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Approach to equilibrium for a forced Burgers equation

Werner Kirsch and Barry Simon1

Abstract. We show that approach to equilibrium in certain forced Burgers equations is implied by a decay
estimate on a suitable intrinsic semigroup estimate, and we verify this estimate in a variety of cases including a
periodic force.

1. Introduction

This paper is a contribution to the literature [10, 11, 3] on large time asymptotics of the
forced Burgers equation
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, t ≥ 0, x ∈ R
ν, i = 1, . . . , ν, (1.1)

where u is real valued. We will make two assumptions on the initial data uj (x, t = 0) =
u

(0)
j (x):
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all i, j (1.2)

(ii) ψ0(x) ≡
∫ x

0
�u(0)(y) · dy ∈ L∞. (1.3)

(1.2) , which is vacuous in the standard ν = 1 case, implies that the value of ψ0 given
by (1.3) is independent of the path taken from 0 to x in the line integral. Typical of our
results is:

THEOREM 1.1. Let V be a C1 periodic function on R
ν . Then, there is a unique initial

condition u
(0)∞ (x) obeying (1.2), (1.3) for (1.1) whose solution is independent of t . Moreover,

if u(0) is any other initial data obeying (1.2) / (1.3) , then

lim
t→∞ sup

x
[|u(x, t) − u(0)∞ (x)|] = 0. (1.4)
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REMARK. (1.3) does not imply that u(0) is L∞, but our proof shows that for t > 0,
u( · , t) ∈ L∞. Thus, for t > 0, the quantity in the limit in (1.4) is finite.

What is new about our ideas and Theorem 1.1 is that there is no regularity condition on
the initial condition u at infinity other than (1.3). Previous approaches require at least that
e−ψ0 have some kind of average. To understand how we overcome this, we need to begin
the proof by reminding the reader of the Cole-Hopf transformation. Define

ϕ0(x) = exp(−ψ0(x)) (1.5)

so that

u
(0)
i = −ϕ−1

0
∂ϕ0

∂xi

. (1.6)

V is bounded so

H = −1

2
� + V (1.7)

is bounded below. Thus we add a constant to V so that henceforth

inf spec(H) = 0. (1.8)

Define

ϕ(x, t) = (e−tH ϕ0)(x). (1.9)

Then direct manipulation shows that

PROPOSITION 1.2. Let ψ0 ∈ L∞ be C1 and let ϕ0, ϕ obey (1.5) , (1.9) . Then, for
t > 0, ϕ(x, t) > 0 and ϕ, ∇ϕ, �ϕ are C1 and

u(x, t) = −ϕ(x, t)−1(∇ϕ)(x, t) (1.10)

obeys (1.1) for t > 0 and limt↓0 u( · , t) = u(0) ≡ ∇ψ0.

REMARKS. 1. It follows from [9] with V a C1 function with bounded derivatives
that ϕ and (−� + V )ϕ are C1. It follows that �ϕ is C1 which by elliptic regularity
means ∇ϕ is C1. The Laplacian here and in (1.1) may be distributional rather than
classical. If ∇V is assumed Hölder continuous, we can replace these by classical
derivatives.

2. As we will discuss below, e−tH maps L∞ to L∞ and (1.9) is intended in the sense of
the L∞ map.

3. This result does not require that V be periodic; V need only be C1 and in L∞. We
will use it in this form below.



Vol. 1, 2001 Approach to equilibrium for a forced Burgers equation 413

When V is periodic, it has a periodic ground state �, that is, a positive periodic solution of
(

−1

2
� + V

)
� = 0. (1.11)

Thus

u(0)∞ (x) = −�(x)−1(∇�)(x) (1.12)

is a stationary solution of (1.1). A natural approach to (1.4) is to prove that

ϕ → c � (1.13)

and

∇ϕ → c∇� (1.14)

both in L∞. This is essentially what previous works do.
To understand the limitations of this approach and why one can hope to go beyond them,

consider the case V ≡ 0. Then u∞ = 0, � ≡ 1, and

ϕ(x, t) = (2πt)−ν/2
∫

exp(−(x − y)2/2t)ϕ0(y) dy.

If (2R)−ν
∫

supi |yi |≤R
ϕ0(y) dνy → c as R → ∞, it is not hard to see that ϕ(x, t) → c as

t → ∞ for each fixed x, so (1.13) holds, but this is not true in general.
For example, if Rn = een

and

ϕ0(y) = 2 + (−1)n if Rn < sup
i

|yi | < Rn+1,

then for t ∼ RnRn+1, it is not hard to see that ϕ(0, t) ∼ 2 + (−1)n and thus ϕ(0, t) does
not have a limit. But in this example, one can see that ∇ϕ does go to zero.

