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We discuss resonances for Schro� dinger operators in whole- and half-line
problems. One of our goals is to connect the Fredholm determinant approach of
Froese to the Fourier transform approach of Zworski. Another is to prove a result
on the number of antibound states��namely, in a half-line problem there are an
odd number of antibound states between any two bound states. � 2000 Academic

Press

1. INTRODUCTION

In this paper, we want to discuss resonances and antibound states in one
dimension for Schro� dinger operators H=H0+V, where H0 is one of the
following:

Case 1. &d 2�dx2 on L2 (R).

Case 2. &d 2�dx2 with u(0)=0 boundary conditions on L2 (0, �).

Case 3. &d 2�dx2 with u$(0)+hu(0)=0 boundary condition on L2 (0, �).

Case 4. &d 2�dx2+l(l+1)�x2 on L2 (0, �); l=1, 2, ... .

We will often consider Case 2 as the l=0 case of Case 4. We will nor-
mally suppose V has compact support, although many of our results only
require

| ea |x| |V(x)| dx<� (1.1)

for all a>0 (and some only that (1.1) hold for suitable a>0).
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The operator H0 has spectrum [0, �) except for Case 3 with h<0 which
has a single eigenvalue at energy &h2. That means that (H0+}2)&1 is a
well-defined operator in the region Re }>0 (except for a pole at }=&h
in Case 3 with h<0). Its integral kernel

(H0+}2)&1 (x, y)#G0 (x, y; })

has an explicit formula in terms of exponential functions in Cases 1�3 and
Bessel functions in Case 4. For example

G0 (x, y; })=e&} |x& y|�2} (Case 1) (1.2)

G0 (x, y; })=e&}x> sinh(}x< )�} (Case 2), (1.3)

where x<=min(x, y) and x>=max(x, y).
From these explicit formulae, G0 (x, y; }) as a function of } has an

analytic continuation to the entire } plane except for a simple pole at }=0
in Case 1 and at }=&h, in Case 3 with h�0.

By the explicit formula for G0 , it can be seen that when (1.1) holds for
all a>0,

K(})(x, y)=V(x)1�2 G0 (x, y; }) |V( y)|1�2 (1.4)

is in L2 (R_R, dx dy) for all } (except for the simple pole in Cases 1 and
3) and so defines an analytic Hilbert�Schmidt operator-valued function on
C (or C"[0], or C"[&h]). In (1.4), V(x)1�2 is short for

V(x)1�2=V(x)�|V(x)|1�2 if V(x){0

=0 if V(x)=0.

K(}) is called the Birman-Schwinger kernel.
It is well known (see, e.g., [7, 23] that

Birman-Schwinger Principle. H0+V has &}2 as an eigenvalue (with
Re }>0) if and only if K(}) has eigenvalue &1.

With this in mind, one defines

Definition. } is called a resonance energy if Re }<0 and K(}) has
eigenvalue &1. The multiplicity of the resonance is the algebraic multi-
plicity of the eigenvalue. If Im }=0 as well, we call } an antibound state.

Of course, &}2 is really the energy, but since } is the natural parameter,
we will abuse terminology. This definition is the one of Froese [8, 9].
Melrose and Zworski and their school in numerous papers (e.g., [29, 31])

397RESONANCES IN ONE DIMENSION



have defined resonance in terms of poles of suitable elements of the analyti-
cally contained S-matrix. It follows from our results below (Propositions 2.9
and 2.10) that the definitions agree and are equivalent to the solution of
&u"+Vu=&}2u with u(x)=e&}x (a suitable Hankel function in Case 4)
near +� obeys the boundary condition at zero in Cases 2 and 3, is e+}x

near &� in Case 1 and decreases as x a 0 in Case 4.
While one has obviously that K(}) is Hilbert�Schmidt, the following is

true:

Theorem 1. K(}) is trace class for all } (except for the poles in Cases
1 and 3).

This is a result of Froese [8] for Cases 1 and 2, but it seems worthwhile
to give an alternate proof that also works in Case 4 (Case 3 is an easy con-
sequence of Case 2). We do this in Section 2. Once one has Theorem 1, it
is natural to define

d(})=det(1+K(})) (1.5)

in which case the resonances or bound states are precisely the zeros of d(})
(or }d(}) in Case 1 or (}+h) d(}) in Case 3). Determinants have also been
used by Melrose [20] and Zworski [30] in their work on resonances.

Our main goals in this paper are the following:

(1) Zworski [29] proved his theorem on counting resonances by
realizing the inverse of a suitable S-matrix element as a Laplace transform.
Froese's alternate proof directly analyzes the asymptotics of d(}). In this
paper, we link the two methods by showing the Fredholm determinant can
be realized as a Laplace transform. This provides an alternate to using
Melin's theory [19].

(2) We want to present a new result on counting antibound states.
During the final preparation of this manuscript, I received a preprint of
Kargaev�Korotyaev [13] who independently found this result.

