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Updating Boundary Conditions
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1 Introduction

This paper is a postscript to two earlier papers [5], [6] in that it provides a new way of

looking at the problems considered in those papers; it allows the same methods to prove

additional results.

To explain our results, we recall earlier theorems of Borg [1] (see also [8], [10]–

[14]) and of Hochstadt-Lieberman [9] (see also [7], [15]). Throughout this paper, assume

q ∈ L1((0, 1)) to be real-valued; consider the operator H = − d2

dx2 + q in L2((0, 1)) with

boundary conditions

u′(0)+ h0u(0) = 0, (1.1)

u′(1)+ h1u(1) = 0, (1.2)

where hj ∈ R∪{∞}, j = 0, 1 (with h0 = ∞ shorthand for the boundary condition u(0) = 0).

Fix h1 ∈ R but think of H(h0) as a family of operators depending on h0 as a parameter.

Then Borg’s and Hochstadt-Lieberman’s results can be paraphrased as follows.

Borg [1]. The spectra of H(h0) for two values of h0 uniquely determine q.

Hochstadt-Lieberman [9]. The spectra of H(h0) for one value of h0 and q on [0, 1/2]

determine q.

In [6], two of us proved a result which can be paraphrased as follows.

Theorem of [6]. Half the spectra of one H(h0) and q on [0, 3/4] uniquely deter-

mine q.
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One of our goals in this note is to prove the following.

New Result. The spectrum of one H(h0) and half the spectrum of another H(h0) and q

on [0, 1/4] uniquely determine q.

We will also show the following.

New Result. Two-thirds of the spectra of three H(h0) uniquely determine q.

Our point is as much a new way of looking at the argument in [6] as these new

results. Fundamental to our approach here and in [5], [6] is the Titchmarsh-Weyl m-

function defined by

mh1 (z) = u
′
h1

(z, 0)

uh1 (z, 0)
,

where uh1 (z, x) solves −u′′(z, x) + q(x)u(z, x) = zu(z, x) with the boundary condition (1.2).

mh1 is a meromorphic function on C (in fact, a Herglotz function) with all of its zeros

and poles on the real axis. Since h1 ∈ R will be fixed throughout this paper, we will

delete the subscript h1 from now on and simply write m(z) instead. Moreover, due to the

assumption h1 ∈ R, we will index the eigenvalues of H(h0) by {λn}n∈N0 , N0 = N ∪ {0}.
A fundamental result of Marchenko [16] (see also [2], [3], [17]) reads as follows.

Theorem 1.1. m(z) uniquely determines q a.e. on [0, 1].

Our fundamental strategy can be described as follows.

(a) Note that λ is an eigenvalue of H(h0) if and only if m(λ) = −h0.

(b) Prove a general theorem that knowingm at points λ0, λ1, . . . , λn, . . . determines

m as long as {λn}n∈N0 has sufficient density. Given (a), this will allow one to prove that

if λ0, λ1, . . . , λn, . . . have sufficient density, an infinite sequence of pairs {(λn, αn)}n∈N0 and

the knowledge that H(h0 = αn) has an eigenvalue at λn determines m (and so q a.e. on

[0, 1] by Theorem 1.1).

(c) Use scaling covariance to extend the [0, 1] result to one for [x, 1] for any x ∈ (0, 1).

(d) Note that a knowledge of q a.e. on [0, x] allows one to update boundary con-

ditions. Explicitly, let H(hx) be the operator in L2((x, 1)) with boundary condition (1.2) but

(1.1) replaced by

u′(x)+ hxu(x) = 0. (1.3)

Then λn is an eigenvalue of H(h0 = αn) if and only if it is an eigenvalue of H(hx0 = βn),

where βn is obtained by solving m′n(x) = q(x) − λn −m2
n(x) on [0, x0] with the boundary

condition mn(x = 0) = −αn and setting βn = −mn(x = x0).
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We will present steps (b) and (c) in Sections 2 and 3 and then step (d) in Section 4.

We will not explicitly derive them, but the results in [6] which treat operators on

(0, 1) and allow one to trade C2k conditions on q for k eigenvalues, can be extended to the

context we discuss here.

We also note that the ideas in this paper extend to Jacobi matrices.

Finally, while the present paper and [5], [6] concentrate on discrete spectra, we

might point out that our m-function strategy also applies in certain cases involving

absolutely continuous spectra (see [4]).

2 Zeros of the m-function

If a ∈ R, let a+ = max(a, 0).

Theorem 2.1. Let {λn}n∈N0 be a sequence of distinct positive real numbers satisfying

∞∑
n=0

(λn − 1
4π

2n2)+
n2

<∞. (2.1)

Letm1,m2 be them-functions for two operatorsHj = − d2

dx2 +qj in L2((0, 1)) with boundary

conditions

u′(1)+ h( j)
1 u(1) = 0

and h( j)
1 ∈ R, j = 1, 2. Suppose that m1(λn) = m2(λn) for all n ∈ N0. Then m1 = m2 (and

hence q1 = q2 a.e. on [0, 1] and h(1)
1 = h(2)

1 ).

