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We provide a new proof of the theorem of Simon and Zhu that in the region
|E|<* for a.e. energies, &(d 2�dx2)+* cos(x:), 0<:<1 has Lyapunov behavior
with a quasi-classical formula for the Lyapunov exponent. We also prove Lyapunov
behavior for a.e. E # [&2, 2] for the discrete model with V( j2)=e j, V(n)=0 if
n � [1, 4, 9, ...]. The arguments depend on a direct analysis of the equations for the
norm of a solution. � 1998 Academic Press

1. INTRODUCTION

In this paper, we will consider half-line Schro� dinger operators

H%=&
d 2

dx2+V(x) (1.1)

on L2 (0, �) with u(0) cos(%)+u$(0) sin(%)=0 boundary conditions and
the discrete analog on l2 (Z+), Z+=[1, 2, 3, ...],

(h:u)(n)={u(n+1)+u(n&1)+V(n) u(n)
u(2)+(V(1)+:) u(1)

n�2
n=1

(1.2)

where : plays the role of a boundary condition.
We are interested in models where H% has dense point spectrum in some

interval [a, b]. By general instability results [3, 7], this cannot happen for
all % but can and does for a.e. % if [a, b]/spec(H%), and if for a.e.
E # [a, b], there is a solution &u"+Vu=Eu which is L2 at infinity [4, 15,
16]. The first examples of such operators involved random V 's where one
proves dense point spectrum for a.e. V.

article no. FU973192

513
0022-1236�98 �25.00

Copyright � 1998 by Academic Press
All rights of reproduction in any form reserved.

* This material is based upon work supported by the National Science Foundation under
Grant No. DMS-9401491. The U.S. Government has certain rights in this material.



File: DISTL2 319202 . By:AK . Date:06:04:98 . Time:14:31 LOP8M. V8.B. Page 01:01
Codes: 2720 Signs: 1738 . Length: 45 pic 0 pts, 190 mm

Examples which are deterministic were first found by Gordon [6] (also see
[9]), who showed it for problems with very high and sparse but not too sparse
barriers. Simon�Zhu [17] proved a similar result for slowly oscillating poten-
tials like V(x)=* cos(x:); 0<:<1. Attention on the first class was focused by
work of Simon�Spencer [15], and on the second by work of Behncke [1] and
Stolz [18]��these authors showed the absence of a.c. spectrum.

Our goal here is to obtain dense pure point spectrum by direct control
of the asymptotics of the transfer matrix T(0, x), defined by T(0, x)( u$(0)

u(0) )=
( u$(x)

u(x) ) for solutions of

&u"+Vu=Eu (1.3)

in the continuum case, and T(0, n)( u(1)
u(0))=( u(u+1)

u(n) ) for solutions of

u(n+1)+u(n&1)+V(n) u(n)=Eu(n) (1.4)

in the discrete case. It follows from results of Ruelle [13] that if
limn � � (1�n) ln &T(0, n)&>0, then there is an L2 solution (here we include
existence and finiteness of the limit). The same idea works for other situa-
tions, for example, if limn � � (1�n#) ln &T(0, n)&>0 for any #>0; see [11].

For the case V(x)=* cos(x:), that limn � � (1�n) ln &T(0, n)& exists for
a.e. E and an explicit formula for the limit was found by Simon and Zhu
[17]. In Section 6, we will prove

Theorem 1.1. Let V(x)=1+cos(x:); 0<:<1. Let xn=(2?n)1�2; let
a(n)=n(1&:)�2:, and let [E (n)

j ]�
j=1 be the eigenvalues of

&
d 2

dx2+V(x); u(xn&1)=u(xn)=0

on L2 (xn&1 , xn ; dx) and let

A� = ,
�

k=1

.
�

m=k

.
�

j=1

(E (n)
j &e&a(n), E (n)

j +e&a(n))

(so that A� is a G$ dense in [0, �) of Lebesgue measure zero).
Let E # (0, 2)"A� . Then,

lim
n � �

1
n

ln &TE (0, n)&=
1

2? |
[ y | 1+cos( y)�E]

(1+cos( y)&E)1�2 dy.