To be more specific, in Section 2, we will prove expansion formulae for
the Fredholm determinants d(}) in Cases 1 and 2 (this part also works for
Cases 3 and 4, but we do not state these results explicitly since we will only
handle Cases 1 and 2 in Section 3).

Theorem 2. In Case 2 (half-line with u(0)=0 boundary conditions),

d(})=1+ :
�

n=1

dn (}) (1.6)
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with

dn (})=|
x0#0<x1< } } } <xn

V(x1) } } } V(xn)

_ `
n

j=1

sinh(}(xj&x j&1))
}

e&}xn dx1 } } } dxn . (1.7)

Theorem 3. In Case 1 (H0 # &d 2�dx2 on L2 (R)),

d(})=1+ :
�

n=1

dn (}) (1.8)

with

dn (})=|
x1< } } } <xn

V(x1) } } } V(xn)

__`
n

j=2

sinh(}(xj&xj&1))
} & e&}(xn&x1)

2}
dx1 } } } dxn . (1.9)

Notes. 1. The product in (1.9) has n&1 terms and is empty in case
n=1 so that

d1 (k)=
1

2} | V(x) dx. (1.10)

2. Equation (1.9) implies that if we look at the problem of *V with
a coupling constant * added

}d(})=}+* | V(x) dx+*2F(*, })

with F analytic near *=}=0. It follows that if � V(x) dx<0, there is a
bound state for small * with energy (&}2) given by &*2 (� V(x) dx)2+
O(*3) and an antibound state at that energy if � V(x) dx>0. This recovers
old results of Landau�Lifshitz [16, Section 45] (see also Simon [25]).

Once we have these expansions, we can use

sinh }y
}

=|
y

0
e&2}:e}y d:

to obtain the following Laplace transform representations:
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Theorem 4. In Case 2, let a=sup (supp(V)). Then

d(})=1+|
a

0
t(:) e&2:} d:

for a suitable L1-function t on [0, a] with a # supp(t).

Theorem 5. In Case 1, let [a, b] be the convex hull of the support of V.
Then

}d(k)=}+ 1
2 |

b

a
V(x) dx+ 1

2 |
b&a

0
t(:) e&2:} d:,

where b&a # supp(t).

Following Zworski, these Laplace transform formulae allow one to use
Titchmarsh's theorem [28] to obtain the result of Regge [24] and Zworski
[29] on the density of resonances.

While we will directly write down these Laplace transforms, we could use
a less direct result. As we will show in Section 2, the expansion in
Theorem 2 lets us identify d(}) with a Jost function, the value of the Jost
solution at x=0 (this is not a new result; it is due to Jost�Pais [12]). But
Levin [17] has a Laplace transform formula for the Jost solution as used
extensively by Marchenko [18] and that allows one to prove Theorem 4
from Theorem 2 (the estimate we use to show a # supp(t) is in Marchenko's
book).

Our final results are on a different subject

Theorem 6. In a half-line problem (Cases 2, 3 or 4), suppose h has n
bound states 0<}1< } } } <}n . Then each interval (&}j+1 , &} j) has an odd
number of antibound states and, in particular, at least one antibound state. In
particular, there are at least (n&1) antibound states.

We will prove Theorems 1, 2, and 3 in Section 2, Theorems 4 and 5 in
Section 3 and Theorem 6 in Section 4. An appendix has a result on finite
determinants that we need in Section 2.

I thank F. Gesteszy, M. Hitrik, K. Makarov, and A. Pushnitski for useful
discussions.

2. EXPANSION OF THE FREDHOLM DETERMINANT

In this section, we want to first power that K(}) is trace class for all
} # C (or C"[0]), that is, prove Theorem 1. Then we present an expansion
of the determinant, det(1+K(})), in the l=0 case (Theorems 2 and 3).
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We begin with the whole-line case, so

K(})(x, y)#V(x)1�2 e&} |x& y|

2}
|V( y)|1�2.

Since V has compact support, K(})(x, y) is L2 in R_R for all } # C"[0]
and the kernel is analytic. Thus,

Proposition 2.1. K(}) is Hilbert�Schmidt for all } # C"[0] and analytic
in }.

For Re }>0, we can write

K(})=V 1�2 (x)( p2+}2)&1 |V(x)|1�2.

It is a basic fact [26, Theorem 4.1] that if f, g # L2 (R), then f ( p) g(x) is
Hilbert�Schmidt with

& f ( p) g(x)&2�(2?)&1�2 & f &2 &g&2 . (2.1)

It follows immediately that

Proposition 2.2. If g, h # L2 (R) and f # L1 (R), then g(x) f ( p) h(x) is
trace class and

&g(x) f ( p) h(x)&1�(2?)&1 &g&2 &h&2 & f &1 .

Note next that if |Arg }| # ( ?
4 , ?

2),

|
d\

| p2+}2|
�

c
|Im }|

[1+log( |Im }|�Re })],

so we have

Proposition 2.3. For |Arg }| # ( ?
4 , ?

