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Abstract. Let //, be the Hamiltonian in a P(φ)2 theory with sharp space cutoff in the
interval (-1/2,1/2). Let E{ = infσ(//(), α(/)= -jy/, and let Ω{ be the vacuum for //,. We
discuss properties of α(/) and Ωt. In particular, as /->oc, there are finite constants β^ <0
and αx such that α f / J f α ^ , (α(/)-αX[) l[βx, and hence α(/) = αw + βJl + o(Γl). Moreover
exp( —q/)^ l |Ωι | | ι ^exp(-c 2/) for q, c2 positive constants, where [\Ωl\\l is the Ll(Q,dμQ]
norm of Ω, with respect to the Fock vacuum measure. We also present a new proof of
recent estimates of Glimm and Jaffe on local perturbations of//, in the infinite volume limit.

§ 1. Introduction

In this paper, we deal with the by now standard P(φ)2 field theory [4].
A polynomial P(X) which has real coefficients and which is bounded
from below will be called semi-bounded. If JP(0) = 0 and PφO, we will
say P is normalized. Our spatially cutoff Hamiltonian will have a sharp
space cutoff. We fix P semibounded and let fy — H0 -f- Vl where

V,= ]2 : P ( φ ( x ) ) : d x
-1/2

and where H0 is the free Hamiltonian of mass m0 > 0. By using techniques
of "Markov field theory", Nelson recently proved [10]:

<Ωo,έΓ'HΏ0> = <Ω0,<Γ/ H<Ω0> (1)

where Ω0 is the Fock ( = H0) vacuum. While this space-time symmetry
looks innocent, it is extremely deep; in particular, it has the "exponential
decoupling of distant regions" built into it via the exponential bound
on the semigroup. The usefulness of (1) was noted by Nelson [10] who
used it to prove the "linear lower bound" of Glimm-Jaffe [2]:
El = mϊσ(H0 -f Vt) ^ — cl for some c. In [8] Guerra realized the possibility
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of controlling the infinite volume limit by means of (1) and he obtained
these results: Let Ωl be the ground state of Ht (which we know to be
unique [1,19]) and define

<*(/) = -£,//. (2)
Then [8],

lim α(/) exists and equals αx j = sup α(/) (3 a)
ί~+oo " I

and, for any p < 2 and m, there exists a constant cm p so that for large / :

l |Ω z | |P^m,Prm. (3b)

Here || || p is the LP(Q, dμQ) norm in "Q space" [14, 19, 5]. If P is normalized,
α^ > 0 so that Guerra concluded that El obeys a "linear upper bound"
E z< — c'/(c'>0), and that the Van Hove phenomenon takes place:
Ωj-^0 in L2.

The way in which E(H) = inίσ(H) depends on H, especially when
we take H to be Ht perturbed by a local polynomial in φ, is of critical
importance in removing the space cutoff and controlling the limiting
physical theory (see [3] and the consequences of Theorem 2 below).
Before Nelson's symmetry, this dependence seemed to be a difficult
question since as /->oo, the vacuum renormalization constant, E/, is a
non-super-renormalizable infinity, i.e. it is infinite in every order in
perturbation theory. Thus Et must be defined implicitly and cannot be
expressed in closed form. We will show that Nelson's symmetry provides
a remarkable hold on E^ Its most striking consequence is:

Theorem 1. For any P, α(/) is a monotone increasing function of I.

This result puts Eq. (3) in perspective. We note that it is predicted by
perturbation theory (see § 6). A second consequence of Nelson's space-
time symmetry (in the more general form (5c) below) is a simple proof
of a result recently proved by Glimm and Jaffe [3]:

Theorem 2. Let W= §g(x): Q(φ(x)): dx where
(i) g is measurable, nonnegative and \\g\\ ^ ̂  1,

(ii) suppg C [ — α, b~] a, b < GO,
(iii) P + Q is semibounded.