Remarks. 1. The forbidden set A� in [17] is larger; they conjecture
that our A� is the ``right'' one. One should be able to use WKB methods to
describe A� more completely.
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2. It is known [1, 18] that for E>2, the limit exists and is zero.

3. V(x) can be replaced by any f (x:) where f is any C2 periodic func-
tion with a finite number of critical points in each period.

Unlike Simon�Zhu [17], we will directly attack the transfer matrix by
using a transformation idea. In the continuum case, we transform from
u$(x), u(x) to R(x), %(x) defined by (k=- E):

u$(x)=kR(x) cos(%(x)) (1.5a)

u(x)=R(x) sin(%(x)). (1.5b)

Then (1.3) is equivalent to

d(%(x))
dx

=k&
V(x)

k
sin2(%(x)) (1.6)

d ln R
dx

(x)=
1

2k
V(x) sin(2%(x)). (1.7)

In [10], together with A. Kiselev, we have shown how to exploit these
formulas in a variety of spectral situations, and our main goal here is to
show that they are useful in many tunnelling calculations.

In the classically forbidden region where V(x)>k2, (1.6) tends to drive
% toward values where the left side vanishes, that is,

sin(%)=\� k2

V(x)
. (1.8)

At such points,

1
2k

V(x) sin(2%(x))=\- V(x)&k2. (1.9)

The solutions of (1.8) where (1.9) has the plus sign are attracting, which is
why R grows like exp(+� - V(x)&k2).

In the classically allowed region where V(x)<k2, it is useful to define
R, % in a slightly different way. Define

k(x)=- k2&V(x) (1.10a)

u$(x)=k(x) Rw (x) cos(%w (x)) (1.10b)

u(x)=Rw (x) sin(%w (x)) (1.10c)
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which we will call WKB-Pru� fer variables. Then, Rw , %w obey

d%w (x)
dx

=k(x)&
k$(x)
2k(x)

sin(2%w (x)) (1.11)

d ln Rw (x)
dx

=&
k$
k

cos2(%w (x)). (1.12)

For later purposes, note that cos2 (u)= 1
2+ 1

2 cos(2u) suggests we define

R� w (x)=k(x)1�2 Rw (x) (1.13)

in which case,

d ln R� w (x)
dx

=&
k$
2k

cos(2%w (x)). (1.14)

Equations (1.11)�(1.14) can be found, for example, in [2].
To the extent that purely oscillatory terms are unimportant because they

average to zero, we have R� w (x)=constant, %w (x)=�x k( y) dy so that u has
the WKB form,

k(x)&1�2 sin \%0+|
x

x0

k( y) dy+ .

As we will see in the appendix, this makes (1.11�1.14) ideal tools for WKB
approximations in the classically allowed region.

For the discrete case, we need an analog of modified Pru� fer variables,
and these are provided by what we have called EFGP variables after con-
tributions in [5, 8, 12]. Define R(n), %(n) by

R(n) cos(%(n))=u(n)&cos(k) u(n&1) (1.15a)

R(n) sin(%(n))=(sin k) u(n&1), (1.15b)

where E # (&2, 2) and k are related by E=2 cos(k). Then

%� (n)#%(n)+k; &k (n)#&
V(n)
sin(k)

(1.16)

cot(%(n+1))=cot(%� (n))+&k (n) (1.17)

R(n+1)2

R(n)2 =1+&k (n) sin(2%� (n))+&k (n)2 sin2 (%� (n)). (1.18)
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We will also need the following relation between % and u:

u(n)
u(n&1)

=
sin(%� (n))
sin(%(n))

. (1.19)

For any %0 # [0, ?), define R(x, %0) (resp. R(n, %0)) to solve (1.6�1.7)
(resp. (1.17�1.18)) with %(0)=%0 (resp. %(1)=%0) and R(0)=1 (resp.
R(1)=1). Then the behavior of any two R's determines the growth of T in
the sense that for any fixed k with k>0 (resp. k # (0, ?)),

C1 (k) R(n, %1)�&T(0, n)&�C2 (k, %1 , %2) max(R(n, %1), R(n, %2)),

where C1 and C2 are constants independent of n and V. In particular,

Proposition 1.2. If for %1 {%2 (both in [0, ?)) we have

lim
n � �

1
n

ln R(n, %1)= lim
n � �

1
n

ln R(n, %2)=#,

then

lim
n � �

1
n

ln &T(n, 0)&=#.