2), K(}) is trace class with

&K(})&1�c &V&1 _ 1
|Im }|

[1+log( |Im }|�Re })]& . (2.2)

Next, we note that

(K(})&K(&}))(x, y)=V 1�2 (x)
2 cosh(} |x& y| )

}
V( y)1�2

=V 1�2 (x)
2 cosh(}(x& y))

}
|V( y)|1�2

is a rank 2 operator. It follows that
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Proposition 2.4. If Re(})>0, K(})&K(&}) is trace class with

&K(})&K(&})&1�2 | |V(x)| e2(Re }) |x| dx.

As a result

Proposition 2.5. If Re(})<0, K(}) is trace class with

&K(})&1�C(1+log( |Im }| )), (2.3)

where C is a constant bounded on each half-annulus [} | Re }<0, 0<A<
|}|<B].

Now given }0 with }0=i:, : # R"[0], write

K(}0)=|
?

&?
K \}0+

:
2

ei%+ d%
2?

.

Since &K(}0+ :
2ei%&1 has only logarithmic singularities at %=\?

2 , we
conclude

Proposition 2.6. K(}) is trace class on C"[0].

This is just Theorem 1 in this case.
The proof of Theorem 1 in the l(l+1)�r2 case depends on an eigenfunc-

tion expansion for h (0)
l . Let

ul (k, x)=kxjl (kr),

where jl is a spherical Bessel function. Then [1],

(Fl.)(k)=�2
? |

�

0
ul (k, x) .(x) dx (2.4)

is a unitary map of L2 (R, dx) to L2 (R, dk), that is,

|
�

0
|(Fl .)(k)|2 dk=|

�

0
|.(x)| 2 dx (2.5)

and

(Flh (0)
l .)(k)=k2 (Fl.)(k). (2.6)
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While the usual proof [26] that & f ( p) g(x)&2=(2?)&1�2 & f &2 &g&2

comes from writing f ( p) as a convolution operator, here is another proof.
Let V be the Fourier transform and let Mf be multiplications by f (x). Then

f ( p) g(x)=V &1Mf VMg

so since V &1 is unitary & f ( p) g(x)&2=&Mf VMg & but Mf VMg has integral
kernel

(Mf VMg)( p, x)= f ( p)
e&ipx

- 2?
g(x)

from which the Hilbert�Schmidt norm formula is immediate. Similarly,

Proposition 2.7. If f, g # L2 (0, �), then f (- h (0)
l ) g(x) is Hilbert�

Schmidt and

& f (- h (0)
l ) g(x)&2�C & f &2 &g&2 . (2.7)

Proof. As above,

f (- h0
l ) g(x)=F &1

l Mf FlMg ,

so since Fl is unitary (2.5), we have

& f (- h (0)
l ) g(x)&2=&Mf FlMg &

and the latter has integral kernel

f (k) �2
?

ul (k, x) g(x)

so (2.7) follows from |u(k, x)|�C1 (see [1]). K

With (2.7) in hand, the proof of Theorem 1 is essentially identical to the
proof in the whole-line case. The l=0 situation is identical to the u(0)=0
boundary conditions for the half-line &d 2�dx2 case and then the general h
bound condition situation follows from the fact that the difference of
the resolvents is rank 1 when h changes. That completes the proof of
Theorem 1.

Once we know K(}) is trace class, we can form d(})=det(1+K(})). We
turn to the expansion of the Fredholm determinant. We will do this for a
general trace class operator, A, with an integral kernel A(x, y) on R (or
[0, �)) of the form

A(x, y)=V(x)1�2 G0 (x, y) |V( y)|1�2, (2.8)
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where G0 has the form

G0 (x, y)= f& (x<) f+ (x>), (2.9)

with x<=min(x, y), x> =max(x, y). We will show that

Proposition 2.8. Let A be a trace class operator of the form (2.8)�(2.9).
Then

det(1+A)=1+ :
�

n=1
|

x1< } } } <xn

V(x1) } } } V(xn) f& (x1) f+ (xn)

_ `
n&1

j=1

[ f+ (x j+1) f& (xj)& f+ (xj) f& (x j+1)] dx1 } } } dxn .

(2.10)

Remarks. 1. We are vague about convergence issues since in the
applications we make, they are trivial. In general, it certainly suffices that
� |V(x)| [ | f+ (x)|+| f& (x)|+1]2 dx<�.

2. Theorems 2 and 3 are immediate corollaries of Proposition 2.8
given that

e&}x(2})&1 e+}y&e&}y (2})&1 e+}x=}&1 sinh(}( y&x))

and

e&}x}&1 sinh(}y)&e&}y}&1 sinh(}x)=}&1 sinh(}( y&x)).

3. While we are interested in the cases given by Theorems 2 and 3
because of the application in the next section, the proposition applies
directly to the l(l+1)�x2 example; f& is a Bessel function (of imaginary
argument) and f+ is a suitable Hankel function.

