the first Beurling-Deny criterion implies that the resolv-

ent
�
HN

L ð0;VÞ þ E
��1

is positivity preserving for large enough E > 0. Similarly, the sec-
ond Beurling-Deny criterion shows that, for non-negative V A L1

locðLÞ,
�
HN

L ð0;VÞ þ E
��1

maps bounded functions to bounded functions with
		�HN

L ð0;VÞ þ E
��1

f
		
y
e

1

E
k f ky;

see, e.g., [41], Theorems XIII.50, XIII.51, and problem 99. If V is merely bounded from
below, the analogous result holds for E > �inf V .

In the following we will always assume that A A L2
locðL;RdÞ. For the moment, we

also assume that V ¼ 0. Note that seu ¼ jsej juj. Let E > 0. With Lemma 3.1, we get

hjsej‘maxj;‘maxjujiþ Ehjsejj; uieRe
�
ðhN

L ½A; 0� þ EÞ½sej; u�
�

ð3:4Þ

e jðhN
L ½A; 0� þ EÞ½sej; u�jð3:5Þ

for any bounded, non-negative j A Dð‘maxÞ and all e > 0. Now write

u ¼
�
HN

L ðA; 0Þ þ E
��1

f for some f A L2ðLÞ:

Then (3.5) becomes

hjsej‘maxj;‘maxjujiþ Ehjsejj; uie jhsej; f ije hj; j f ji:ð3:6Þ

Since ‘juj ¼ 0 on fu ¼ 0g by Lemma 2.5(i), we have that jsej‘juj tends to ‘juj in L2ðLÞ as
e ! 0. So taking e ! 0 in (3.6) gives

�
hN
L ð0; 0Þ þ E

�
½j; juj�e hj; j f ji:ð3:7Þ

Setting j ¼
�
HN

L ð0; 0Þ þ E
��1

c for c A L2ðLÞ non-negative and bounded preserves non-
negativity and boundedness of j by the second remark at the beginning of the proof. Thus
(3.7) gives
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c;

���HN
L ðA; 0Þ þ E

��1
f
���e 
�

HN
L ð0; 0Þ þ E

��1
c; j f j

�

¼


c;

�
HN

L ð0; 0Þ þ E
��1j f j

�

for all bounded 0ec A L2ðLÞ and all f A L2ðLÞ, which is equivalent to

���HN
L ðA; 0Þ þ E

��1
f
��e �

HN
L ð0; 0Þ þ E

��1j f j

for all E > 0. Iterating the last inequality, we get

���HN
L ðA; 0Þ þ E

��n
f
��e �

HN
L ð0; 0Þ þ E

��nj f j

for all n A N, which is the diamagnetic inequality for resolvents. By the first remark at the
beginning of the proof, the inequality

je�tH N
L
ðA;0Þf je e�tH N

L
ð0;0Þj f j for all tf 0; f A L2ðLÞð3:8Þ

follows.

Now let V f 0 and add hsej;Vui ¼ hjsejj;V jujif 0 to both sides of (3.4). Setting

u ¼
�
HN

L ðA;VÞ þ E
��1

f , we get

hjsej‘maxj;‘maxjujiþ hjsejj; ðV þ EÞuie jðhN
L ½A;V � þ EÞ½se; u�j

e jhsej; f ije hj; j f ji

for all 0e j A Dð‘ÞXQðVÞ. Again, if c is non-negative and bounded, so is

j ¼
�
HN

L ð0;VÞ þ E
��1

c. In turn, we can do the limit e ! 0 to get



c;

���HN
L ðA;VÞ þ E

��1
f
���e 


c;
�
HN

L ð0;VÞ þ E
��1j f j

�

which leads to

���HN
L ðA;VÞ þ E

��n
f
��e �

HN
L ð0;VÞ þ E

��nj f j

for all n A N and f A L2ðLÞ, and

je�tH N
L
ðA;VÞf je e�tH N

L
ð0;VÞj f j for all tf 0; f A L2ðLÞ:ð3:9Þ

Now consider the special case A ¼ 0 and add hsej;Vui ¼ hjsejj;V jujif 0 only to the
right-hand side of (3.4). Making the obvious changes in the above argument leads to the
bound