As already mentioned, in the classically forbidden region, the basic equa-
tions push R to want to grow as exp(+� - V( y)&E dy) or else to decay
as exp(&� - V( y)&E dy). In examples like cos(x:), forbidden and allowed
regions alternate. Our strategy will be to prove one of three possibilities
occurs:

(i) All forbidden regions are decay regions for x sufficiently large. In
that case, u will be in L2.

(ii) All forbidden regions are growth regions for x sufficiently large.
In that case, R grows in the expected WKB manner.

(iii) Arbitrarily far out, there will be a growing region followed by a
decaying region. In that case, we can cut off u at the centers of those for-
bidden regions and get a very good approximate eigenfunction, and so see
that E # A� .

So if E � A� , either R grows in the expected way or u is L2. Since at most
one %0 can lead to an L2 solution, we can always find two % 's with the
expected growth and so use Proposition 1.2.

In Section 2, we discuss a discrete model with sparse growing barriers for
which limn � � (1�n) lim ln &T(0, n)&>0. This shows the use of EFGP
variables. In Section 3, we discuss a model like cos(x:) but where cos is
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replaced by a periodized step function. Sections 4�6 present our proof of
Theorem 1.1. An appendix discusses bounded transfer matrices in the
region E>2 in the 1+cos(x:) model if :< 1

2 .
B.S. would like to thank M. Ben-Artzi for the hospitality of the Hebrew

University where some of this work was done. Y.L. would like to thank
J. Avron for the hospitality of the ITP at the Technion where some of this
work was done.

2. A MODEL OF SIMON�SPENCER TYPE

In this section, we will study the following model on l2 ([1, �)),

(H:u)(n)=u(n+1)+u(n&1)+V(n) u(n) n�2

=u(n+1)+:u(n) n=1

where

V( j2)=e;j j�2

V(n)=0 n{4, 9, 16, ...

: plays the role of a boundary condition. ; is a parameter, ;>0.
Define

Am= .
m&1

j=1

(2cos(?j�m)&e&- m, 2 cos(?j�m)+e&- m)

and let

A� = ,
�

k=1

.
�

m=k

A2m+1

so A� is a dense G$ in [&2, 2] of Lebesgue measure zero.
We will the prove the following theorem:

Theorem 2.1. Suppose E � A� is in [&2, 2]. Then,

lim
n � �

1
n

ln &T(n, 0)&=
;
2

. (2.1)

For a.e. :, H: has dense point spectrum in [&2, 2] with eigenfunctions
decaying as e&;n�2.

518 LAST AND SIMON



File: DISTL2 319207 . By:AK . Date:06:04:98 . Time:14:31 LOP8M. V8.B. Page 01:01
Codes: 2672 Signs: 1624 . Length: 45 pic 0 pts, 190 mm

Remarks. 1. By ``eigenfunctions decaying as e&;n�2,'' we mean
limn � � ln( |u(n)| 2+|u(n+1)|2)1�2�n=&(;�2).

2. Since lim |V(n)|=�, the results of Simon�Spencer [15] imply
_ac(H:)=<. Gordon [6] and Kirsch�Molchanov�Pastur [9] proved that
for some potentials of Simon�Spencer type (where the distances between
the bumps are not too large), H has dense point spectrum for a.e. bound-
ary condition. Their methods apply to the problem discussed here. Our
method is different and identifies the set A� and the Lyapunov exponent
#(E)=(;�2).

3. A similar result holds if V([ j ;])=e&j +
for any +>0 and ;>1

(here [ j ;] is the greatest integer less than j ;). Then, limn � �

(ln &T(n, 0)&�n`)=(&�++1) where `=(++1)�;. Where we use Ruelle's
result [13] in the argument below, one instead uses its extension in [11].

Proof. It obviously suffices to prove that for E � A� , lim(1�n)
ln &T(n, 0) u%0

&=(;�2) for u%0
=(cos(%0), sin(%0)) and at least two out of

three values of %0 , say, %0=0, ?�4, and ?�2. Pick %0=0 and let k be defined
by E=2 cos(k) and let %(n), R(n) be the EFGP variables for this value of
%0 and E.