Thenif \_-a, b]C (-1/2,1/2),

-W^W-Eά + c (4)

where c is a constant independent of I and g but dependent on α, b and Q.
As a, b-»oo, c is hounded by c a -f b\.

Theorem 2 has a number of important applications. By a limiting
argument, (4) transfers to a bound on the physical Hubert space:
- W^ Ήren + c. The bounds for Q(X)=±X alone imply that:
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(a) [3, 11] J/(x, ί) φ(x, i) dxdt is self-adjoint on the physical Hubert
space if fe «9^(IR2) is real;

(b) [3, 1 1] The physical vacuum expectation values are tempered
distributions;

(c) [11] Green's functions exist;
(d) [3] The physical vacuum vector which was picked to be cyclic

in the sense of bounded quasi-local operators is cyclic in the Wightman
sense.

The proof of theorem 2 depends on ideas of Glimm-Jaffe and most
importantly on an extension of (1), again due to Nelson; namely, if
Pl5 P2, ..., Pn are semibounded polynomials, let

112

lf>= I :Pt(<i>(x)):dx (5a)
-1/2

and let

x)):dx (5b)
i = 1 <*ι - i

where — oo < α0 < aγ < - < an < oo. Then

= /Ω0, Π έΓ<β'-β'- l )(H° + F'(1))Ω0 (5c)

Intuitively, Eq. (5) and its special case (1) come from a rotation by
π/2 in (x, it) space. They are a reflection of the Lorentz invariance of the
free theory and of the interaction density. It is interesting to see the role
played by the relativistic properties of the free field in controlling the
infinite volume limit. We have known for several years [7,16] that the
locality of the interaction and the causality of H0 allow one to control
the /-^ oo limit of the time automorphisms. It now appears that properties
of the free theory are also critical in controlling properties of the states
ωt( ) = <£2|, Ώf> in the infinite volume limit.

In the remainder of this paper, we take (5) as given and otherwise do
not use Markov field techniques. We do so because we find the prob-
abilistic techniques less familiar than the Lp methods of Fock space
and 2-space and we suspect the same is true for other quantum field
theorists. More significantly, if there are fermions present one has a good
candidate for β-space [6] but as yet, no Markovian field theory. Thus,
it is useful to isolate the methods in a form which may be applicable to the
Yukawa theory.

The plan of this paper is as follows: in §§ 2, 3 we prove Theorems 1
and 2 respectively. In § 4 we develop some "hypercontractive machinery"
to be used in later sections and, in particular, we provide a detailed version
of Nelson's proof of the linear lower bound. In § 5 we show that \\Ωl\\ΐ
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goes to 0 exponentially, thereby improving (3b). In §6 we establish
various properties of α(7) suggested by second order perturbation theory;
e.g., to order ί"1, α(7) has an asymptotic expansion, α^^α^ +βaol~

l

We should like to thank A. S. Wightman and E. Nelson for fruitful discussions.

§ 2. Monotonicity of the Vacuum Energy per Unit Volume

Theorem 1. For any P(φ)2 theory with P a semibounded polynomial,
α(/) is a monotone non-decreasing function of I.

Proof. Let μ be a probability measure on [0, oo) and let 0<α< 1.
Then, by Holder's inequality, ||*lι g | |xα | |α-ι | | l | | (ι- f l )-ι or

(6)

By the spectral theorem, (6) implies that for any positive selfadjoint
operator A and any unit vector ψ in its form domain, <ιp, Aaψy ^ <ιp, A ψya,
so that, in particular

or by Nelson's symmetry,

<Ω0, e-<H«Ώ0> ̂  <Ω0, *-<H'β0>
β . (7b)

Now, for any fixed /, we know <ΩZ, Ω0> > 0, so that

e~tEl ^ <00, *-'HlΩ0> ̂  e-tE'\(Ωl9 Ω0>|2
implies

ί —» co

a formula used extensively by Glimm and Jaffe in [3]. (7b) and (8)
imply that for any 0 < a < 1 and / > 0, — Eal ^ — aEl or α(α/) ̂  α(/). Π

Corollary. // P is normalized, El is monotone decreasing in I.