Remarks. (1) In our examples, λn ∼ π2n2+C as n→∞ (cf. (3.1)), so (2.1) is satisfied, for

instance, by considering two distinct spectra of H(h0).

(2) We allow the case m1(λn) = m2(λn) = ∞.

As a preliminary result, we note the following.

Lemma 2.2. Suppose {λn}n∈N0 is a sequence of positive real numbers satisfying (2.1) and

∞∑
n=0

λ−1
n <∞. (2.2)

Define f(z) :=∏∞n=0(1− z
λn

); then

lim
|y|→∞
y∈R

|y|1/2 sinh(2|y|1/2)

|f(iy)| <∞. (2.3)
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Proof. Let y ∈ R. Then sinh(2|y|1/2 )/|y|1/2 = | sin(2i|y|1/2)/|y|1/2| and

sin(2
√
z )

2
√
z
=
∞∏
n=1

(
1− 4z

π2n2

)
,

so (2.3) becomes

lim
|y|→∞

|y|
1+ |y|

λ0

∞∏
n=1

[
(1+ 4|y|

π2n2 )

(1+ |y|
λn

)

]
<∞ (2.4)

using 2−1/2(1+ |x|) ≤ (1+ x2)1/2 ≤ (1+ |x|).
If 0 ≤ a ≤ b, then(

1+ a|y|
1+ b|y|

)
≤ 1,

and if a > b > 0, then

(1+ a|y|)
1+ b|y| = 1+ (a− b)|y|

1+ b|y| ≤ 1+ a− b
b
= a
b
,

∞∏
n=1

(1+ 4|y|
π2n2 )

(1+ |y|
λn

)
≤

∏
n:λn> 1

4π
2n2

4λn
π2n2

=
∞∏
n=1

[
1+ (λn − 1

4π
2n2)+

1
4π

2n2

]
<∞

if (2.1) holds.

Proof of Theorem 2.1. We follow the arguments in [5], [6] fairly closely. One can write

mj(z) = Qj(z)/Pj(z), j = 1, 2, where

(1) Pj,Qj are entire functions satisfying

|Pj(z)| ≤ C exp(
√
|z| ), (2.5a)

|Qj(z)| ≤ C(1+
√
|z| ) exp(

√
|z| ); (2.5b)

(2)

mj(z) = ±i
√
z+ o(1) as z→±i∞. (2.6)

(We use the square root branch with Im (
√
z) ≥ 0.)

Supposem1 6= m2. Then P2(z)Q1(z)−P1(z)Q2(z) := H(z) is an entire function of order

at most 1/2 and not identically zero. Since H(λn) = 0, we conclude that
∑
n∈N0

λ−an <∞ if

a > 1/2. In particular, (2.2) holds, and we can define f(z) =∏∞n=0(1− z/λn). Next, define

G(z) := H(z)

f(z)
= P1(z)P2(z)

f(z)
(m1(z)−m2(z)). (2.7)
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Since H(λn) = 0, G(z) is an entire function. By (2.3),

lim
|y|→∞

|y|1/2 exp (2|y|1/2)

|f(iy)| <∞.

So, by (2.5) and (2.6),

|G(iy)| ≤ exp (2|y|1/2)

f(iy)
|m1(iy)−m2(iy)| = o(|y|−1/2)

goes to zero as |y| → ∞. The Phragmén-Lindelöf argument of [6] then yields the contra-

diction G(z) ≡ 0; that is, m1 = m2.

Remark. The above yields o(|y|−1/2) even though o(1) would have been sufficient. We

have thrown away half a zero. That means one can prove the following result.

Theorem 2.2. Let {λn}n∈N0 and {µn}n∈N0 be two sequences of real numbers satisfying

∞∑
n=0

(λn − π2n2)+
n2

<∞ and
∞∑
n=0

(µn − π2n2)+
n2

<∞, (2.8)

with µm 6= λn for all m,n ∈ N0. Let m1,m2 be the m-functions for two operators Hj =
−(d2/dx2)+ qj, j = 1, 2 in L2((0, 1)) with boundary conditions

u′(1)+ h( j)
1 u(1) = 0

and h( j)
1 ∈ R, j = 1, 2. Suppose that m1(z) = m2(z) for all z in {λn}∞n=0 ∪ {µn}∞n=0 except

perhaps for one. Then m1 = m2 (and hence q1 = q2 a.e. on [0, 1] and h(1)
1 = h(2)

1 ).

By scaling, one sees that the following analog of Theorem 2.1 holds (there is also

an analog of Theorem 2.2).

