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Zeros of orthogonal polynomials on the real line
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Abstract

Let pnðxÞ be the orthonormal polynomials associated to a measure dm of compact support in

R: If EesuppðdmÞ; we show there is a d40 so that for all n; either pn or pnþ1 has no zeros in

ðE � d;E þ dÞ: If E is an isolated point of suppðmÞ; we show there is a d so that for all n; either
pn or pnþ1 has at most one zero in ðE � d;E þ dÞ:We provide an example where the zeros of pn

are dense in a gap of suppðdmÞ:
r 2003 Elsevier Science (USA). All rights reserved.

1. Introduction

Let dm be a measure on R whose support is not a finite number of points and withR
jxjn dmðxÞoN for all n ¼ 0; 1; 2;y : The orthonormal polynomials pnðx; dmÞ or

pnðxÞ are determined uniquely by

pnðxÞ ¼ gnxn þ lower order; gn40; ð1:1Þ

Z
pnðxÞpmðxÞ dmðxÞ ¼ dnm: ð1:2Þ

There are an40; bnAR for nX1 so that

xpnðxÞ ¼ anþ1pnþ1ðxÞ þ bnþ1pnðxÞ þ anpnðxÞ ð1:3Þ

(many works use an�1; bn�1; where we use an; bn).
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In this paper, we will be interested in the zeros of pnðx; dmÞ: The following results
are classical (see, e.g., Freud’s book [4]):

(1) The zeros of pnðxÞ are real and simple.
(2) If ða; bÞ-suppðdmÞ ¼ |; then if a ¼ �N or b ¼ þN; pn has no zeros in ða; bÞ

and, in any event, ða; bÞ has at most one zero of pnðxÞ:
(3) In the determinate case, if x0AsuppðdmÞ and d40; for all large n; pnðxÞ has a

zero in ðx0 � d; x0 þ dÞ:

Define

Nnðx0; dÞ ¼ # of zeros of pnðxÞ in ðx0 � d; x0 þ dÞ:

Then (1)–(3) immediately imply:

(i) If x0 is a non-isolated point of suppðdmÞ; then for any
d40; limn-N Nnðx0; dÞ ¼ N:

(ii) If x0 is an isolated point of suppðdmÞ and d ¼ distðx0; suppðdmÞ\fx0gÞ; then
Nnðx0; dÞ is never more than 2; and for all d40 and n large, Nnðx0; dÞX1:

(iii) If x0esuppðdmÞ and d ¼ distðx0; suppðdmÞÞ; then Nnðx0; dÞ is never more than 1:

(i) is fairly complete, but (ii), (iii) leave open how often there is one vs. two points
in case (ii) and zero vs. one in case (iii). One might guess that a zero near
x0esuppðdmÞ and two zeros near an isolated x0 in suppðdmÞ are not too common
occurrences.

Example. If dm is even about x ¼ 0; then pnð�xÞ ¼ ð�1Þn
pnðxÞ: Thus, if n is odd,

pnð0Þ ¼ 0: So if 0esuppðdmÞ; we still have Nnð0; dÞ ¼ 1 for all small d and n odd. If
zero is an isolated point of dm; pn for n even has a zero at xn near 0; but not equal to
0 (since zeros are simple), so also at �xn; that is, Nnð0; dÞ ¼ 2 for d small and n even.
So ‘‘not too common’’ can be as often as 50% of the time. Our goal here is to show
this 50% is a maximal value.

It is surprising that there do not seem to be any results on these issues until a
recent paper of Ambroladze [1], who proved

Theorem (Ambroladze [1]). If suppðdmÞ is bounded and x0esuppðdmÞ; then for some

d40; lim infn-NNnðx0; dÞ ¼ 0:

Thus, we can use Nnðx0; dÞ to distinguish when x0AsuppðdmÞ: Our goal in this
paper is to prove

Theorem 1.1. Let d ¼ distðx0; suppðdmÞÞ40: Let dn ¼ d2=ðd þ
ffiffiffi
2

p
anþ1Þ (where an is

the recursion coefficient given by (1.3)). Then either pn or pnþ1 (or both) has no zeros in
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ðx0 � dn; x0 þ dnÞ: In particular, if aN ¼ supn anoN and dN ¼ d2=ðd þ
ffiffiffi
2

p
aNÞ; then

ðx0 � dN; x0 þ dNÞ does not have zeros of pj for two successive values of j:

Theorem 1.2. Let x0 be an isolated point of suppðdmÞ: Then there exists a d040; so

that if dn ¼ d2
0=ðd0 þ

ffiffiffi
2

p
anþ1Þ; then at least one of pn and pnþ1 has no zeros or one zero

in ðx0 � dn; x0 þ dnÞ: In particular, if aN ¼ supn anoN and dN ¼ d2
0=ðd0 þ

ffiffiffi
2

p
aNÞ;

then for all large n; either Nnðx0; dNÞ ¼ 1 or Nnþ1ðx0; dNÞ ¼ 1:

We will prove Theorem 1.1 in Section 2 and Theorem 1.2 in Section 3. In Section
4, we present an example of a set of polynomials whose zeros are dense in a gap of
the spectrum.

It is a pleasure to thank Leonid Golinskii and Paul Nevai for useful
correspondence.

2. Points outside the support of dl

We arrived at the following lemma by trying to abstract the essence of
Ambroladze’s argument [1]; it holds for orthogonal polynomials on the complex
plane. Let dm be a measure on C with finite moments and infinite support, and let
pnðz; dmÞ be the orthonormal polynomials. Define the reproducing kernel

Knðz;wÞ ¼
Xn

j¼0

pjðzÞpjðwÞ; ð2:1Þ

so in L2ðC; dmÞ; for any polynomial p of degree n or less,Z
Knðz;wÞpðwÞ dmðwÞ ¼ pðzÞ: ð2:2Þ

Lemma 2.1. Suppose z0AC; pjðwÞ ¼ 0 for some jpn þ 1: Then

jz0 � wjX jpjðz0Þj
Knðz0; z0Þ1=2

distðw; suppðdmÞÞ: ð2:3Þ

Proof. Let qðzÞ ¼ pjðzÞ=ðz � wÞ; which has degðqÞpn: Thus, by (2.2),

/Kð�; z0Þ; qð�ÞS ¼ qðz0Þ so, by the Schwarz inequality,

jpjðz0Þj
jz0 � wjpjjqjj jjKð�; z0Þjj:

By (2.2), jjKð�; z0Þjj ¼ Kðz0; z0Þ1=2 and clearly, jjqjjpdistðw; suppðdmÞÞ�1jjpjjj ¼
distðw; suppðdmÞÞ�1: This yields (2.3). &

The following only holds in the real case:
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Lemma 2.2. For any xAR and n;

Knðx; xÞdistðx; suppðdmÞÞ2pa2
nþ1½p2

nþ1ðxÞ þ p2
nðxÞ: ð2:4Þ

Proof. The Christoffel–Darboux formula [4] says

Knðx; yÞ ¼ anþ1
pnþ1ðxÞpnðyÞ � pnþ1ðyÞpnðxÞ

x � y

� �
;

so since /pj; pkS ¼ djk;

jjðx � �ÞKnðx; �Þjj2 ¼ janþ1j2½p2
nþ1ðxÞ þ p2

nðxÞ: ð2:5Þ

Clearly,

jjðx � �ÞKnðx; �Þjj2Xdistðx; suppðdmÞÞ2jjKnðx; �Þjj2 ð2:6Þ

and, as above, jjKnðx; �Þjj2 ¼ Knðx; xÞ; which yields (2.4). &

Remark. An alternate way of seeing (2.5) is to let c be the trial vector
ðp0ðxÞ;y; pnðxÞ; 0; 0;yÞ and note that in terms of the standard Jacobi matrix ððJ �
xÞcÞj ¼ 0 unless j ¼ n; n þ 1; in which case the values are �anþ1pnþ1ðxÞ and

anþ1pnðxÞ; (2.6) is then just jjðJ � xÞcjjXdistðx; suppðdmÞÞjjcjj:

Proof of Theorem 1.1. By (2.4), we have that

Knðx0; x0Þdistðx0; suppðdmÞÞ2p2a2
nþ1p2

nþ1ðx0Þ ð2:7Þ

and/or

Knðx0; x0Þdistðx0; suppðdmÞÞ2p2a2
nþ1p2

nðx0Þ: ð2:8Þ

Suppose (2.7) holds. Then, by (2.3), if w is a zero of pnþ1ðxÞ and if d ¼
distðx0; suppðdmÞÞ;

jx0 � wjX 1ffiffiffi
2

p 1

anþ1
d distðw; suppðdmÞÞ

X
1ffiffiffi
2

p 1

anþ1
dðd � jw � x0jÞ

which leads directly to jx0 � wjXd2=ðd þ anþ1

ffiffiffi
2

p
Þ: &

Remark. There is also a Christoffel–Darboux result for polynomials on the
unit circle @D ¼ fzj jzj ¼ 1g in C: This leads to the following: If dm is a measure

on @D and z0A@D has d ¼ distðz0; suppðdmÞÞ40; then the circle of radius d2=ð2þ dÞ
has no zeros of the orthogonal polynomials. Golinskii has pointed out that the
theorem of Fejér [3] that the zeros lie in the convex hull of suppðdmÞ implies there are

no zeros in the circle of radius d2=2 and this is a stronger result, so we do not provide
the details.
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3. Isolated points of the support of dl

To prove Theorem 1.2, we will make use of the second kind polynomials [4,7]
associated to dm and fpng: This is a second family of polynomials, qn defined by

recursion coefficients, ãn; b̃n with

ãn ¼ anþ1; b̃n ¼ bnþ1: ð3:1Þ
They have the following two critical properties:

Proposition 3.1. (i) The zeros of pnþ1 and qn interlace. In particular, between any two

zeros of pnþ1 is a zero of qn:
(ii) If x0 is an isolated point of dm and dn is a suitable measure with respect to which

the q’s are orthogonal, then x0esuppðdnÞ:

These are well known. (i) follows from the fact that the zeros of pnþ1 are
eigenvalues of the matrix

J
ðnþ1Þ
ij ¼ bidij þ aidijþ1 þ ai�1dij�1; 1pi; jpn þ 1

and the zeros of qn are the eigenvalues of

J̃
ðnÞ
ij ¼ b̃idij þ ãidijþ1 þ ãi�1dij�1; 1pi; jpn

which is the matrix J
ðnþ1Þ
ij with the top row and left column removed. (ii) follows

because of the relation that n obeys for all zAC\R (see, e.g., [7]):Z
dnðxÞ
x � z

¼ a�2
1 b1 � z �

Z
dmðxÞ
x � z

� ��1
" #

ð3:2Þ

(if the moment problem is indeterminate, this is one possible n). Isolated points of dm
are poles of

R
dmðxÞ=ðx � zÞ so

R
dnðxÞ=ðx � zÞ is regular there.

Proof of Theorem 1.2. Let d0 ¼ distðx0; suppðdnÞÞ40 by (ii) of Proposition 3.1. By
Theorem 1.1 and (3.1), either qn�1 or qn has no zeros in ðx0 � dn;x0 þ dnÞ: By the
intertwining result (Proposition 3.1(i)), either pn or pnþ1 cannot have two zeros in this
interval. &

Remark. Let x0 be an isolated point of dm: If bAsuppðdmÞ is such that jx0 � bj ¼
distðx0; suppðdmÞ\fx0gÞ and

R
dmðyÞ=jy � bj ¼ N; then dn has an isolated point in

between x0 and b; and so d0 may be strictly less than distðx0; suppðdmÞ\fx0gÞ:

4. An example of dense zeros in the gap

Nevai raised the issue of whether as n varies, the single possible zero of pn in a gap
ða; bÞ of suppðdmÞ can yield all of ða; bÞ as limit points, or if the situation of a single
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(or finite number of) limit point as in the example in Section 1 is the only possibility.
In this section, we describe an explicit bounded Jacobi matrix so that suppðdmÞ ¼
½�5;�1,½1; 5 but the set fxAð�1; 1Þ j pnðxÞ ¼ 0 for some ng is dense in ½�1; 1:

Note: While this paper was in the refereeing process, we received a paper of
Peherstorfer [5], who also constructs examples, very different from ours, of dense
zeros in a gap.

