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1. I n t r o d u c t i o n  

Our main goal in this paper is to study the almost Mathieu operator on 12(Z) defined by 

(ha,~,e u)(n) = u(n+ 1 ) + u ( n -  1) + A cos ( r an+0)u (n ) .  (1.1) 

Our results in w on measurability of (normalizable) eigenfunctions may be of broader 

applicability. For background on (1.1), see [19], [23]. 

Our main result here concerns (1.1) at the self-dual point A=2. 

THEOREM 1. Let a be an irrational so that there exist qn--*oo and pn in Z with 

q2 a -  P--E~ I --+ 0 (1.2) 
qn I 

as n ~ c ~ .  Then for a.e. 8, hA=2,a,o has purely singular continuous spectrum. 

Remarks. (1) (1.2) is used because for such a, Last [22] has proven that the spec- 

trum, a~,~, of h~,~,e (which is 0-independent [5]) has la2,al=0 (where I" I denotes 

Lebesgue measure). Our proof is such that  for any other a with la~=2,~ I=0 (presumably 

all irrational a),  one has that  hA=2,a,e has purely singular continuous spectrum for a.e.O. 
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Mathematical  Geophysics, Moscow, Russia. This material is based upon work supported by the National 
Science Foundation under Grants  DMS-9208029, DMS-9501265 and DMS-9401491. The Government has 
certain rights in this material. 
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Prior to [22], Helffer-Sj6strand [17] have shown 1 2, 1=0 for a set of a ' s  having all quo- 

tients of their continued fraction expansion sufficiently large. While this set is nowhere 

dense and of zero Lebesgue measure, it includes some a 's  for which (1.2) does not hold. 

(2) The set of a ' s  for which (1.2) holds is a dense G~ whose complement has Lebesgue 

measure 0, that is, (1.2) is generic in both Baire and Lebesgue sense. Although we do 

not describe the a.e. 9 explicitly, the set with singular continuous spectrum contains a 

dense G~ [20], so it is also generic in both Baire and Lebesgue sense. 

(3) Delyon [11] proved that h~=2,~,e has no eigenfunctions belonging to 11 (for any 

a and 9). More recently, Chojnacki [8] has proven that h~=2,~,e must have at least some 

continuous spectrum (for all a ' s  and a.e. 9). His result does not contradict, however, 

the possibility of mixed (overlapping continuous and p.p.) spectrum. We note that the 

absence of absolutely continuous spectrum is obvious whenever the spectrum has zero 

Lebesgue measure. 

While Theorem 1 is our main result, we also prove 

THEOREM 2. I f  O~ is irrational and A is such that h4/~,~,e has only p.p. spectrum 

for a.e. 9, then h~,a,e has purely a.c. spectrum for a.e. 9. 

Remarks. (1) It is known that if a has good Diophantine properties, then for A< 4 Y~, 
h4/x,~,e has only p.p. spectrum [18] (see [27], [14], [16] for earlier results). For such a,  A, 

we conclude purely a.c. spectrum of h~,~,e for a.e. 9. 

(2) Existence of some a.c. spectrum for small A and Diophantine a has been proven 

by Bellissard, Lima and Testard [6], who applied ideas earlier developed by Dinaburg- 

Sinai [12] and Belokolos [7]. Such existence (but not necessarily purely a.c. spectrum) 

is now known for all A<2 and all a, 9 [15], [21]. Purely a.c. spectrum for (unspecified) 

small A and Diophantine a has been proven by Chulaevsky and Delyon [9] using duality. 

Their proof uses detailed information from Sinai's proof of localization [27]. 

We also provide a new proof of 

THEOREM 3. If  ~ is irrational and A<2, then for a.e. 9, hx,a,e has no point spec- 

trum. 

Remark. Delyon Ill] has proven that there is no point spectrum for all 9, which is 

strictly stronger. Moreover, his proof is much simpler. Our proof has a certain method- 

ological advantage in that  we don't  explicitly use the positivity of the Lyapunov exponent 

for the dual model. 

Our proof of Theorems 1-3 depends on a precise version of Aubry duality [2], [3]. 

Recall that  one way to understand duality is to note the following: Suppose that  an 
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solves 

with an El 1. Define 

which is continuous on R with 

For any 77, the sequence 

is seen to obey 

an+l +aN-1 +~  cos ( ran+0)  aN = Ean (1.3) 

~(x) = E anei(~n+~)x' (1.4) 

+ ) (1.5) 

u(n)=~(n+~-~) (1.6) 

u(n+ l)+u(n-1)+ 4 cos(~ran+~l)u(n)= ~ u(n) (1.w) 

by manipulating (1.4). Thus, nice enough normaiizable eigenfunctions at (A, E) yield 

Bloch waves at (4/A, 2E/A) for h and, conversely, nice enough Bloch waves (regularity of 

implies decay of the Fourier coefficients an in (1.4)) yield normalizable eigenfunctions. 