Assume that for j� j0 ,

|%� ( j2)|�exp(& j2�3). (2.2)

We then have that by (1.18), R(n)2 is constant for n= j 2+1, ..., ( j+1)2

and jumps from n= j2 to n= j 2+1. By (1.16) and (1.18),

R( j 2+1)2

R( j2)2 �1+
e;j

|sin k|
+

e2;j

sin2(k)

�1+
sin2 exp(& j 2�3)

sin2(k)
e2;j&

e;j

sin(k)

for j� j0 . From these inequalities and �m
j=1 j=(m(m+1)�2), one easily

sees that limn � �(ln R( j 2+1)�j 2)=(;�2) and then

lim
n � �

ln R(n)
n

=
;
2

. (2.3)

We need to examine (2.2). We will prove that at least one of the follow-
ing holds for E, %0 fixed:

(i) (2.2) holds; or

(ii) E # A� ; or

519MODIFIED PRU� FER AND EFGP TRANSFORMS



File: DISTL2 319208 . By:AK . Date:06:04:98 . Time:14:31 LOP8M. V8.B. Page 01:01
Codes: 2666 Signs: 1628 . Length: 45 pic 0 pts, 190 mm

(iii)

:
n

&T(n, 0) u%0
&2<�. (2.4)

If we prove this and E � A� , then for each of %0=0, %0=(?�4), and
%0=(?�2), one of (i) or (iii) must hold. Since (2.4) can hold for at most one
%0 (by constancy of the Wronskian), (2.2) must hold for at least two %0 's
and so (2.3) holds for two %0 's, and thus (2.1) holds.

Once (2.1) holds, application of Ruelle's theorem [13] implies that for
E � A� , there exists an initial uE so that lim ln &T(0, n) uE&�n=&(;�2), and
then the Simon�Wolff [16] method proves point spectrum for a.e. : (see,
e.g., [4,14]).

Thus, we need only prove that one of the three alternatives (i)�(iii)
above holds. Suppose neither (i) nor (ii) holds. We will prove that (iii)
holds.

Since (ii) is assumed false, there exists j0 large so that Lemma 2.2 holds
and so that E � A� 2j&1 for j� j0 . In particular, alternative (a) of Lemma 2.2
does not hold. Suppose j1� j0 and |%� ( j2

1)|�exp(& j2�3
1 ). Since alternative

(b) of Lemma 2.2 holds, we can iterate and see that (2.5) holds for
j= j0+1, ..., j1 .

If alternative (i) fails, there are j1 's going to infinity with |%� ( j2
1)|�

exp(& j2�3
1 ), so (2.7) holds for all j� j0 , and thus |R(n)|�Ce&(:&=) n�4 so

(2.4) holds. K

Lemma 2.2. There is a j0 (depending only on k and ;) so that if j� j0

and |%� ( j 2)|�exp(& j2�3), then either

(a) For some l # [1, ..., 2j&2], |E&2 cos(?l�2j&1)|�e&- 2j&1, or

(b) |%� ( j&1)2)|�exp(&( j&1)2�3) and

R( j2)�e&;j�2R(( j&1)2). (2.5)

Proof. By (1.19),

|u( j2)|= }R( j2)
sin k

sin(%� ( j 2)) }�CR( j2) exp(& j2�3), (2.6)

where C will be used to indicate a constant depending only on k. C can
vary from formula to formula!

Let q=( j&1)2. If (recall R(n)=R( j 2) if q<n� j2)

|u(q)|�R( j2) exp(& j2�3), (2.7)
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then u~ #u � ( j=q+1, ..., j2&1) is an extremely accurate trial function for
H� 0 , the Jacobi matrix on ( j=q+1, ..., j2&1), for by (2.6), (2.7)

&(H� 0&E) u~ &2�CR( j)2 exp(&2j2�3)

while by an elementary estimate,

&u~ &2�CjR( j)2.

Thus, by taking j0 large enough, we can be certain that

&(H� 0&E) u~ &
&u&

�exp(&- 2j&1)

if j� j0 . Since the eigenvalues of H� 0 are [2 cos(?l�2j&1)]l=1, ..., 2j&2 , we
conclude if j� j0 and (2.7) holds, then alternative (a) holds.