���HN
L ð0;VÞ þ E

��n
f
��e �

HN
L ð0; 0Þ þ E

��nj f j

for all n A N, or equivalently,

je�tH N
L
ð0;VÞf je e�tH N

L
ð0;0Þj f j
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for all f A L2ðLÞ. Combining this with (3.9) proves

je�tH N
L
ðA;VÞf je e�tH N

L
ð0;0Þj f j

or equivalently,

���HN
L ðA;VÞ þ E

��a
f
��e �

HN
L ð0; 0Þ þ E

��aj f j

for all a > 0, non-negative V A L1
locðLÞ, and f A L2ðLÞ. This proves the first and second

inequalities in the theorem. Of course, by adding a constant, one sees that the results
remain true if V is merely bounded from below.

The fact that V� relatively HN
L ð0; 0Þ-form bounded with bound a implies that it is

relatively Hn
l ðA; 0Þ-form bounded with bound ~aae a follows immediately from the dia-

magnetic inequality for the resolvent and the formula

a ¼ lim
E!y

kðHN
L þ EÞ�1=2

V�ðHN
L þ EÞ�1=2k

for the relative form bound a, see, e.g., [9].

Now assume that V ¼ Vþ � V� with V� not necessarily bounded but form small
with respect to HN

L ðA; 0Þ and the same for ~VV eV . For n A N set Vn ¼ maxðV ;�nÞ and
~VVn ¼ maxð ~VV ;�nÞ. Using what we proved so far, we know that

je�tH N
L
ðA;VnÞf je e�tH N

L
ð0;VnÞj f j:

Furthermore, we have

e�tH N
L
ð0;VnÞj f je e�tH N

L
ð0; ~VVnÞj f j

which follows similarly to the reasoning in the proof of (3.9) by adding Vn to the right and
~VVn to the left-hand side of (3.4) using ~VVn eVn for all n A N. Letting n ! y, the strong

convergence guaranteed, for example, by Theorem A.1, finishes the proof of the theo-
rem. r

The next simple lemma is our main observation in extending the usual diamagnetic
inequality to an inequality for the semigroup di¤erences.

Lemma 3.5. Let V ¼ Vþ � V� with Vþ A L1
locðLÞ, V� form small with respect to

HN
L ð0; 0Þ and U be any non-negative bounded function. Then

jðe�tH N
L
ðA;VÞ � e�tH N

L
ðA;VþUÞÞ f je ðe�tH N

L
ð0;VÞ � e�tH N

L
ð0;VþUÞÞj f j

for all f A L2ðLÞ. Furthermore, if ~VV eV is such that ~VV� is form small with respect to

HN
L ð0; 0Þ, then

jðe�tH N
L
ð0;VÞ � e�tH N

L
ð0;VþUÞÞ f je ðe�tH N

L
ð0; ~VVÞ � e�tH N

L
ð0; ~VVþUÞÞj f j

for all f A L2ðLÞ.
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Proof. Let C;D be non-negative operators with D� C bounded. Then

e�tC � e�tD ¼
Ðt
0

d

ds
ðe�sCe�ðt�sÞDÞ ds

¼
Ðt
0

e�sCðD� CÞe�ðt�sÞD ds

which is Duhamel’s formula. With D ¼ HN
L ðA;VÞ and C ¼ HN

L ðA;VÞ þU , we get, for all
f A L2ðLÞ,

jðe�tH N
L
ðA;VÞ � e�tH N

L
ðA;VþUÞÞ f je

Ðt
0

je�sHN
L
ðA;VÞUe�ðt�sÞHN

L
ðA;VþUÞf j ds

e
Ðt
0

e�sHN
L
ð0;VÞUe�ðt�sÞHN

L
ð0;VþUÞj f j ds

¼ ðe�tH N
L
ð0;VÞ � e�tH N

L
ð0;VþUÞÞj f j

by the triangle inequality, a repeated use of the diamagnetic inequality for e�tH N
L
ðA;VÞ and

e�tH N
L
ðA;VþUÞ, the positivity of U , and Duhamel’s formula. This proves the first inequality.