Proof. If P is normalized, <Ω0, H2Ω0> = 0 and Ω0 is not an eigenvector,
so that Ej < 0. Thus — Eal ^ — aEt < —Et. Π

§ 3. Volume Independent Bounds on Local Perturbations

It is our goal in this section to prove theorem 2. We first note several
simplifications:

(i) We may as well suppose that P and Q are normalized since adding
a constant to P doesn't affect JFή — El and constant terms in Q can be
absorbed in the constant c in (4).
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(ii) It is enough to prove the estimate (4) when g is of the form
n

Σ M^-i.α,) with -a = a0<a1<- <an = b and O^y^l. For any g
ί= 1

satisfying the conditions of theorem 2 can be approximated in L2 by
such functions and if gn-^g in L2, it is known that §gn(x) : Q(φ(x})\ dx
converges weakly to j#(x) : Q(φ(x)) : dx on a form core of #z.

(iii) Let VFbe of the form:

:dx (9)

and write EY for the ground state energy of #; + FF. Following [3],
we note that to prove

(10)

it is enough to prove
-EΓ^-Ej + c. (11)

For if (11) holds, then adding Hz to both sides we see that (Ht + W-E?)
-W^Ht-Et + c. Since Hz + W - E? ^ 0, (10) follows. This observation
of Glimm and Jaffe which reduces a hard operator inequality (10) to a
hard numerical inequality (11) is crucial for the proof of theorem 2.

Remark. Glimm and Jaffe also establish the inequality —El^ — E^ + c.
For general Q we do not prove this reverse inequality but we note
(following [3]) that it follows at once from (11) in case both P + Q
and P — Q are semibounded. For then +W^(Hl — E^ + c so that
<ΩZ, WΩLy ^ c and E? ^ <ΩZ, (Ht + W) Ω f> = E, + <ΩI9 PFΩZ> g Ez + c.

Proof of Theorem 2. We need only prove (11) for W of the form (9).

Let Yt= 'j :Q(0(x)):dx.By(5),

i= 1

By the linear lower bound for H0 + Vt + yt Yt, which exists since P + ytQ
is semibounded, \\e'^-^-^H^y^\\^ecM(a^at-^. By the concavity of
the energy in y, sup c(γ) = max(c(0), c(l)) = c <oo. Thus, using

(12)
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From Nelson's symmetry (1) and Eq. (8), we find that

Since P is normalized, and α, b ̂  0, it follows from the corollary to
theorem 1 that — £ ί _ 2 f l < — El and — £ ί _ 2 b < — £ί Thus (13) implies

(11). D

§ 4. Hypercontractive Bounds

In this section we will prove various estimates on || ||p g norms of
e~tH\ the bounds of e~tHl as maps from Lp(Q,dμ0) to Lq(Q9dμ0). Our
first result involves the abstract theory of hypercon tractive semigroups.
We remind the reader that a hyper contractive semigroup [16, 19] is a
self-adjoint semigroup of operators, {e~tH}t>0 on L2(X,dμ) for some
probability measure space (X,μ) such that (i) e~tH is a contraction on
each Lp and (ii) for some T and B, \\e~tH\\2Λ<.B for all t > T. We recall
that on L2(Q,dμ0),e~tH° generates a hypercontractive semigroup with
B — 1 which in addition is positivity preserving, i.e. if /^O pointwise on
<2, then e~tH°f^Q pointwise on Q. The general theory of perturbations
of hypercontractive semigroups [16, 19] involves perturbing H0 with
a real-valued multiplication operator V satisfying