4. Jost�Pais [12] have a related result.

Proof. As shown in [26] (and essentially due to Fredholm)

det(1+A)=1+ :
�

n=1

1
n! | A \x1 } } } xn

x1 } } } xn+ dx1 } } } dxn , (2.11)

where

A \x1 } } } xn

y1 } } } yn +=det([A(x i , y j)] i, j=1, ..., n).
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Since A( x1 } } } xn
x1 } } } xn

) is symmetric in the x's, we can remove the n ! and integrate
over x1< } } } <xn . In that case,

A \x1 } } } xn

x1 } } } xn+=V(x1) } } } V(xn) det( f& (xmin(i, j)) f+ (xmax(i, j))).

Determinants of this form are discussed in the appendix where it is shown
that

det( f& (xmin(i, j)) f+ (xmax(i, j)))

= f+ (xn) f& (x j) `
n&1

j=1

[ f+ (xj+1) f& (xj)& f+ (x j) f& (xj+1)],

which proves the proposition. K

We close this section by using the expansions in Theorems 2 and 3 to
identify d(}) with quantities related to the Jost function. Consider first
the half-line case. Let d(}, x0) be the d(})-function for the potential
[V(x+x0)]x�0 . Then, with

F(x, y; })=
sinh(}( y&x))

}
, (2.12)

we have that

d(}, xo)=1+ :
�

n=1
|

0<x1< } } } <xn

F(0, x1 ; }) V(x0+x1) F(x1 , xi ; }) } } }

_V(x0+xn) e&}xn dx1 } } } dxn

=1+e}x0 :
�

n=1
|

x0<x1< } } } <xn

F(x0 , x1 ; }) V(x1) F(x1 , xn) } } } V(xn)

_e&}xn dx1 } } } dxn

by a change of variables. That means if we define

f (x, })=e&}x d(}, x), (2.13)

then f obeys

f (x, })=e&}x+ :
�

n=1
|

x<x1< } } } <xn

F(x, x1 ; }) V(x1) F(x1 , x2 ; }) } } } V(xn)

_e&}xn dx1 } } } dxn , (2.14)
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so that f obeys the integral equation

f (x, })=e&}x+|
�

x
F(x, y; }) V( y) f ( y, }) dy, (2.15)

which implies that f obeys

& f "+Vf =&}2f (2.16)

with the boundary condition

f (x, })=e&}x if x�a=sup[supp V]. (2.17)

Thus,

Proposition 2.9. f (x, }) is the Jost solution, that is, solution of (2.16)
which obeys (2.17). In particular, d(}) is the Jost function, that is,
f (x=0, }).

Remark. It is a known result that the Jost function is a Fredholm deter-
minant. See Jost�Pais [12] and Simon [26]. Our proof is related to that
of Jost�Pais. Similarly, Proposition 2.10 below is known; it follows by
combining formulae in Newton [21].

There is a related expression for the whole-line case. First, we need some
notation. Let [a, b] be the convex hull of the support of V. The Jost solu-
tions f\ (x, }) are the solutions of (2.16) that obey the boundary conditions

f\ (x, })=e�}x for \x�|a|+|b|. (2.18)

Given two C1 functions f, g, we define their Wronskian by

W( f, g)(x)= f $(x) g(x)& f (x) g$(x). (2.19)

As usual, if f, g obey the same second-order differential equation, W is
constant and we denote its value as W( f, g). Finally, we define the free Jost
solutions

f (0)
\ (x, })=e�}x.

Proposition 2.10. In the whole-line case

}d(})= 1
2W( f& ( } , }), f+ ( } , })). (2.20)
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Proof. By looking at the expansion (2.14) of the Jost solution f+ (x, }),
and the expansion of d(*) given by Theorem 3, we see that

d(})=1+
1

2} |
b

a
e}xV(x) f+ (x, }) dx (2.21)

so

}d(})=}+ 1
2 |

b

a
f (0)

& (x, }) V(x) f+ (x, }) dx. (2.22)

But since f+= f (0)
+ for x>b,

}= 1
2W( f (0)

& , f+)(b)

and

f (0)
& (x, }) V(x) f+ (x, })=&

d
dx

W( f (0)
& , f+),

so (2.22) shows that

}d(})= 1
2W( f (0)

& , f+)(a).

But for x�a, f (0)
& = f& , so

}d(})= 1
2W( f& , f+)(a)= 1

2 W( f& , f+)(x)

for all x. K

Remarks. 1. Proposition 2.9 can be rephrased in a form close to
(2.20). Namely, if u(x, }) is the solution of (2.16) obeying u(0, })=0,
u$(0, })=1, then d(})=W(u, f ).

2. Similarly, in the l(l+1)�x2 case, if fl (x, }) is the solution of the
equation

&u"+
l(l+1)

x2 u+Vu=}2u,

which is given by kxh(1) (}x) if x�a=sup (supp(V)) and ul is the solution
that obeys limx a 0 u(x, r)�kxjl (kx)=1, then

d(})=W(u, f ).

In the next section, we will need an additional function and a relation
between d and this new function. Let c(}) be defined by

}c(})# 1
2W( f& ( } , }), f+ ( } , &})). (2.23)
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Proposition 2.11.