If we slough over what "nice enough" means, we have naive duality: 

(D1) point spectrum at A ~ a.c. spectrum at 4/A, 

(D2) a.c. spectrum at A ~ point spectrum at 4/A, 
(D3) s.c. spectrum at A ~ s.c. spectrum at 4/A, 

where the last statement follows from the first two. 

The surprise in Last [21] is that  this naive expectation is false. There exist a 

(Liouville numbers) for which the spectrum for A>2 is purely singular continuous, but 

the spectrum for A<2 has an a.c. component. Thus, (D2) need not be true. In a sense, the 

main result of the paper is that  (D1) is still true. More explicitly, we show that  the dual 

of point spectrum is a.c. spectrum, in the sense that  some p.p. spectrum for A implies 

some a.c. spectrum for 4/A, and only p.p. spectrum for A implies only a.c. spectrum 

for 4/A. This strengthens Chojnacki's result [8], which shows (in a more general context, 

though) that  the dual of point spectrum is continuous spectrum (but not necessarily 

a.c. spectrum). 

Thus, there is a kind of more precise duality for the almost Mathieu operator: 

(D1 ~) point spectrum at A ~ a.c. spectrum at 4/A, 

(D2') a.c. spectrum at A ~ point or s.c. spectrum at 4/A, 

(D3') s.c. spectrum at A ~ a.c. spectrum (or s.c. spectrum) at 4/A. 
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It is unclear if there is any s.c. spectrum for ,k<2. 

Note that  while we prove (DI')  (and thus (D3')) we do not prove (D2'). It follows, 

of course, from the known results for the almost Mathieu operator, but  we want to point 

out that  this implication fails in certain more general contexts [25]. 

In w we prove that  if there is point spectrum, one can always choose the eigen- 

values and eigenvectors to be measurable in 0. That  allows us to represent the set of all 

eigenvalues of h)~,~,o as a union of values of a measurable multivalued function along the 

trajectory of the rotation by c~--an object first introduced by Sinai [27]. 

In w we use this representation and analyze duality to show that  point spectrum 

implies that  there are spectral measures for the dual problem (at coupling 4/,~) so that  

d#o is independent of 0. Here we use some important  ingredients from [9] and [25]. 

In w we show that  results of Deift-Simon [10] imply that  the singular compo- 

nents of the spectral measures d#o and d#o, are a.e. disjoint. Thus, the 0-independence 

of w implies that  d#o is purely absolutely continuous. We make this precise and prove 

Theorems 1-3 in w 

A.G. is grateful for the hospitality of the Division of Physics, Mathematics and 

Astronomy of Caltech and the Department of Mathematics at the University of California 

at Irvine. S.J. and Y.L. would like to thank J. Avron for the hospitality of the Institute 

for Theoretical Physics at the Technion where parts of this work were done. 

2. Measurability of e i g e n f u n c t i o n s  

To emphasize that  "measurability" here means in Borel sense rather than up to sets of 

measure zero in the completed measure, we will initially discuss a setup with no measure! 

At the end of this section, we will link this to the almost periodic situation that  is the 

main focus of this paper. 

Let A < e c  be positive and fixed. Let f~=[-A,A] z, that  is, wEf~ is a sequence 

w ~ [~<A. is a { n},~=-o~ with Iwn f~ separable compact metric space with Baire sets = 

Borel sets. We call these sets "measurable". For each wef t ,  define a self-adjoint operator 

on /2 (Z)  by 

(h~ou) (n) = u(n+ 1) + u ( n -  1) + Wn u(n). 

A critical fact we will use below is that  (normalizable) eigenvalues are always simple. 

Given any normalized eigenvector u for h~, we define j(u) to be the leftmost maxi- 

mum for ]u], that  is, that  j with 

lu(j)l ~ ) lu(k)l for all k, 

t > lu(k)l for all k < j .  
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We will always fix u by requiring u( j )>0 .  Since E lu(k)l 2=1, we have u(k)--+O as 

Ikl~oo,  so it has a leftmost maximum. I f j  is the leftmost maximum for u, we say that  

u is attached to j .  