FeZΛ some p > 2 , and e~v z f| I f . (14)
p < oo

Then HQ + V is essentially self-adjoint on D(H0}r^D(V) (or even on
C°°(Ho)πD(K) [18]) and H0 + βV defined for j8e<C\(-oo,0] is an
analytic family of type (b) [19] (in the sense of Kato [9]) which has
D(#0)nD(F) as a core for any β [13]. We first note that:

Lemma. Let e~tH° be a positivity preserving hypercontractive semi-
group and let F, W satisfy (14). Then for t g: 0, x ̂  0, y real, and any p, q,

Proof. Since <ΓίxF and <?~ίH° are positivity preserving, so is
by the Trotter product formula. Thus le-^^^fl^e'
Since \e~iyWf\ = |/| the Trotter product formula implies that

+ ϊ y W ) / Ί <e-r(tfo + *nm

and (15) follows. Π

Theorem 3. Let e~tH° be a positivity preserving semigroup with
\\e~TH°\\2A<:B. Let V obey (14) and let Ω0 be the function identically 1.
Then, for any t^T
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Remarks. 1. Similar estimates hold for any \\ \\p,q norm, and we
can replace 4 and | in (17) by α and α~ 1 for arbitrary α > q and (1 — p"1)"1.

2. In the case where H0 is the free Boson Hamiltonian, (17) can be
proven by path space integration using Holder's inequality and can be
found implicitly in Nelson [10].

Proof. We need only use the Stein interpolation theorem
twice. Consider first the operator-valued analytic function A(z)
= exp[-ί(/f0 + zF)] in the strip O^Rez^4. By (15), when Rez^O,
M(z)||22=M(0)||2,2 = l and when Rez = 4, M(z)||2f l = M(4)||2 f l.
Letting β(s) = <ί20, e~s(Ho + 4V^Ωoy we see that

By the Stein interpolation theorem, if Rez = 2, \\A(z)\\2 4/3 ^ j
By duality, \\A(z)\\^2^β(2ff when Rez = 2.

Now let C(z) = Ά(z)A(2 - z) in the strip 0 ̂  Rez ̂  2. Let t > T. Then
when Rez —2,

||C(z)||2(2 = M(z)^

Similarly when Rez-0, ||C(z)||2>2=Bj8(2ί) i. By the Stein interpolation
theorem (actually by an operator valued Phragmen-Lindelof theorem),
\\C(l)\\2t2^Bβ(2t)*. Since C(l) = exp(-2ί(#0 + F)), Eq.(17) holds. Π

As a corollary of Theorem 3, we can give a hypercontractive version
of Nelson's proof [10] of the linear lower bound:

Corollary. — E^cl for some constant c.

Proof. Since for the free Boson Hamiltonian the constant B = l [4],

e-TE'=\\e-TH*\\2t:

/O s*~l(H= <^0, e

We conclude that —E^ — -—

The second theorem on || ||p ^ norms that we shall need is a conse-
quence of the linear lower bound:

Theorem 4. There are constants c, d, and T such that for all I ̂  0,

\\e~tHl\\4Λ^ectl, ί = 0, (18a)

||<Γ ίHΊI2i4^'1, t^T. (18b)

Proof. Consider the analytic operator valued function
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By (15), whenRez-0,

By the linear lower bound for H0 + 2Vl9

||exp[-ί(H0 + 2F/)]||2,2^
2c'ί. (19)

Then (18 a) follows from the Stein interpolation theorem. Now write

By (18a) (for HQ + 2Vl) ||exp[-ί(H0 + 27^11^^ for all U^O and
2 ̂  p ;§ 4. By the Trotter product formula and the smoothing property of
HO, (18b) holds. Π

Remarks. 1. Similar results hold for any || | |A g norm.

2. It is worth emphasizing that the self-adjointness of (HQ + 2Vl)
on L2(β) has been used to deduce that (19) holds for all t ̂  0 if it holds for
large t.