The second one follows along the same line, using again Duhamel’s formula and the bound
je�tH N

L
ð0;VÞf je e�tH N

L
ð0; ~VVÞj f j from Theorem 3.3. r

Remark 3.6. Alternatively, one can use the Trotter product formula in place of
Duhamel’s formula. A third possibility is to use resolvent methods directly: by the remark
in the beginning of the proof of Theorem 3.3, the bound in Lemma 3.5 is equivalent to

����HN
L ðA;VÞ þ E

��n �
�
HN

L ðA;V þUÞ þ E
��n�

f
��ð3:10Þ

e
��
HN

L ð0;VÞ þ E
��n �

�
HN

L ð0;V þUÞ þ E
��n�j f j

e
��
HN

L ð0; ~VVÞ þ E
��n �

�
HN

L ð0; ~VV þUÞ þ E
��n�j f j

for all E > �inf s
�
HN

L ð0; ~VVÞ
�

and n A N. For n ¼ 1, the bound (3.10) can be seen by
inspection, using the resolvent identity and the diamagnetic inequality for the resolvents.
The case nf 2 then follows from the n ¼ 1 case by writing the di¤erence as a telescoping
sum, using the triangle inequality, the bound for n ¼ 1, and the diamagnetic inequality in
each term of the sum.

With this we can finally prove our main result.

Theorem 3.7 (Slight generalization of Theorem 1.3). Let LHRd be open,
A A L2

locðL;RdÞ, and V ¼ Vþ � V� with VGf 0 and Vþ A L1
locðLÞ, V� relatively form

bounded w.r.t. HN
L ð0; 0Þ. Then

jðe�tH N
L
ðA;VÞ � e�tH D

L
ðA;VÞÞ f je ðe�tH N

L
ð0;VÞ � e�tH D

L
ð0;VÞÞj f j

for all f A L2ðLÞ. Furthermore, if ~VV eV is such that ~VV� is form small with respect to

HN
L ð0; 0Þ then
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jðe�tH N
L
ð0;VÞ � e�tH D

L
ð0;VÞÞ f je ðe�tH N

L
ð0; ~VVÞ � e�tH D

L
ð0; ~VVÞÞj f j

for all f A L2ðLÞ.

Proof. Given Lemma 3.5, the proof of this theorem reduces to the existence of a
non-negative function U A L1

locðLÞ such that, setting Un :¼ infðU ; nÞ,

s-lim
r&0

s-lim
n!y

e�tH N
L
ðA;VþrUnÞ ¼ e�tH D

L
ðA;VÞ:ð3:11Þ

Let fLngn AN be a sequence of open sets Ln HL such that the closures Ln are compact sets,
Ln HLnþ1 and L ¼

S
n

Ln. Choose smooth functions 0ecn e 1 with cnðxÞ ¼ 1 for x A Ln,

cnðxÞ ¼ 0 for x A Lnþ1, and set

UðxÞ :¼
P
n AN

j‘cnðxÞj
2:ð3:12Þ

For each x A L, only one term in the above sum can contribute, so, in fact, U A Ly
locðLÞ.

We claim that U lets us do (3.11). To see this, it is enough to show that

s-lim
n!y

e�tH N
L
ðA;VþrUnÞ ¼ e�tH N

L
ðA;VþrUÞð3:13Þ

for fixed r > 0 and

s-lim
r&0

e�tH N
L
ðA;VþrUÞ ¼ e�tH D

L
ðA;VÞ;ð3:14Þ

the second being the slightly trickier task. Let hN
L ðA;VÞ be the quadratic form cor-

responding to HN
L ðA;VÞ. Then for any non-negative, locally integrable potential U ,

HN
L ðA;V þUÞ is defined as the operator corresponding to the closed quadratic form

hN
L ðA;V þUÞ½j; j� ¼ hN

L ðA;VÞ½j; j� þ h
ffiffiffiffiffi
U

p
j;

ffiffiffiffiffi
U

p
ji

with domain D
�
hN
L ðA;V þUÞ

�
¼ D

�
hN
L ðA;VÞ

�
XDð

ffiffiffiffiffi
U

p
Þ.