Our key observations are that rather than prove (1.13) and (1.14) separately, it suffices
to prove that

∇(ϕ/�) → 0 (1.15)

and that (1.15) is equivalent to some estimates on the intrinsic semigroup associated to H .
Specifically, let Kt(x, y) be the integral kernel of e−tH and let

Lt(x, y) = �−1(x)Kt (x, y)�(y)−1. (1.16)

Lt is the kernel of a semigroup on L2(Rν, �2dνx).
To prove Theorem 1.1, we will prove two estimates:

|∂xLt (x, y)| ≤ C t−ν/2[exp(−D(x − y)2/t) + exp(−E|x − y|)] (1.17)
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for suitable C, D and all t > 1, all x, y and

|∂xLt (x, y)| ≤ C t−(ν+1)/2 (1.18)

all t > 1, all x, y.
We will show that if � obeys 0 < a ≤ � < b, is C3 and V ≡ 1

2�−1(��) is bounded
and uniformly Hölder continuous, then (even if V is not periodic)

|∂xLt (x, y)| ≤ C t−α[exp(−D(x − y)2/t)] (1.19)

for some α > ν/2, all t ≥ 1. This will lead to the following generalization of Theorem 1.1:

THEOREM 1.3. Let V be a C1 function and suppose that V is bounded and uniformly
Hölder continuous. Suppose that − 1

2� + V has a ground state � obeying 0 < a ≤ � ≤ b

for some a, b and all t . Then there is a unique initial condition u
(0)∞ (x) (= ∇�/�) obeying

(1.2) , (1.3) for (1.1) whose solution is independent of t . Moreover, if u(0) is any other
initial data obeying (1.2)/ (1.3) , then

lim
t→∞ sup

x
[|u(x, t) − u(0)∞ (x)|] = 0. (1.20)

Certain quasiperiodic Schrödinger operators have a quasiperiodic ground state [5]. Thus
the above theorem applies to this situation as well; see [11].

In Section 2, we will reduce Theorems 1.1 and 1.3 to (1.19). In Section 3, we will derive
(1.17) using ideas due to Davies. In Section 4, we will prove (1.18) in the periodic case
and (1.19) in general.

We are dedicating this paper to the memory of Tosio Kato, who taught us so much about
Schrödinger operators, about semigroups, and about non-linear equations, areas which
come together here.

2. Reduction to intrinsic heat kernel estimates

According to Proposition 1.2, the solution u of (1.1) is related to a solution of (1.9) via
(1.16). This leads to

THEOREM 2.1. Suppose there exist � so

e−tH� = � (2.1)

and

0 < a ≤ �(x) ≤ b (2.2)
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and that

lim
t→∞ ‖�∇(ϕ( · , t)/�( · ))‖∞ = 0. (2.3)

Then (1.20) holds with u
(0)∞ = ∇�/�.

Proof. By (1.3), we have

0 < c1 ≤ ϕ0 ≤ c2

so by (2.2)

c1b
−1� ≤ ϕ0 ≤ c2a

−1�.

Since e−tH is positivity preserving and (2.1) holds,

c1b
−1�(x) ≤ ϕ(x, t) ≤ c2a

−1�(x).

So by (2.2) again,

c1b
−1a ≤ ϕ(x, t) ≤ c2a

−1b. (2.4)

Now

u( · , t) − u(0)∞ = (∇ϕ)( · , t)/ϕ( · , t) − (∇�)( · )/�(x)

= (�∇ϕ − ϕ∇�)/ϕ�

= [∇(ϕ( · , t)/�)][�/ϕ].

Since ϕ and � are uniformly in t and x bounded above and below, we see that (1.20) is
equivalent to (2.3). �

Now consider the unitary mapU : L2(Rν) → L(Rν, �2 dx)by (Uf )(x) = f (x)�(x)−1

and let M be the self-adjoint operator UHU−1 on L2(Rν, �2 dx). Then, as is well-known
(and a direct calculation),

(f, Mf )L2(Rν ,�2 dx) =
∫

(∇f )2�2 dx

or equivalently,

Mf = −�f − 2( �∇�)�−1 · �∇f. (2.5)

Now let Kt(x, y) be the integral kernel of e−tH , that is,

(e−tHf )(x) =
∫

Kt(x, y)f (y) dνy
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and let Lt(x, y) be the integral kernel of e−tM , that is,

(e−tMf )(x) =
∫

Lt(x, y)f (y)�2(y) dνy.

Since e−tM = Ue−tHU−1, we see that Lt and Kt are related by (1.16).
Now if ϕ = e−tHϕ0, then

[ϕ( · , t)/�( · )] = Ue−tHϕ0 = e−tMUϕ0

=
∫

Lt( · , y)ϕ0(y)�(y) dνy.

Since ϕ0 and � are uniformly bounded, we see that

|∇[ϕ(x, t)/�(x)]| ≤ c

∫
|∂xLt (x, y)| dνy.