(i) f& ( } , })=&c(}) f+ ( } , })+d(}) f+ ( } , &}) (2.24)

(ii) d(}) d(&})=1+c(}) c(&}) (2.25)

Proof. (2.23) is a direct consequence of (2.20), (2.23) and

W( f+ ( } , }), f+ ( } , &}))=&2}

since f+ (x, })=e&}x for x near +�.
Writing (2.24) for } and &} and

W( f& ( } , }), f& ( } , &}))=2}

(since f& (x, })=e}x for x near &�), we have that

2}=&2}c(}) c(&})+2} d(}) d(&})

which implies (2.25). K

3. DETERMINANTS AS LAPLACE TRANSFORMS

Our goal in this section is to prove Theorems 4 and 5. Given the expan-
sion of Theorems 2 and 3, the argument is similar to part of the construc-
tion of the A-function in [27]. We will use

sinh }x
}

=|
x�2

&x�2
e&2l} dl (3.1)

=|
x

0
ex}e&2l} dl. (3.2)

We start with the half-line case. Using (1.7) and (3.2), we have that

d(})=1+ :
�

n=1

dn (}) (3.3)

dn (})=|
0<x1< } } } <xn; 0<l1<x1, 0<l2<x2&x1, ..., 0<ln<xn&xn&1

V(x1) } } } V(xn)

_e&2 �n
j=1 lj } dx1 } } } dxn dl1 } } } dln (3.4)

#| tn (:) e&2:} d:, (3.5)
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where

tn (:)=|
0<x1< } } } <xn

V(x1) } } } V(xn) Rn (x1 , ..., xn ; :) dx1 } } } dxn (3.6)

with

Rn (x1 , ..., xn ; :)

=|
0<l1<x1, 0<l2<x2&x1, ..., 0<ln<(xn&xn&1)

$ \ :
n

j=1

lj&:+ dl1 } } } dln . (3.7)

Lemma 3.1. (i) Rn=0 if :>xn

(ii) |Rn |�:n&1�(n&1)!

(iii) For n�2, Rn is C1 and |�Rn ��:|�2(:n&2�(n&2)!).

Proof. (i) By the inequalities on lj , � lj�(x1+(x2&x1)+ } } } +
(xn&xn&1))=xn .

(ii) Clearly, |Rn |��0<l1, 0<l2, ..., 0<ln
$(�n

j=1 lj&:) dl1 } } } dln=(:n&1�
(n&1)!) by induction.

(iii)

�Rn

�:
=|

} } }
$$ \ :

n

j=1

lj&:+ dl1 } } } dln

=|
} } }

$ \ :
n&1

j=1

lj&:+ dl1 } } } dln&1

&|
} } }

$ \ :
n&1

j=1

lj&:&(xn&xn&1)+ dl1 } } } dln&1 .

Now use the estimation method of (ii). K

Proposition 3.2. Let a=sup (supp(V)).

(i)

d(})=1+|
a

0
t(:) e&2:} d: (3.8)

with t(:) a continuous function.
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(ii) t is an absolutely continuous function with

|t$(:)+V(:)|�C |
a

:
|V( y)| dy. (3.9)

(iii) The convex hull of the support of $(:)+t(:) is [0, a].

Proof. By (3.6) and (ii) of Lemma 3.1, we have that

|tn (:)|�
:n&1

(n&1)! _|
a

:
|V( y)| dy& 1

(n&1)! \|
a

0
|V( y)| dy+

n&1

so

t(:)= :
�

n=1

tn (:)

converges and we can justify the interchange of sum and integral to obtain
(3.8).

Similarly, by (iii) of Lemma 3.1, ��
n=2 tn (:) is C1 with derivative g(:)

that obeys

| g(:)|� :
�

n=2

(2:n&2)�(n&2)! _|
a

:
V( y) dy& 1

(n&1)! \|
a

0
|V( y)| dy+

�C |
a

:
|V( y)| dy.

By a direct calculation.

t1 (:)=|
a

:
V( y) dy

so that (3.9) is proven.
Clearly, t(:) is supported on [0, a] and $+t has 0 in its support. That

means we need only show t is non-zero on each interval [a&=, a].
Suppose t vanishes identically on such an interval. Then by (3.9),

|V(:)|�C |
a

:
|V( y)| dy

for :>a&=. So for x # [a&=, a],

|
a

x
|V( y)| dy�|a&x| C |

a

x
|V( y)| dy

410 BARRY SIMON



so V vanishes on [a&=$, a) with =$=min(=, 1
C). Since a=sup (supp(V)) by

hypothesis, this is a contradiction which shows that a # supp(t). K

This implies Theorem 4. Proposition 3.2 also makes it easy to construct
potentials with an infinity of antibound states. The basic idea is close to
those of Titchmarsh [28] on zeros of Laplace transforms and a similar
analysis (but using Melin's theory and on the whole line) has been made
by Zworski [29]. Define intervals I1 , I2 , .../[0, 1] by I1=[0, 1

2], I2=
[ 1

2 , 3
4], ..., In=[1&(1�2n&1), 1&(1�2n)]. Let an=2ne&2n+1

and

V(x)=(&1)n an if x # In .