Theorem 2.3. Let a < b and let {λn}n∈N0 be a sequence of distinct positive real numbers

satisfying

∞∑
n=0

(
λn − π2n2

4(b−a)2

)
+

n2
<∞. (2.9)

Let m1,m2 be the m-functions for two operators Hj = −(d2/dx2)+ qj, j = 1, 2 in L2((a, b))

with boundary conditions (1.3) at x = a and

u′(b)+ h( j)
b u(b) = 0,

where h( j)
b ∈ R, j = 1, 2. Suppose that m1(λn) = m2(λn) for all n ∈ N0. Then m1 = m2 (and

hence q1 = q2 a.e. on [a, b] and h(1)
b = h(2)

b ).
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3 Whole interval results

Fix h1 ∈ R, letH(h0) be the operator on L2((0, 1)) with u′(1)+h1u(1) = 0 and u′(0)+h0u(0) = 0

boundary conditions, and denote by λn(h0) the corresponding eigenvalues of H(h0). Then,

for h0 ∈ R, it is known (see, e.g., the references in [6]) that

λn = (nπ)2 + 2(h1 − h0)+
∫1

0
q(x)dx+ o(1) as n→∞ (3.1)

and for h0 = ∞,

λn = [(n+ 1
2 )π]2 + 2h1 +

∫1

0
q(x)dx+ o(1) as n→∞. (3.2)

To say that H(h0) has eigenvalue λ is equivalent tom(λ) = −h0. Thus, Theorem 2.1

implies the following.

Theorem 3.1. LetH1(h0), H2(h0) be associated with two potentials q1, q2 on [0, 1] and two

potentially distinct boundary conditions h(1)
1 , h

(2)
1 ∈ R at x = 1. Suppose that {(λn, h(n)

0 )}n∈N0

is a sequence of pairs with λ0 < λ1 < · · · → ∞ and h(n)
0 ∈ R∪ {∞} so that both H1(h(n)

0 ) and

H2(h(n)
0 ) have eigenvalues at λn. Suppose that (2.1) holds. Then q1 = q2 a.e. on [0, 1] and

h(1)
1 = h(2)

1 .

Given (3.1), (3.2) we immediately have Borg’s theorem [1] as a corollary (this is

essentially the usual proof), but more is true. For example, by using Theorem 2.2, one

infers the following.

Corollary 3.2 [1]. Fix h(1)
0 , h

(2)
0 ∈ R. Then all the eigenvalues of H(h(1)

0 ) and all the eigen-

values of H(h(2)
0 ), save one, uniquely determine q a.e. on [0, 1].

Corollary 3.3. Let h(1)
0 , h

(2)
0 , h

(3)
0 ∈ R and denote by σj = σ(H(h( j)

0 )) the spectra of H(h( j)
0 ),

j = 1, 2, 3. Assume Sj ⊆ σj, j = 1, 2, 3 and suppose that for all sufficiently large λ0 > 0, we

have

#{λ ∈ {S1 ∪ S2 ∪ S3} with λ ≤ λ0} ≥ 2
3 #{λ ∈ {σ1 ∪ σ2 ∪ σ3} with λ ≤ λ0} − 1.

Then q is uniquely determined a.e. on [0, 1].

In particular, two-thirds of three spectra determine q.

4 Updating m

We are now able to understand why partial information on q – knowing it on [0, a] – lets

us get away with less information on eigenvalues, a phenomenon originally discovered by
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Hochstadt-Lieberman [9] in the special case where a = 1/2. We note that m(z, x) satisfies

the Ricatti-type equation

m′(z, x) = q(x)− z−m2(z, x). (4.1)

If we know that λ is an eigenvalue of H(h0), then m(λ, 0) = −h0. If we know q on [0, a],

we can use (4.1) to compute m(λ, a) := −ha and so infer that λ is an eigenvalue of H(ha),

the operator in L2((a, 1)). By Theorem 2.3, this means we only need a lower density of

eigenvalues of the various H(ha). A typical result is the following theorem.

Theorem 4.1. Let σN and σD be the eigenvalues ofH(h0 = 0) andH(h0 = ∞), respectively.

Let SN ⊆ σN, SD ⊆ σD. Fix a ∈ (0, 1). Suppose for λ0 > 0 sufficiently large that

#{λ ∈ {SN ∪ SD} with λ ≤ λ0} ≥ (1− a)#{λ ∈ {σN ∪ σD} with λ ≤ λ0}.

Then SN, SD, and q on [0, a] uniquely determine q a.e. on [0, 1].

This follows immediately from the updating idea. For example, if a = 3/4, we

can recover Theorem 1.3 of [6] (it is essentially a reworking of the proof in [6]); but for

a ∈ (0, 1/2), the result is new and implies, for example, that q on [0, 1/4], all the Neumann

eigenvalues, and half the Dirichlet eigenvalues, uniquely determine q a.e. on [0, 1].
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