3. A direct proof of (18a) using the IVloc operators of [17] is also
possible. Since it helps explain why (18) holds, let us sketch it. Write

/ - I ( n + l ) / 2

γl = £ V(n) where V(n} = j : P(φ(x)) : dx . Let N[

n

oc be the operator
n=-l n/2

dΓ(Pn) where Pn is the projection in the one particle space onto those
x-space functions with support in (n/2, (n + l)/2). We can find a with

a £ Nl

n

oc^m0N^H0. Thus exp[-ί(H0 -αΣΛ^oc)] is a contraction

on L4 so by the Trotter product formula, one need only prove that
]|exp [- t(Nl™ + V(n})~] ||4>4 ̂  ect for all t and n. Pn induces a decomposition
of Fock space 3F into ^-=^n®

L^n and so of Q-space into Q = Qn

χλQn

As a map oΓL4^) to L4(βJ, exp[-i(]V^oc + F("})] is bounded by ect

because e~tNn generates a hypercontractive semigroup on L2(Qn). Since
L4(ρ)-L4(βn)®L4(1βn), the results follows.

§ 5. Properties of Ωl in the Limit / -> oo

In this section, we use a result which we do not prove until §6:
namely, that α(/) is not constant if P is not constant. Since Ql is invariant
when a constant is added to P, we shall suppose that P is normalized.
The basic result on the falloff of \\Ωl\\1 was conjectured in [19]:

Theorem 5. There exist constants c,d>0 so that for I large,

2 Commun math Phys., V o l . 27
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Remark. From these bounds, Holder's inequality, and the normaliza-
tion condition ||ΩZ | |2 = 1, it follows that for any p there exist cp, dp with
expί-CpO^IIΩj l lp^expί-dp/) where cp,dp>0, if p<2, and cp,dp<0,
i f p > 2 .

Proof. Let us first derive the fundamental equation of [8] :

log| |Ω ί | |1. (20)

(20) follows upon taking logarithms in the inequality

*-'*'£ <Ω0, e-'HΏ0> = <Ω0, e-/HtΩ0>

= |k-* iH<Ω0 | |
2 £ <Ωt, £Γ*'HΏo>2 - e-^'HΩJ2 .

Since α(/) is monotone and non-constant, pick /0 Φ 0 and l± > /0 with
α(/0) < α(/i) < oc^ . Then for I>ll9

or
log IIΩJU ^i/o(α(/0) - α(/)) / ̂  Q/0(α(/0) - α^))] /

Since d= -i/0(α(/0) -«(/!)) >0, the bound I I Ω Λ i ^exp(-dJ) follows.
On the other hand, by Theorem 4, \\e~THl\\2 4<,ecl/2. It follows that

\\Ωl\\^ = e+TEl\\e-THlΩl\\4^ecl12 (since ^<0). Thus, by Holder's in-
equality, l = ||^||2g ||^||5/3||^||1/3, and HΩ^^e^1. Q

Corollary. [8] Ω^Q weakly in L2.

Proof. lϊipeU0, O, Ωz>-^0. Since L00 is dense in L2 and | |ΩZ | |2 = 1,
-^0 in L2. Π

§ 6. Additional Properties of α(/)

To determine what properties we expect for α(/), we expand Et(β)
= E(H0 + βVl) in a formal power series in β. For P(X) = Xn, the lowest
order non-trivial term in the series for α(/) is (up to a numerical constant)

sin2 I-
α«2 ) ( / ) = ί ^...dk, 1 Sm U

μ(k1)...μ(kn)

Letting

μ(kl)...μ(kn) J
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we note several properties of g:

(1) ^el/OR);
(2) g has only polynomial falloff
(3) g is of positive type;
(4) g is analytic in a strip about 1R.
With the exception of (3), these are all elementary and (3) follows

from suitable contour pushing. These properties of g transfer to simple
properties of

α(2)(/) = f dkg(k)sin2(lk/2)/lk2

= c ( l - \ x \ / l ) g ( x ) d x
-I

where c>0 is some constant:
(!') Since \sm2(lk/2)/lk2 ^//4, we see that when /->0, α(2)(/)-»0;

in fact, α(2)(/)~0(/). It is easy to see that α^O-ΌίΓ"1) as /-»0. Thus
perturbation theory "predicts" that α(/)~0(/) as /-»0.