It is easy to modify V to be C�. The infinity of oscillations of V is critical
since if V has a definite sign near x=a, it is easy to see that t(:) has a
definite sign, and so f (&}) does for } near infinity and thus there are only
finitely many antibound states.

Since an is decreasing, |t$(:)+V(:)|�C2&nan by (ii) of Proposition 3.2.
Thus for n large, t$(:) is very close to (&1)n+1 an on In . Thus

|
1

0
t$(:) e2:} d:t :

�

n=1

(&1)n+1 an2&ne2(1&2&n) }

te2} :
�

n=1

(&1)n+1 exp(&2&n&1}&2n+1).

For }m=22(m+1), it is easy to see this sum is dominated by the term with
n=m. Since �1

0 t$(:) e2:} d:t&2} �1
0 t(:) e2:} d:, we concluded that

(&1)m f (&22(m+1))>0

for m large, and so f (&}) has infinitely many zeros as } � �.
Once one has a half-line potential with an infinity of antibound states,

the same is true of whole-line problems with suitable even potentials.
We now turn to the whole-line case and Theorem 5. We will use (2.21)

2}d(})=2}+|
b

a
e}xV(x) f+ (x, }) dx, (3.10)

as well as the following formula proven in a similar way:

2}c(})=|
b

a
e}xV(x) f+ (x, &}) d* (3.11)

=|
b

a
f& (x, }) V(x) e}x dx. (3.12)
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Proposition 3.3. In the whole-line case:

(i)

}d(})=}+ 1
2 |

b

a
V(x) dx+ 1

2 |
b&a

0
t(:) e&2:} d: (3.13)

for an L1-function t on [0, b&a].

(ii)

}c(})= 1
2 |

b

a
e2}:s(:) d:, (3.14)

where s(:) is a function in L1 (a, b).

(iii)

|s(:)&V(:)|�C |
:

a
|V( y)| dy

�C |
b

:
|V( y)| dy.

(iv) a, b # supp(s).

Proof. (i) We begin with the extension of (3.8) which implies that

f+ (x, })=e&}x+|
b

x
t+(:, x) e&2}:e+}x. (3.15)

Plugging this into (3.10),

}d(})=}+ 1
2 |

b

a
V(x) dx+ 1

2 |
b

a
dx |

b

x
t+ (:, x) e&2}(:&x) d:

=}+ 1
2 |

b

a
V(x) dx+ 1

2 |
b&a

0 \|
b&;

a
t+ (;+x, x) dx+ e&2;} d;,

which is (3.13) if t(:)=�b&:
a t+ (:+x, x) dx.

(ii) Plugging (3.15) into (3.11) yields

}c(})= 1
2 |

b

a
e2}xV(x) dx+ 1

2 |
b

a
V(x) dx \|

b

x
t+ (:, x) e2}: d:+
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which is (3.14) if

s(:)=V(:)+|
:

a
t+ (:, x) V(x) dx. (3.16)

Using (3.12) instead of (3.11) yields

s(:)=V(:)+|
b

:
t& (:, x) V(x) dx. (3.17)

(iii) This follows from (3.16)�(3.17) with

c=sup
:, x

|t\ (:, x)|.

(iv) This follows as in the proof of (iii) of Proposition 3.2. K

Equation (3.13) is Theorem 5 if we prove that b&a # supp(t). We give a
proof of this fact that is part of Zworski's proof [29] translated to our
language; Froese [8] has a different proof.

Proposition 3.4. b&a # supp(t).

Proof. Write }d(})=� m(:) e&2:} d: and }c(})=� n(:) e&2:} d: in
distributional sense where

m(:)= 1
2$$(:)+\ 1

2 |
b

a
V(x) dx+ $(:)+ 1

2 t(:)

and

n(:)= 1
2s(&:).

By (2.25) and the uniqueness of inverse Laplace transforms

(m V m~ )(:)= 1
4$"(:)+(n V n~ )(:), (3.18)

where m~ (:)=m(&:) and V is convolution. Since a, b # supp(s), we have
that a&b and b&a lie in supp[n V n~ ]. If supp[m]/[0, c], then
supp[m V m~ ]/[&c, c]. Hence by (3.18), b&a # supp[m]. K

4. ANTIBOUND STATES

Our goal in this section is to prove Theorem 6. We will provide three
rather different proofs, two that I found and one supplied to me by G. M.
Graf [11]. We will present them first in the case when u(0)=0 boundary
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conditions with V of compact support, and then make some remarks about
the other cases.

First Proof of Theorem 6. We begin by noting some properties of the
Fredholm determinant d(}):

(i) If }{0, either d(}){0 or d(&}){0 (or both). This is true
because if d(\})=0, then the Jost solution f (x, \}) vanishes at x=0, so
the function solving &u"+qu=&}2u with u(0)=0, u$(0)=1 is :e�}x for
x>a#max supp(V). This cannot happen for both } and &} since u{0
for x large.