Let {Un} be the collection of eigenvectors of h,~. Define Nj(w) to be the number of 

eigenvectors of h~ attached to j .  Nj (w) can be finite or infinite. One of our goals below 

will be to prove 

THEOREM 2.1. Nj(w) is a measurable function on ~. 

Let ~j,k~-{wlNj(w)~k} for k = l , 2 ,  .... On ~'~j,1, define ul(n;w,j)  to be the eigen- 

function attached to j with maximal value of ul(j). Let el(w,j) be its eigenvalue. If 

there are multiple eigenfunctions attached to j with the same value of ul( j ) ,  pick the 

one with the largest energy. (Note that  the Wronskian conservation implies that  two 

eigenfunctions cannot have the same eigenvalue.) Since ~--]~,~ l u,(j)12~< 1 (by Parseval's 

inequality for ~j), there are only finitely many u's with this maximum value of u(j) and 
so we can pick the one with largest e. 

Similarly, on f~j,2 we can define u2(n; w, j )  by picking the attached eigenvector with 

second largest u(j; w, j) ,  again breaking ties by choosing the largest energy. In this way, 

we define u~(n;w,j) and ez(w,j) on f~j,z so that  

(1) {ul( . ;  w, 3)~i=1 is the set of eigenvectors attached to j ,  

(2) ul (j; w, j)/> u~+l (j; w, j) ,  and if equality holds, then el (w, j )  > el+l (w, j) .  

Extend ul and e~ to all of f~ by setting to 0 on f~\f~j,z. Then we will prove 

THEOREM 2.2.  el (w, j) and ul (n; w, j) are measurable functions on f~ for each fixed 
l, j (and n). 

Notice 

PROPOSITION 2.3. For each w, l, 1 ~ and j r  

O 0  

uz(n; w, j) ul, (n; w, k) = 0. (2.1) 
n ~ - - O O  

This is true because the u's are distinct eigenfunctions (since they are attached to 

distinct points) and so orthogonal. 

As a first preliminary to the proofs of Theorems 2.1, 2.2, we make several simplifying 

remarks: 

(i) Without loss, we can take j=O. 

(ii) Instead of looking only at eigenfunctions attached to j=O, we can look at eigen- 

functions with u(0)r  normalizing by u(0)>0. If we define/V0(w) and fi~(n; w, 0) anal- 

ogously by requiring the analog of (1) and (2), and prove measurability, we recover 
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Theorems 2.1, 2.2 by noting that  since ~l(n; w, 0) is measurable, {wlf i l  is attached to 0} 

is measurable, and similarly for u2, ..-. Then define Ul in the obvious way and see that  

it is measurable. 

(iii) It will be convenient to deal with that  multiple ~ of u with ~(0)= 1. u and 

are related, of course, by ~?(n)=u(n)/u(O) and u(n)=~(n) / (~~ ITI(j)I2) 1/2. By these 

relations, if we show that  y is measurable, so is u. Notice that  since u(0)= 1/Ilyl[, ordering 

by maximal u(0) is the same as ordering by minimal ]]~/11. 

Note. Since the passage from 77 to u involves an infinite sum, weak continuity of q 

does not imply weak continuity of u, only weak measurability. The use of ~/below is 

critical because it, not u, is weakly continuous. 

As a second preliminary, we note a few standard facts about Borel functions. 

LEMMA 2.4. Let X be a complete metric space, Y c X  an arbitrary subspace, and 

B x  , By  their Borel sigma algebras. Then 

By  = {YMA I A e B x  }. (2.2) 

Proof. Le t /~y  be the right side of (2.2). Then B y C B y  since B y  is clearly a sigma 

algebra containing the closed sets in Y since if C is closed in Y and D is its closure in X, 

then DMY=C. Conversely, let B x = { A c X  I AMYEBy} .  B x  DBx  since B x  is a sigma 

algebra containing the open sets. Thus, By CBy.  [] 

LEMMA 2.5. Let X be a complete metric space and Y c X  with Y E B x ,  the Borel 

subsets of X .  Then any CEBy ,  the Borel subset of Y,  is Borel as a subset of X .  

Proof. By Lemma 2.4, C--YMA with A E B x .  Since Y E B x ,  so is C. [] 

PROPOSITION 2.6. Let X be a complete metric and B x  its Borel subsets. Let X =  
o~ X Un=l ,~ with X n e B x .  Let f : X - + R  be such that for each n, f n - f r X n  is a Borel 

function from X,~ to X .  Then f is Borel. 

- - 1  o o  Proof. Let (a, b) c R .  Then f (a, b)=Un=l f~ l  (a, b) is Borel by Lemma 2.5. [] 

Example. Let X=[O, 1] and let f=x[1/2,1] be the characteristic function of [1, 1]. 