Let fbjgNj¼1 be the sequence

b1; b2;y ¼ 0;�1
2
; 0; 1

2
;�3

4
;�1

2
;�1

4
; 0; 1

4
; 1
2
; 3
4
;�7

8
;y

which goes through all dyadic rationals in ð�1; 1Þ with denominator 2k successively

for k ¼ 1; 2; 3;y with each j=2k ‘‘covered’’ multiple times. Let L be the Jacobi
matrix with

a2n�1 ¼ 3; a2n ¼ 1; n ¼ 1; 2;y; ð4:1Þ

bk ¼ bn if 2n2pko2ðn þ 1Þ2; ð4:2Þ

b1 ¼ b1:

We claim that

(1) suppðdmÞ ¼ ½�5;�1,½1; 5:
(2) There is an xn with jxn � bnjp2 � 3�2n so that

p2ðnþ1Þ2�1ðxnÞ ¼ 0: ð4:3Þ

This provides the claimed example.

Remarks. (1) By adjusting a1 and a2 (but keeping a2nþ1 ¼ a1; a2n ¼ a2), we can
replace ½�5;�1,½1; 5 by ½�3� e;�1,½1; 3þ e; but our method seems to require
bands larger than the size of the gap.

(2) One can replace (4.2) by bk ¼ bn for cnpkocnþ1 so long as cnþ1 � cn-N:
(3) We believe that the measure associated to L is purely singular.
To prove the claims, we let L0 be the Jacobi matrix with a’s given by (4.1) but

bn ¼ 0; and LN the period two, doubly infinite matrix on Z which equals L0 when

restricted to Zþ: By the general theory of periodic Schrödinger operators [6], the
spectrum of LN is the two bands where jDðxÞjp2 where D is the discriminant, that is,
the trace of the two-step transfer matrix. If a1; a2 are the two values of a (so
a1 ¼ 3; a2 ¼ 1 in our example), a simple calculation shows that

DðxÞ ¼ 1

a1a2
ðx2 � ða2

1 þ a2
2ÞÞ;

so DðxÞ ¼ 72 occurs at x ¼ 7ja17a2j: Thus,
specðLNÞ ¼ ½�4;�2,½2; 4: ð4:4Þ

The orthonormal polynomials p
ð0Þ
n for L0 at x ¼ 0 obey the recursion relation

p
ð0Þ
2nþ2ð0Þ ¼ �3p

ð0Þ
2n ð0Þ;
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so we have

p
ð0Þ
2nþ1 ¼ 0; p

ð0Þ
2n ð0Þ ¼ ð�3Þn: ð4:5Þ

By the general theory of restricting periodic operators to the half-line, specðL0Þ is
specðLNÞ plus a possible single eigenvalue in the gap ð�2; 2Þ: Since there is a
symmetry, the only possible eigenvalue is at x ¼ 0; but (4.5) says that 0 is not an

eigenvalue since
P

N

j¼0 jpjð0Þj2 ¼ N: Thus, specðL0Þ ¼ ½�4;�2,½2; 4 also. L � L0 is

a diagonal matrix, so it is easy to see jjL � L0jj ¼ supjjbjj ¼ 1: Thus,

specðLÞC
S

xA½�1;1 x þ specðL0Þ ¼ ½�5;�1,½1; 5: On the other hand, since the b’s

are equal to bj on arbitrary long runs, a Weyl vector argument (see [2, p. 36]) shows

that

specðLÞ*
[

j

bj þ specðL0Þ ¼ ½�5;�1,½1; 5

so claim 1 is proven.
Let Ln;F be the n � n matrix obtained by taking the first n rows and columns of L:

Then the zeros of pnðxÞ are precisely the eigenvalues of Ln;F (see [7, Proposition 5.6]).

Let jj be the j component vector with ðpð0Þ
0 ð0Þ; p

ð0Þ
1 ð0Þ;y; p

ð0Þ
j�1ð0ÞÞ: Then if j is odd so

p
ð0Þ
j ð0Þ ¼ 0; and we have L0; j;Fjj ¼ 0: Thus, if j ¼ 2ðn þ 1Þ2 � 1;

½ðLj;F � bnÞjjk ¼ ðbk � bnÞjj;k: ð4:6Þ

If 2n2pkp2ðn þ 1Þ2 � 1; the right-hand side is zero and its absolute value is always
less than 2jjj;kj: Thus,

jjðLj;F � bnÞjjjj
2

jjjjjj
2

p
4
Pn2�1

k¼0 32kPðnþ1Þ2�1
k¼0 32k

p 4 � 3�4n

by (4.5) and a simple estimate. Thus, Lj;F has an eigenvalue within 2 � 3�2n of bn;

proving claim 2.
This completes the example.
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