Since Un converges pointwise monotonically to Un, we can use Lebesgue’s
monotone convergence theorem to see that hN

L ðA;V þ rUnÞ converges monotonically to
hN
L ðA;V þ rUÞ. By Theorem A.1(i), the corresponding operators converge in strong

resolvent sense. In particular, for any fixed r > 0, (3.13) holds.

The proof of (3.14) is more complicated: Since

S
r>0

D
�
hN
L ðA;V þ rUÞ

�
¼ hN

L ðA;V þUÞ ¼ D
�
hN
L ðA;VÞ

�
XDð

ffiffiffiffiffi
U

p
Þ;

we see that lim
r!0

hN
L ðA;V þ rUÞ½j; j� ¼ hN

L ðA;VÞ½j; j� for all j A
S
r>0

D
�
hN
L ðA;V þ rUÞ

�
. In

order to apply Theorem A.1(ii), it remains to show that

D
�
hN
L ðA;V þUÞ

�k:k
hD
L
ðA;VÞ ¼ D

�
hD
L ðA;VÞ

�
¼ H 1

0;AðLÞXQðVÞ:
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Since Cy
0 ðLÞ is dense in QðVþÞ with respect to k:kVþ and

D
�
hN
L ðA;V þUÞ

�
¼ D

�
hN
L ðA; 0Þ

�
XQðVþÞXQðUÞHD

�
hN
L ðA;UÞ

�
;

this is the case if

Cy
0 ðLÞ is dense in D

�
hN
L ðA;UÞ

�
in the norm k:khD

L
ðA;0Þ:ð3:15Þ

We show (3.15) in three steps:

Step 1: D
�
hN
L ðA;UÞ

�
XLyðLÞ is dense in D

�
hN
L ðA;UÞ

�
. We follow [27], proof

of Lemma 2, quite closely, but with some slight simplifications, since we cut smoothly in
the range of functions: Given n A N, nf 2, let jn A C1

�
½0;yÞ

�
with 0e jn e 1, jnðtÞ ¼ 1

for all 0e te n� 1, jnðtÞ ¼ ðn� 1=2Þ=t for tf n and sup
t A ½n�1;n�

jj 0ðtÞje jj 0ðnÞje 1=n. For

such a sequence of functions, we have the bounds
�
1 � jnðtÞ

�
e w½n�1;yÞðtÞ and

tjj 0
nðtÞje w½n�1;yÞðtÞ. Given u A D

�
hN
L ðA;UÞ

�
, set un :¼ jnðu1Þu, where u1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
juj2 þ 1

q
.

Then, as distributions,

‘un ¼ jnðu1Þ‘uþ uj 0
nðu1Þ‘u1:

Hence

DAu�DAun ¼
�
1 � jnðu1Þ

�
DAu� uj 0

nðu1Þ‘u1:ð3:16Þ

By Lemma 2.5(iv), we know ‘u1 A L2ðLÞ. Note that juj 0
nðu1Þje u1jj 0

nðu1Þje w½n�1;yÞðu1Þ.
Thus, by (3.16), kDAu�DAunk goes to zero as n ! y.

Step 2: D
�
hN
L ðA;UÞ

�
XLy

compðLÞ is dense in D
�
hN
L ðA;UÞ

�
. By Step 1 we can

assume u A D
�
hN
L ðA;UÞ

�
XLy

compðLÞ. Recall that U ¼
P
n

j‘cnj
2. Put un :¼ cnu and note

that un has compact support in L. As distributions,

DAu�DAun ¼ ð1 � cnÞDAu� u‘cn:ð3:17Þ

We have
P
n

u‘cn A L2ðLÞ since u A QðUÞ. In particular, u‘cn goes to zero in L2ðLÞ.

Hence, by (3.17), kDAu�DAunk goes to zero as n ! y.