(ii) If d(}=0)=0, then d $(}=0){0. This well-known result holds
because �

�} f (x, }) |}=0 and f (x, }) | }=0 both solve &u"+qu=0 and are
equal to x and 1 for x>a. As with the proof of (i), it cannot happen that
both d(}=0)=0 (in which case the solution with u(0)=0, u$(0)=1 is a
constant for x>a) and �d

�} (}=0)=0 (in which case u is equal to :x for
x>a).

(iii) If }n (*) are the bound state ``energies'' of &d 2�dx2+*q, then
}n (*) is increasing in * for * in (Ln ; �) where Ln is the infimum over those
* with n or more bound states. This follows from first-order perturbation
theory (Feynman�Hellman theorem), which implies that �(&}2

n)��*=
(., q.)� &}2

n �*<0.

(iv) There are no zeros of f in the quadrants Re }>0, Im }{0 since
they would correspond to imaginary eigenvalues.

(v) Resonances (zeros with Re }<0, Im }{0) occur in complex
conjugate pairs.

This means as * increase and we look at eigenvalues of &d 2�dx2+*q,
the only way bound states can change is by an antibound state turning into
a bound state. However, antibound states can change due to a complex
pair of resonances turning into a pair of antibound states or vice-versa.

Now imagine * increasing past L1 . A single antibound state turns into
a bound state }1 (*). For * near L1 , there is exactly one bound state�
antibound state near 0 since d $(L1){0 by (ii). In particular, there are no
antibound states in (&}1 (*), 0). Since &}1 (*) cannot be an antibound
state, no antibound states can pass along the real axis into or out of
(&}1 (*), 0) for * # (L1 , L2). Only pairs of resonances can produce pairs of
antibound states. Thus, for * # (L1 , L2), there are an even number of
antibound states in (&}1 (*), 0). At *=L2 , a single antibound state turns
into a bound state leaving an odd number in (&}1 (*), &}2 (*)). As *
increases, antibound states only get added or subtracted in pairs, so the
number stays odd. The argument is simple for each similar interval
(&}n (*), &}n+1 (*)) for *>Ln+1 . K
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Second Proof of Theorem 6. This proof has some connection with an
old paper of Ciafaloni�Menotti [6], who discuss a related result concern-
ing alternation as coupling constant is changed rather as } is varied. We
define

d(&})
d(})

=e(}). (4.1)

If }j is the j th bound state 0<}n<}n&1< } } } <}1 , then d(}j)=0 and
d(&}j){0 (as in (i) in the last proof). We will show that

lim
} � }j

(}&}j) e(})<0. (4.2)

It follows that e(}j+=)<0 and e(}j&1&=)>0 for = small and so, by con-
tinuity, e(}) has an odd number of zeros (counting multiplicity) in
(}j , }j&1). But zeros of d(&}) are the same as zeros of e(}).

We will prove (4.2) by using a representation for e(}) due to Froese
[8, 9]. In this case

d(})=det(1+K(}))

K(})(x, y)=V(x)1�2 sinh(}x< )
}

e&}x> |V( y)|1�2

so

[K(})&K(&})](x, y)=2}&1V(x)1�2 sinh(}x) sinh(}y) |V( y)| 1�2

is rank 1; call it A(}). Then

d(&})=d(}) det(1&(1+K(}))&1 A(}))

=d(})[1&Tr((1+K(}))&1 A(}))]

so [8, 9],

e(})=1&2}&1( |V| 1�2 .0 , (1+K(}))&1 V 1�2.0) , (4.3)

where .0 (x)=sinh(}x).
Let L(})=V 1�2 (h0+V+}2)&1 |V|1�2. Then, by the resolvent formula:

L(})=K(})&K(}) L(})

or

(1+K(}))&1=1&L(}).
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Then by (4.3)

e(})=1&2}&1(.0 , V.0) +2}&1(V.0 , (h0+V+}2)&1 V.0).

It follows from this that

lim
} � }j

(}&}j) e(}j)=&2}&1
j (2}j)

&1 |(V.0 , 'j) |2,

where 'j is the normalized eigenvector for H0+V at energy &}2
j . Thus, the

limit is non-positive. Since e has a pole, the limit is non-zero, and so (4.2)
is proven. K

Third Proof of Theorem 6 (Graf [11]). Let u(x, }) solve the equation
&u"+qu=&}2u with u(0)=0, u$(0)=1. As is well known, u(x, }j) has
j&1 zeros, so since u(x, })>0 for x small, (&1) j&1 u(x, }j)>0 for x near
infinity. Since q has compact support, say [0, a],

u(x, })=:(}) e&}x+;(}) e}x, x�a

and : and ; are continuous since u(x, }), u$(x, }) are, and :, ; can be
expressed in terms of suitable u, u$ data. By the sign condition on u near
infinity

(&1) j&1 :(}j)>0, (4.4)

where one has strict positivity since u cannot be identically zero on (a, �).
By the association of f and the Jost function, f (&})=0 if and only if the

solution which is e}x near infinity vanishes at x=0, that is, if and only if
:(})=0. By (4.4), : has an odd number of zeros in (}j , }j&1). K

These proofs were stated for the case where H has u(0)=0 boundary
conditions, but each proof can be modified to handle the other half-line
cases. For example, the third proof accommodates u$(0)+hu(0)=0 bound-
ary conditions by looking at the solution obeying that boundary condition
and u(0)=1 normalization. And it handles an l(l+1)�x2 term by replacing
exponentials by suitable Bessel functions.