(2') α(2)(/) is C00 but not analytic in /, so perturbation theory "predicts"
that α(/) is C°°.

(3') α(2)(/) is monotone increasing in / (cf. Theorem 1) and (α(2)(/) — α(J}) /
monotone decreasing.

(4') α

(2)(/) = c ] g(χ)dx-^- f x \ g ( x ) d x + 0(e-dl).
-00 * - 00

It is not hard to see that in general α(lfl)(0 = 4m) + Γ 1 4m) + -+c(

n

m}Γn+1

+ 0(e~dl). This suggests that α(/) has an asymptotic series, a^ + β^Γ1

+ yoo^" 2 Ί — > as '-^oo. In particular, by (3'), β^ should not be 0. Thus
perturbation theory suggests that, unlike Ωh the approach of α(/) to
α^ is not exponential.

In this section, we go part way toward verifying the predictions of
perturbation theory. We shall prove:

(1") For some c, d > 0, cl < α(/) < dl when / is small;
(2") α(/) is Lipschitz continuous;
(3") β(l) = (α(/) — α^) / is monotonically decreasing;
(4") α(ί) = a^ + βJ-l+o(Γl) where α^ > 0, ̂ ^ < 0.
On the basis of perturbation theory and the results (3") and (4"), it is an

attractive conjecture that the coefficients in the asymptotic expansion for
α(/) alternate in sign. Thus we expect that y(l) = (oc(l) — (x^ — βOΏΓ1)l2

is monotonically increasing and bounded. These facts would establish the
validity of the expansion of α(/) to o(Γ2) and one could hope to continue
in this way to all orders, alternating between increasing and decreasing
monotonicity.
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Theorem 6. Let P be a normalized polynomial. Then, for some c, d > 0
and I0,cl<a(l)<dl for all 0<1<1Q. In particular, α(ί) is not constant.

Proof. By Eq. (17) and the Nelson symmetry,

or

By the analyticity and monotonicity of logz at z = l, we need only

prove Γ 2«Ω 0,e-Z J Ϊ TΩo>-l) and Γ2«Ω0, e- ί(Ho+4Fτ)Ω0> - 1) have
positive limits as /-»0. But since Ω0eD(Hτ) and (Ω0,HτΩoy = Q,
Γ2«Ω0, e~lHτΩoy- lHi||HΓΩ0 | |

2>0 and similarly

Γ2«Ω0, e-l(H° + *Vτ)Ω0y - l)->8 II FTΩ0||
2 > 0 . Π

Remark. The theorem relies on \\e~TH°\\2 4^1 and not merely on

Ik" r ί ί oll2,4<^.
Theorem 7. Let P a normalized polynomial. Then, for any I, I' ^ 0,

\El — Ev ^\l — l'\ α^, so that in particular El and α(ί) are Lipschitz continuous.
Moreover El is concave in I.

Proof. For any α, b, c, / ̂  0, we have

2,2

Therefore

To prove the first part of the theorem, let us suppose /' ̂  /. Since
EI^EI by Theorem 1, it is sufficient to show that

^-E^ ( / ' - / ) « « > . (22)

(22) follows from (21) upon setting a = c = l/2 ana b = ΐ — I. The second
part of the theorem is proved by putting b = 0 in (21). Π

Remark. In case P is not normalized but only bounded below, then
the theorem holds with a different constant replacing α^.

Corollary. The function α(/) is strictly increasing.