So suppose that (2.7) fails. Since u(q)2+u(q+1)2�CR(q+1)2=
CR( j2), we conclude that

} u(q)
u(q+1) }�C exp(& j2�3). (2.8)

Thus, using the eigenfunction equation,

}u(q&1)
u(q) }�e;j&|E|&C exp( j 2�3)�

1
2

e;( j&1) (2.9)

if j� j0 and j0 is sufficiently large.
By (1.19), (2.9) implies

} sin(%� (q))
sin(%(q)) }�2e&;( j&1)

so for j� j0 with j0 large, we have |%� (q)|�Ce&;( j&1)�exp(&( j&1)2�3)
verifying one of the conclusions.

Moreover, by (2.8) and (2.9) (C is a constant whose value changes!),

R( j)2=R(q+1)2�C(u(q)2+u(q&1)2)

�Ce&2;j[1+exp(2j 2�3)] u( j&1)2

�Ce&2;j[1+exp(2j 2�3)] R(q)2

�e&;jR(q)2

if j� j0 with j0 large. This proves (2.5). K
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3. A WARM-UP PROBLEM

In this section, we treat an elementary tunnelling problem that, because
V is piecewise constant, avoids some of the technicalities we will need in
the cos(x:) case. Throughout this section, let [x]#greatest integer less
than x, and define

f (x)= 1
2(1+(&1)[x]) (3.1)

V(x)= f (x:)

with 0<:<1. Thus, f is 1 (resp. 0) for x in [0, 1) _ [2, 3) _ [4, 5) } } }
(resp. [1, 2) _ [3, 4) _ } } } ). V consists of regions 1, 2, ..., where V is first 1,
then 0, then 1, ... and region n runs from (n&1)1�: to n1�: and has
approximate width :&1n(1�:)&1 going to infinity. We will use Q1 , L1 , Q2 ,
L2 , ... for the regions and |Q1 |, |L1 |, ... for their widths. Ln is the nth region
where V is 0.

For each L, consider the potential WL which is 0 on [0, L] and 1 for
other x. Let e1(L)< } } } <emL

(L) denote the eigenvalues of &(d 2�dx2)+
WL of energy less than 1. A Sturm oscillation argument shows that mL=
(L�2?)+O(1) as L � �.

Define

Aj= .

mL j

k=1

(ek(Lj)&e&- |Qj | , ek(Lj)+e&- |Qj | )

and let

A� = ,
�

l=1

.
�

j=l

Aj

which is a dense G$ of [0, 1] of Lebesgue measure zero.

Theorem 3.1. Let H%=&(d 2�dx2)+V(x) with V given by (3.1) with
0<:<1 and % boundary conditions at 0. Suppose E # (0, 1)"A� . Then

lim
x � �

1
|x|

ln &T(0, x)&=
1
2

- 1&E. (3.2)

Proof. Let Qi=(xi , yi), Li=( yi , xi+1). We will look at three values of
%(k)

0 , say, 0, (?�4), (?�2) for k=1, 2, 3 and let Rk(x), %k(x) be the solution
of the usual modified Pru� fer equations with %(0)=% (i)

0 and Rk(0)=1.
Our goal is to prove that if E # (0, 1)"A� , then for each k, either
&T(0, x)u%k

& # L2 or limn � � (1�|x| ) ln Rk(x)= 1
2 - 1&E. Since at most one

k can have &T(0, x) u%k
& # L2, we conclude (3.2).
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In each region Lj , T(uj , x) is just the free transfer matrix at energy E and
so &T( yj , x)&�C if x # Lj . Thus, |ln Ri (xj+1)&ln Ri ( yj)|�C and thus

lim
n � �

1
xn+1

:
n

j=1

|ln R(xj+1)&ln R( yj)| � 0

since xn+1 t(2n)1�: and thus (n�xn+1) � 0. That means we only have to
control the change of R in the tunnelling regions Qi .

Define an angle ' in (0, ?�2) by sin(')=k so cos(')=- 1&E. Then in
the regions Qi , (1.6) can be rewritten as

d%
dx

=
1
k

(sin2(')&sin2(%)). (3.3)

The equation (3.3) with % thought of as running mod 2? has a simple struc-
ture. There are four fixed points where sin2(%)=sin2('), viz. %=\', ?\'.
The fixed points at ' and ?+' are attracting, and the ones at &' and
?&' are repelling. As x increases, % moves away from the neighboring
repeller and toward the neighboring attractor. For definiteness, we will talk
about % in the interval (&', ') and suppose '<?�2, but a similar argument
works for any other interval.