Step 3: Cy
0 ðLÞ is dense in D

�
hN
L ðA;UÞ

�
. Without loss of generality we can assume

u A D
�
hN
L ðA;UÞ

�
XLy

compðLÞ. Since A A L2
locðL;RdÞ, we know that

Au A L2ðLÞ and ‘u ¼ DAuþ iAu A L2ðLÞ:

Let ð jnÞn AN be a sequence of approximate delta functions with suppð jnÞHB1=nð0Þ. Choose
n so large that un :¼ jn � u A Cy

0 ðLÞ. By standard mollifier arguments, k‘u� ‘unk and
kAu� Aunk go to zero as n ! y. Since

DAu�DAun ¼ ‘u� ‘un � iAuþ iAun;

this finishes the proof of (3.15). r
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Remark 3.8. The proof of (3.15) is motivated by the proof of the Feynman-Kac
formula for the Dirichlet Laplacian on arbitrary open subsets in [48]. That one can extend
this line of thought to certain magnetic vector potentials was already noticed in [6]. The
observation that the ideas in [48] even allow one to recover Dirichlet from Neumann
boundary conditions for arbitrary vector potentials in L2

locðL;RdÞ seems to be new.

Proof of Corollary 1.4. Part (i). By Remark 1.5(ii), we know that the free semi-
group e�tH N

L
ð0;0Þ is a trace class operator, and standard perturbation arguments show that

e�tH N
L
ð0;�V�Þ and e�tH N

L
ð0;VÞ are trace class operators, see, e.g., [41], proof of Theorem

XIII.76.

In the following, let tr stand for the trace on L2ðLÞ and kCkHS ¼ tr½C �C�1=2 be the
Hilbert-Schmidt norm. Since e�tH N

L
ðA;VÞ is a non-negative operator, its trace norm is equal

to its trace and, by the semigroup property and self-adjointness, we have

tr½e�2tH N
L
ðA;VÞ� ¼ tr½ðe�tH N

L
ðA;VÞÞ�e�tH N

L
ðA;VÞ� ¼ ke�tH N

L
ðA;VÞk2

HS:

From the diamagnetic inequality and [11], Theorem 2.4.4, we know that e�tH N
L
ðA;VÞ is an

integral operator whose kernel obeys the bounds

je�tH N
L
ðA;VÞðx; yÞje e�tH N

L
ð0;VÞðx; yÞe e�tH N

L
ð0;�V�Þðx; yÞ for almost all x; y A L:

Thus, using [39], Theorem VI.23, we conclude

tr½e�2tH N
L
ðA;VÞ� ¼ ke�tH N

L
ðA;VÞk2

HS ¼
Ð Ð
L�L

je�tH N
L
ðA;VÞðx; yÞj2 dx dy

e ke�tH N
L
ð0;VÞk2

HS ¼ tr½e�2tH N
L
ð0;VÞ� < y

by the bound on the integral kernels. In an analogous way, one sees that
tr½e�tH N

L
ð0;VÞ�e tr½e�tH N

L
ð0;�V�Þ�.

Part (ii). For any pair C;D of Hilbert-Schmidt operators on L2ðLÞ, an easy exten-
sion of the proof of Theorem VI.23 in [39] shows the formula

tr½CD� ¼
Ð Ð
L�L

Cðx; yÞDðy; xÞ dx dy:ð3:18Þ

We know, by our assumptions on L and part (i) of the corollary, that

e�tH N
L
ðA;VÞ � e�tH D

L
ðA;VÞ is a trace class operator (both e�tH N

L
ðA;VÞ and e�tH D

L
ðA;VÞ are trace

class!) and thus, in particular, Hilbert-Schmidt operators. Moreover, the di¤erence of the
kernels obeys, by the diamagnetic inequality for the di¤erences, Theorem 3.7,

je�tH N
L
ðA;VÞðx; yÞ � e�tH D

L
ðA;VÞðx; yÞje e�tH N

L
ð0;VÞðx; yÞ � e�tH D

L
ð0;VÞðx; yÞð3:19Þ

e e�tH N
L
ð0;�V�Þðx; yÞ � e�tH D

L
ð0;�V�Þðx; yÞ

for almost all x; y A L. Factorizing
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e�2tH N
L
ðA;VÞ � e�2tH D

L
ðA;VÞ ¼ e�tH N

L
ðA;VÞðe�tH N

L
ðA;VÞ � e�tH D

L
ðA;VÞÞ

þ ðe�tH N
L
ðA;VÞ � e�tH D

L
ðA;VÞÞe�tH D

L
ðA;VÞ;

using (3.18), the diamagnetic inequalities for the respective kernels, and reasoning similarly
as in part (i) gives the claim in Corollary 1.4(ii). r

Remarks 3.9. (i) Of course, with the obvious notational changes, one can extend the
above proof to cover the case ~VV eV .