Proof. Since we know that α(/) is monotone non-decreasing by
Theorem 1, we need only show that it cannot be constant in any interval.
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If [/o, /i] is the first interval on which α(ί) is constant, then, by Theorem 6,
/o > 0. But this is incompatible with the concavity of Et. Π

Let j8(Q = /(α(ί) - αj = - Ez - ία*,. Clearly /?(/) < 0.

Theorem 8. β(l) is convex, monotone decreasing, and bounded below,
and hence converges as /-»oo to β^ =mfβ(l)<0.

Proof. Convexity is an obvious consequence of the concavity of Eh

and monotonicity follows from the inequality (22). As for boundedness,
we have from (20) that

= α Q O -2Γ 1 c

by Theorem 5. Π
The convergence of β(l) as /-»oo provides us with the beginning of

an asymptotic series for α(/):

References

1. GlimmJ., Jaffe,A.: The l</>4 quantum field theory without cutoffs. II. The field
operators and the approximate vacuum. Ann. Math. 91, 362—401 (1970).

2. The Aψ 4 quantum field theory without cutoffs. III. The physical vacuum.
Acta Math. 125, 203—267 (1970.

3. — — The /i</>4 quantum theory without cutoffs. IV. Perturbations of the Hamiltonian
(to be published).

4. Quantum field theory models. In: 1970 Les Houches Lectures, DeWitt,C.,
Stora,R., (Ed.), New York: Gordon and Breach, 1972.

5. Boson quantum field models (to appear). In: (Ed.) Streater,R., Mathematics
of Contemporary Physics, New York: Academic Press.

6. Gross, L.: Existence and uniqueness of physical ground states (to appear).
7. Guenin,M.: On the interaction picture. Commun. math. Phys. 3, 120—132 (1966).
8. Guerra,F.: Uniqueness of the vacuum energy density and Van Hove phenomenon in

the infinite volume limit for two-dimensional self-coupled bose fields. Phys. Rev.
Lett. 28, 1213 (1972).

9. Kato,T.: Perturbation theory for linear operators. Berlin-Heidelberg-New York:
Springer 1966.

10. Nelson, E.: Quantum fields and Markov fields. Proc. 1971 Ann. Math. Soc. Summer
Conference; and paper in preparation.

11. — Time-ordered products of sharp-time quadratic forms. J. Funct. Anal, (to appear).
12. Rosen,L.: Renormalization of the Hubert space in the mass shift model. J. Math.

Phys. (to appear).
13. — Simon,B.: The (φ2")2 field Hamiltonian for complex coupling constant. Trans.

Amer. Math. Soc. 165. 365-379 (1972).
14. Segal,!.: Tensor algebras over Hubert spaces, I. Trans. Ann. Math. Soc. 81, 106—134

(1956).



22 F. Guerra, L. Rosen, and B. Simon: Infinite Volume Behavior

15. Segal,!.: Notes towards the construction of nonlinear relativistic quantum fields. I: The
hamiltonian in two space-time dimensions as the generator of a C* automorphism
group. Proc. Nat. Acad. Sci. U.S. 57, 1178—1183 (1967).

16. — Construction of nonlinear quantum processes, I. Ann. Math. 92, 462—481 (1970).
17. Simon,B.: On the Glimm-Jaffe linear lower bound in P(φ)2 field theories. J. Funct.

Anal, (to appear).
18. — Essential self-adjointness of Schrόdinger Operators with positive potentials. Math.

Ann. (to appear).
19. — Hoegh-Krohn, R.: Hypercontractive semigroups and two dimensional self-

coupled bose fields. J. Funct. Anal., 9, 121—180 (1972).
20. Wightman,A.S.: Constructive field theory: Introduction to the problem (to appear).

In: Proc. 1972 Coral Gables Conference.

F. Guerra, L. Rosen, and B. Simon
Princeton University
Jadwin Hall
Princeton, N. J. 08540, USA