For x # Qi ,

1
2k

V(x) sin(2')=
1
k

sin(') cos(')=- 1&E

and one sees similarly that at the two attracting fixed points (2k)&1 V(x)
sin(2%) is - 1&E, and at the two repelling fixed points, it is &- 1&E, and
for regions near &', ln R decreases by ($x) - 1&E.

Fix = small and define '1 by (2k)&1 sin(2'1)=- 1&E&=. Let l0 be the
length of x it takes a solution of (3.3) to run from &'1 to '1 . Consider the
region (xk , xk+|Qk | 2�3) at the start of Qk . Suppose %(xk) # (&', ') in
accordance with our simplifying assumption. If %(xk+|Qk | 2�3)�&'1 ,

&ln R(xk+|Qk | 2�3)�ln R(xk)&(- 1&E&=) |Qk | 2�3. (3.4)

If %(xk + |Qk | 2�3) � &'1 , then once x � xk + |Qk | 2�3 + l0 , we have
(d ln R�dx)�- 1&E&=, and so

ln R( yk)

�ln R(xk)+(- 1&E&=)( |Qk |&|Qk | 2�3&l0)&(|Qk | 2�3+l0). (3.5)
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Thus for such intervals, either (3.4) or (3.5) holds. For (', &'+?) inter-
vals (or if '>?�2), we need to deal with - 1&E+= instead of - 1&E&=.
The net result is that

|ln R( yk)&ln R(xk)&- 1&E |Qk | |�= |Qk |+Cl0+C |Qk | 2�3. (3.6)

If we can show that (3.4) fails for large k, then for y large,

|ln R( y)& 1
2 - 1&E | y| |� 1

2 = | y|+o( y). (3.7)

So, since = is arbitrary, we obtain the desired result.
Suppose (3.4) holds. Go back to Qk&1=(xk&1 , yk&1). Again, for sim-

plicity, suppose %( yk&1) # (&', '). If %( yk&1&|Qk | 2�3)�'1 , then

ln R( yk&1&|Qk | 2�3)�ln R( yk&1)&(- 1&E&=) |Qk | 2�3. (3.8)

If %( yk&1&|Qk | 2�3)�'1 , then %(x)�&'1 for xk&1�x�
yk&1&|Qk | 2�3&l0 , and (assuming k is so large that |Qk |�2 |Qk | 2�3+l0)
we conclude that (3.4) holds for k&1 replacing k. Moreover,
R( yk)�R(xk) exp(&1

2 - 1&E |Qk | ) (again for k large).
If (3.4) and (3.8) hold, we can smoothly cut off u at yk&1&- Qk and

xk+- Qk and get a trial function for &(d 2�dx2)+WLk
, and so we see that

|E&ej ( |Lk | )|�e&- Qk. As in the last section, we see that one of the follow-
ing holds:

(1) E # A� ,
(2) (3.5) holds for all large k (and so (3.7) holds),

(3) u # L2.

As explained at the start of the proof, this suffices. K

4. THE CLASSICALLY ALLOWED REGION

In proving Theorem 1.1, we will break up [0, �) into three regions
where V(x)�E&=0 , where V(x)�E&=0 , and where |V(x)&E |�=0 .
Here =0 is a parameter we will take to zero eventually, using the fact that
we can show the contribution of the |V(x)&E |�=0 region to
lim(ln R(x)�x) is bounded by C=0 . In this section, we will control the con-
tribution of the classically allowed region where V(x)�E&=0 . The goal
will be to show that each oscillation of V contributes at most a constant
C to ln R(x), so that, since x&1* of oscillations �0, the classically allowed
region makes no contribution to # (as it makes no contribution to the
integral in Theorem 1.1).
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Theorem 4.1. Fix 0�A�B<E. Suppose that V is a C1 function on
(a, b) so that there is a c # (a, b) with

(i) V(x) is monotone decreasing on (a, c) and monotone increasing on
(c, b).