(ii) It might be that, for some cleverly constructed bounded set L, the Neumann

semigroup e�tH N
L
ð0;0Þ is compact but not trace class or Hilbert-Schmidt for small times t, see

Remark 1.5(iii). Nevertheless, the diamagnetic inequality and the Dodds, Fremlin, and Pitt
theorem [1], [13], [38] ensures that e�tH N

L
ðA;0Þ is also compact for arbitrary vector potentials

A A L2
locðL:RdÞ. See also [26] for a nice extension of this basic compactness criterion.

Appendix. Monotone convergence of forms and strong resolvent convergence

For the convenience of the reader we present here the basic convergence theorem we
need in the proof of Theorem 3.7.

Theorem A.1. Let H be a Hilbert space, sn, un, and h non-negative, closed quadratic

forms, and Sn, Un, and H be the corresponding self-adjoint operators.

(i) If un e unþ1 e h and hðj; jÞ ¼ sup
n

unðj; jÞ, that is,
n
j A

T
n AN

DðunÞ : sup
n AN

unðj; jÞ < y
o
¼ DðhÞ;

unðj; jÞ ! hðj; jÞ as n ! y; Ej A DðhÞ;

then Un ! H as n ! y in the strong resolvent sense.

(ii) If sn f snþ1 f h and

S
n AN

DðsnÞ
k:kh ¼ DðhÞ;

snðj; jÞ ! hðj; jÞ as n ! y; Ej A
S
n AN

DðsnÞ;

then Sn ! H as n ! y in the strong resolvent sense.

Remarks A.2. (i) As usual, see, e.g., [39], Theorem VIII.20, strong resolvent con-
vergence of Un (resp. Sn) implies strong convergence of f ðUnÞ (resp. f ðSnÞ) for any con-
tinuous bounded function f .

(ii) This theorem is taken from Simon [47], see also [39], Theorems S.14 and S.16,
where an even stronger result was proven: The quadratic forms need not be densely defined,
as long as one interprets strong resolvent convergence correctly.
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(iii) A partly alternate proof of this result can be found in [59].

(iv) In general, (generalized) strong convergence of operators is equivalent to the
so-called G-convergence of the corresponding quadratic forms; see [10].

Acknowledgements. It is a pleasure to thank Alexander Elgart for discussions and
Hendrik Vogt for pointing us to [30]. D. H. also thanks Ari Laptev and Kjell-Ove Widman
for their hospitality at the Mittag-Le¿er institute.

References

[1] C. D. Aliprantis and O. Burkinshaw, Positive compact operators on Banach lattices, Math. Z. 174 (1980), no.

3, 289–298.

[2] J. Avron, I. Herbst, and B. Simon, Schrödinger operators with magnetic fields, I. General interactions, Duke

Math. J. 45 (1978), 847–883.

[3] J. Avron and B. Simon, Almost periodic Schrödinger operators, II. The integrated density of states, Duke

Math. J. 50 (1983), 369–391.

[4] O. Bratteli and D. W. Robinson, Operator algebras and quantum statistical mechanics. 2, Equilibrium

states, Models in quantum statistical mechanics, Second edition, Texts and Monographs in Physics, Springer-

Verlag, Berlin 1997.

[5] K. Broderix, D. Hundertmark, and H. Leschke, Self-averaging, decomposition, and asymptotic properties of

the density of states for random Schrödinger operators with constant magnetic field, in: Path integrals from

meV to MeV, Tutzing 1993, eds. H. Grabert, A. Inomata, L. S. Schulman, and U. Weiss, World Scientific,

Singapore 1993.

[6] K. Broderix, D. Hundertmark, and H. Leschke, Continuity properties of Schrödinger semigroups with mag-

netic fields, Rev. Math. Phys. 12 (2000), no. 2, 181–225.

[7] R. Carmona and J. Lacroix, Spectral theory of random Schrödinger operators, Probability and its Applica-
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