Thus:

PROPOSITION 2.2. A sufficient condition for (2.3) to hold for any initial ϕ0 (coming
from a u

(0)
i obeying (1.2)/ (1.3)) is that

sup
x

∫
|∂xLt (x, y)| dνy → 0 (2.6)

as t → ∞.

THEOREM 2.3. If (1.19) holds or if (1.17) / (1.18) hold, then (2.6) holds.

Proof. (1.19) plus scaling implies that∫
|∂xLt (x, y)| dνy ≤ C1 t−αtν/2

which goes to zero if t → ∞ since α > ν/2. (1.17)/ (1.18) imply

|∂xLt (x, y)| ≤ C t−ν/2−1/4[exp(−D(x − y)2/2t) + exp(− 1
2 E|x − y|)]

which implies∫
|∂xLt (x, y)| dνy ≤ C1 t−1/4 ± C2 t−ν/2−1/4

which goes to zero as t → ∞. �

3. Exponential-Gaussian estimates on ∂xLt

Our goal in this section is to explain how one can get (1.17) from ideas of Davies [1, 2].
His ideas immediately imply an estimate

|Kt(x, y)| ≤ Cε t−ν/2 exp(−(x − y)2/(4 + ε)t) (3.1)
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for any ε > 0. (3.1) implies (even dropping the Gaussian) that

‖e−tH‖L1→L∞ ≤ C t−ν/2

so by interpolation with boundedness on L∞ (see Simon [9] and references therein),

‖e−tH‖L1→L2 = ‖e−tH‖L2→L∞ ≤ C t−ν/4.

Thus

‖e−(t+is)H ‖L1→L∞ ≤ ‖e−tH/2‖L2→L∞ ‖e−isH ‖L2→L2 ‖e−tH/2‖L1→L2 ≤ C t−ν/2

and thus for any |θ | < π/2,

‖ exp(−teiθH)‖L1→L∞ ≤ Cθ t−ν/2

which yields

|Kteiθ (x, y)| ≤ Cθ t−ν/2. (3.2)

By interpolation between (3.1) and (3.2) , we see that for complex t in a section
Sθ = {t | |Arg(t)| ≤ θ} we have if θ < π/2,

|Kt(x, y)| ≤ Cθ |t |−ν/2 exp(−Dθ(x − y)2/|t |) (3.3)

and this implies by a Cauchy estimate that in the same sectors

|∂tKt (x, y)| ≤ Cθ |t |−ν/2−1 exp(−Dθ(x − y)2/|t |)
(where Cθ, Dθ can change value from one equation to the next).

Thus for t ≥ 1 and real,

|(−� + V )xKt (x, y)| ≤ C |t |−ν/2−1 exp(−D(x − y)2/|t |). (3.4)

Since V is bounded, (3.3) and (3.4) imply that for t ≥ 1,

|(−�x + 1)Kt (x, y)| ≤ C |t |−ν/2 exp(−D(x − y)2/|t |).
But ∂x(−�x +1)−1 has an explicit convolution integral kernel which is L1 at short distances
and exponentially decaying at large. This implies for t ≥ 1

|(∂xKt )(x, y)| ≤ C t−ν/2[exp(−D(x − y)2/t) + exp(−E|x − y|)]
which, with (3.3) and the formula (1.16), implies (1.17). We summarize:

THEOREM 3.1. The estimate (1.17) holds for any potential V obeying the hypothesis
of Theorem 1.3.
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4. Improved time decay estimates on ∂tLt

Here the goal is to show that

|(∂xLt )(x, y)| ≤ C t−α (4.1)

for some α > ν/2. We believe the estimate holds with α = ν/2 + 1/2 and have proven
this if V is periodic: One makes a Bloch wave decomposition [8] to write the semigroup as
an integral over the Brillouin zone and a Gaussian approximation to control the resulting
integral. One uses the fact that the minimum of the bottom band is known to be a unique
point with a strictly quadratic minimum [4]. In general, we rely on estimates of Porper-
Eidel’man [6] and only get α > ν/2. (In a later paper [7], they get α = ν/2 + 1/2 for the
case p = 1 below that does not accommodate our situation.)

Indeed, (4.1) is exactly Corollary 3.4 of their paper which they prove for fundamental
solutions of equations of the form

p(x)∂tu = ∇ · (a(t, x)∇u), (4.2)

where p, a and ∇a are all Hölder continuous.
But (2.5) can be rewritten

Mf = −�−2∇ · (�2∇f )

so

∂tu = −Mu

is of the form (4.2) where

p = �2 and aij = �2δij.

Thus, their result applies so long as � is C1 with ∇� uniformly Hölder continuous.
Since �� = V � with V ∈ C1 and � a priori bounded, we see that

∇� = ∇(−� + 1)−1(−V + 1)�.

Since (−V + 1)� is bounded, the explicit integral kernel for ∇(−� + 1)−1 shows ∇� is
uniformly Hölder continuous of any order less than 1. Thus, their Corollary 3.4 applies and
(4.1) holds.
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