(ii) A�V(x)�B on (a, b).

Fix %0 and let any R(x) solve (1.7) on [a, b] with %(a)=%0 . Then there is
a constant C (depending only on A, B, E but not on V, a, b or %0) so that

|ln R(a)&ln R(b)|�C.

Remarks. 1. The proof shows that one can take

C=ln(E�(E&B))+ln((E&A)�(E&B)).

2. That V be piecewise monotone is convenient but not critical. In
general, one gets

C=ln(E�(E&B))+
1
2 |

b

a }
d

dx
ln(E&V(x)) } dx.

Proof. We use what we called WKB-modified Pru� fer variables, that is,
we let k(x)=- E&V(x) and Rw(x)2=u(x)2+(u$(x))2�k(x)2. Then by (ii)
and A�0,

R(x)2�Rw(x)2�
E

E&B
R(x)2

so

|ln R(x)&ln Rw(x)|� 1
2 ln(E�(E&B)). (4.1)

By (1.12),

}d ln Rw(x)
dx }� }k$(x)

k(x) }
so

|ln Rw(a)&ln Rw(b)|�|
b

a }
d

dx
ln k(x) } dx

=|
c

a

d
dx

ln k(x)&|
b

c

d
dx

ln k(x)

=ln \k(c)
k(a)++ln \k(c)

k(b)+
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since (d�dx) k�0 on (a, c) and (d�dx) k�0 on (c, b). So

|ln Rw(a)&ln Rw(b)|�
1
2

_2 ln \E&A
E&B+ . (4.2)

(4.1) and (4.2) prove the theorem. K

5. THE CLASSICALLY FORBIDDEN REGION

Our goal in this section is to prove the following:

Theorem 5.1. Let 0<E<2. Let V be the potential of Theorem 1.1. Let
R(x), %(x) be the solution of (1.6�1.7) for some %0 with &T(x, 0) u%0

& � L2.
Suppose E � A� . Then

lim
x � �

1
x |

[ y | V( y)�E+=0; 0� y�x]

d
dy

ln R( y)

=
1

2? |
[ y | 1+cos( y)�E+=0; 0� y�2?]

(1+cos( y)&E)1�2 dy. (5.1)

Proof. The argument is very similar to that in Section 3, so we will
focus on the new elements. In [ y | V( y)�E+=0], let k(x)#- V(x)&E
and '(x)=Arcsin(- E�V(x)) so that (because of the =0 cutoff)
|k$(x)|�Cx1&: and |'$(x)|�Cx1&:. Notice that

1
2k

V(x) sin(2'(x))=k(x). (5.2)

Pick =� 1
2 min('(x), (?�2)&'(x))#=1 . =1>0 because of the =0 cutoff and

E>0. We claim that

(a) If |%&'(x)|<=, then |(1�2k) V(x) sin(2%)&k(x)|�D=
(b) k&(V(x)�k) sin2('(x)&=)�Y>0 uniformly in x
(c) k&(V(x)�k) sin2('(x)+=)�&Y<0 uniformly in x.

Here D and Y are fixed = independent (but they are =0 dependent) non-zero
constants. (a) holds by (5.2). (b), (c) follow from the monotonicity of sin2

in (0, ?�2) and the condition =�=1 .
We claim in any interval where V(x)�E+=0 and |x| is sufficiently large,

as x increases, once x # ('(x)&=, '(x)+=)#I1 , it remains in that interval.
For (d�dx)[%(x)&'(x)]�E&Cx1&: at %='&= and �&E+Cx1&: at
%='+=. Similarly, once % leaves (&'&=, '+=)#I2 , it stays outside it;
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and in a finite distance l0 , it moves from anywhere outside I2 into I1 (or
the interval (?+'&=, ?+'+=)).

By mimicking the arguments in Section 3, we see that either E # A� or
&T(x, 0) u%0

& # L2 or else

lim
x � �

1
x |

[ y | V( y)�E+=0; 0� y�x] }
d

dy
ln R( y)&k( y) }�D=.

Since we can take = to zero and

1
x |

[ y | V( y)�E+=0; 0� y�x]
k( y) dy

=
1

2? |
[1+cos( y)�E+=0; 0� y�2?]