The proofs also accommodate potentials with superexponential decay
with minor modification. For example, the second proof applies verbatim
to such potentials.

An illuminating example is the Bargmann potential [5] with Jost function
(suggested by Newton [22])

f (})=
(}&k1)(}&k2)

(}+k3+ik4)(}+k3&ik4)
,
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where kj>0 for j=1, 2, 3, 4. Such a potential has no antibound states and
seemingly violates Theorem 6. The point, of course, is that q is not super-
exponential in this case, but only decays as e&:x with :=min(k1 , k2 , k3).
In general, Theorem 6 does hold for potentials with exponential decay, say,
bounded by e&:x, but only for intervals (&} j , &}j&1) with } j<:.

APPENDIX A: THE DETERMINANT OF A GREEN'S MATRIX

Let [ai]N
i=1 , [bi]N

i=1 be two sequences and let C be the N_N matrix

cij=amin(i, j)bmax(i, j) ; 1�i, j�N. (A.1)

Our main goal in this appendix is to give a simple proof of the following
theorem of Barrett�Feinsilver [3], which we used in Section 2:

Theorem A.1. Let C be a matrix given by (A.1). Then

det(C)=bN(aN bN&1&aN&1bN)

_(aN&1bN2
&aN&2 bN&1) } } } (a2b1&a1b2) a1 . (A.2)

Remarks. 1. Barrett�Feinsilver [3] actually state the theorem for
matrices closely related to ones given by A.1 and express the result in terms
of the cij , viz:

det(C)= `
N&1

i=1

(ci, ici+1, i&1&c i, i+1c i+1, i)<`
N

i+1

cii .

2. The proof in [3] is combinatoric but has the advantage of
generalizations in a variety of directions [2, 15, 4].

3. An idea similar to our proof in a related context appears in
Jost�Pais [12].

4. Matrices of type (A.1) were dubbed Green's matrices by Karlin
[14] since they are a discrete analog of one-dimensional Green's functions.
Indeed, they occur in Section 2 in connection with free Green's functions.
And they arise as the inverses of symmetric tridiagonal matrices

J=\
x1

y1

b
0

y1 } } }
} } }
. . .

} } } yN&1

0
0
b

xN
+ (A.3)
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in that there is a one-one correspondence realized by the inverse between
invertible matrices of the form (A.1) and invertible matrices of the
form (A.3). This is a theorem of Gantmacher�Krein [10] (see also Barrett
[2]). Indeed, given an invertible (A.3), a can be determined by

a1=1; x1a1+ y1 a2 =0;

yn&1an&1+xnan+ yn an+1=0, n=2, ..., N&1 (A.4)

yN&1bN&1+xNbn=0;

yn&1bn&1+xnbn+ yn bn+1=0, n=2, ..., N&1, (A.5)

where b is normalized by

yn(an+1b1&bn+1 an)=1, n=1, ..., N&1. (A.6)

[Note: (A.4)�(A.5) imply the left side of (A.6) is independent of n
and it is non-zero if J is invertible.] Conversely, given a matrix (A.1), one
defines yn by (A.6). [Note: det(C){0 means (an&1bn&bn&1an){0 by
Theorem A.1.] And then one defines xn by (A.4) or (A.5).

Proof of Theorem A.1. We prove the result by induction in N. The
result for N=1 is obvious. If we can prove the result when bN&1 {0, it
follows by continuity for all bN&1 , so suppose bN&1 {0. Consider the last
row and column of C. It has aNbN in the corner and otherwise every
element is aj bN for some j # [1, ..., N&1]. It follows that

det(C)=aNbN det(CN&1)+b2
N F(a1 , ..., an&1 ; b1 , ..., bN&1),

where CN&1 is the (N&1)_(N&1) Green's matrix with the last row and
column removed and F is some function of [ai]N&1

i=1 and [b i]N&1
i=1 .

Fix these values of a and b and think of aN and bN as variable and
det(C) as a function of them. When aN=aN&1 and bN=bN&1 , then C has
the identical rows, so det(C)=0, that is,

aN&1bN&1 det(CN&1)+b2
N&1F=0

so, since bN&1 {0, F=&aN&1 det(CN&1)�bN&1 and thus

det(C)=bN(aNbN&1&aN&1bN) det(CN&1)�bN&1 . (A.7)

But by induction, we can assume (A.2) for det(CN&1) and thus (A.7)
implies (A.2) for det(C). K
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