(1+cos( y)&E)1�2 dy

the theorem is proven. K

6. PUTTING IT TOGETHER

Here we will prove Theorem 1.1. Suppose E � A� and %0 is such that
&T(x, 0) u%0

& � L2. Let R(x) solve (1.7) with %(x)=%0 . Fix =0<0 and con-
sider the three regions:

Z(1) : [x | V(x)�E&=0]

Z(2) : [x | |V(x)&E |�=0]

Z(3) : [x | V(x)�E+=0].

In Section 4, we proved that

1
x |

Z(1) & [ y�x] \
d

dy
ln R( y)+ dy � 0.

In Section 5, we proved that

lim } 1x |
Z(3) & [ y�x] \

d
dy

ln R( y)+ dy

&
1

2? |
[ y | 1+cos( y)�E; 0� y�2?]

(1&cos( y)&E)1�2 dy }�D0=0

for a constant D0 .
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By (1.7), |(d�dy) ln R( y)|�(2�2k). Moreover, it is clear that lim(1�x)
|Z(2) & [ y�x]|�D1=0 for some constant D1 .

Thus, we have

lim } 1x [ln R(x)&ln R(0)]

&
1

2? |
[ y | 1+cos( y)�E; 0� y�2?]

(1+cos( y)&E)1�2 dy }�D2=0

with D2=D0+(D1 �2k). Taking =0 to zero, we prove that

1
x

ln R(x) �
1

2? |
[ y | 1+cos( y)�E; 0� y�2?]

(1+cos( y)&E)1�2 dy.

Since at most one %0 has &T(x, 0) u%0
& # L2, we see that (1�x) ln &T(x, 0)&

has the required limit. K

APPENDIX: WKB-PRU� FER VARIABLES AND
BOUNDED TRANSFER MATRICES

In this appendix, we will show how to use WKB-Pru� fer variables to
show for E>1, the transfer matrix for cos(x:) potentials is bounded. This
is a result of Behncke [1] and Stolz [18] whose proof is not unrelated.
Their method is basically a variation of parameters, and this appendix
reiterates the idea of [10] that modified Pru� fer variables are often a
suitable replacement for variation of parameters.

Recall the definition (1.13) for R� w(x) and %� w(x). They obey

d%w

dx
=k(x)+

1
2

k$
kx

sin(2%2(x)) (A.1)

d ln R� w

dx
=&

k$
2k

cos(2%w(x)). (A.2)

Let V(x)=cos(x:), with 1
2<:<1 and E>1. Then k(x)=- E&V(x)>

- |E&1| is bounded away from zero. Moreover, we have for j=0, 1, 2, ...
and |x|�1:

} d
jk(x)
dx j }�Cj (1+|x| )& j(1&:) (A.3)

} d j

dx j \k$
k + }�Dj (1+|x| )&( j+1)(1&:). (A.4)
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In particular, for x large, (d%�dx)�- |E&1|&D0(1+|x| )&(1&:)>0. By
(A.1) and (A.3�A.4), we see

} d 2

dx2 %w(x) }�x&(1&:). (A.5)

Integrate (A.2) to get (where x0 is picked so large that k(x)>$>0 for
x>x0)

ln R� w(x)&ln R� w(x0)=|
x0

x
&

k$
4k

1
d%w�dx

1
dx

(sin(2%w(x))) dx

and integrate by parts. By (A.4) and (A.5), the integrand bounded by
(1+|x| )&2(1&:) is integrable, so R� w(x) is bounded.

Remarks. 1. One doesn't gain anything by iterating the integration by
parts because (d j�dx j) %w(x) only falls as (1+|x| )&2(1&:).

2. One also sees by integrating by parts that %w(x)&�x
x0

k( y) dy has
a limit, and so one can prove there are WKB-type solutions.

3. By using higher-order modifications, it should be possible to
accommodate 0<:� 1

2.

4. All this proof requires, if one keeps track of the derivatives, is that
V is C2 and

(i) supx V(x)=V+<�, infx V(x)>&�
(ii) V$(x) � 0 as x � �

(iii) V$ # L2, V" # L1.

One obtains a bounded transfer matrix if E>V+ .

5. The point of this is that bounded transfer matrices imply purely
a.c. spectrum [1, 11, 18].
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