Let 
1 

Then f [Xn: Xn--*R is continuous, so f is Borel. This example shows that  Proposition 2.6 

is false if a Borel function is replaced by a continuous function. This is useful to keep in 

mind, given the continuous function argument we use below. 

As a final preliminary, we note the following elementary fact: 
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PROPOSITION 2.7. Suppose that w(m)E~ and ~('~)---~w (~), 

Suppose that for each finite m, there is ~('~) with 

(ii) ~?(m)(0) = 1, 

(iii) sup,~ II~('~)II--C<~. 

Then there exists a subsequence mi, ~?(~) and e~ so that 
(1) h ~ ] ( ~ ) = e ~ ( ~ ) ,  

(2) r~(~) (0) -----1, Ilr](cc)ll<c, 
(3) em~--+e~, ~?(m~)(n)--~V(~)(n ) for each n. 

and let h,~=-h~(m). 

Proof. ler~l < 2 + A ,  so by compactness of the unit ball of/2(Z) in the weak topology, 

we can pick a subsequence so that  (3) holds. (2) is obvious and (1) holds by taking 

pointwise limits in the equation (i). [] 

In the proof below, we have to worry about three possibilities that  destroy continuity 

of a function like/V0. First, SUPm II~('~)ll=c~. We will avoid this by looking at subsets 

with II~ll<k, get measurability, and take k to infinity. Second, as w(m)--~W (~), tWO 

distinct eigenvalues of h,~ can converge to a single e so that  h~  has fewer eigenvalues. 

We will avoid this by looking at subsets where eigenvalues stay at least a distance 2 -l  from 

each other. Then we will take l to infinity. Third, after we restrict to ~'s with I1~11 <k,  in 

a limit a bunch of ~'s with I1~11 ~>k can approach one with II~ll =k  increasing N. We will 

handle this by proving semicontinuity rather than continuity as the starting point of a 

proof of measurability. 

Proof of Theorems 2.1, 2.2. Let, as above, 

u~(n; w, O) 
e,~(w)=em(w,O) and ~ m ( n ; w ) -  Um(O;w,O) 

For each pair of positive integers k,p, define Mk,p(W) to be the maximum number of m's 

so that  II~mll<k and lem-e,~,l>~2-P, for all m'r  Since Parseval's inequality implies 

that  ~ , ~  1/11~,~ 11241, there are at most k 2 m's with I I~mll < k and so we can determine 

the maximum number with lem-e~, 1>~2-P. 

We claim that  S-={w IMk,p(W)>~l} is closed so Mk,p(. ) is measurable. For if w('~)ES 

and w ('~) --~w (~), we can use Proposition 2.7 and find ~'s and e's for h~  by taking limits. 

Clearly, the limiting e's still obey the condition lem-em, I ~2 -p. Thus, S is closed and 

Mk,p(. ) is measurable. 

Now define 

Mk,~(w) = ~ of m's with I1~?,~11 < k. 
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Because of simplicity of the spectrum, 

Mk,~(a~) = max Mk,p(a~) 
P 

SO 

{w I Mk,o~(w)/> 1} = U {w I Mk,p(W)/> l} 
p = l  

is an F~, and so Mk,oo is measurable. 

Next define 

~,k,z,p = (~  I Mk,~(~)  = Mk,p(~) = l}, 

the set of w's with exactly 1 eigenvalues with U?]mU <~k so that  ]e,~-em, [~>2 -p. Ekj,p is a 

Borel set. Let el >... > el be the eigenvalues and ?]1, ..., ?]z the eigenvectors (normalized by 

q~(0)=l).  We claim that  e~ and ?]~ are continuous on Ek,l,p. For if w(m)--*w(~~ e~ m) has 
limit points which are distinct (as i varies) since ]e~ "~)-ejm)]>~2 -p. By Proposition 2.7, 

these limit points must be eigenvalues of ho~ with eigenvectors "/i-(~176 obeying ?]i(~) U~ <k  

and so these limit points must be the e~ ~ since ho~ has only l such eigenvalues. That  

is, e~ ~) are the unique limit points of el m), so elm)---*e~ ~ Similarly, the ?]'s converge by 

Proposition 2.7 and the uniqueness of eigenvectors. 

Now let 

= I Mk,o (w) = l} = U 
P 

By Proposition 2.6, e~ and ?]i are measurable on Ek,t. 

Now change the labeling so that instead of el > e2 >... > eL, we have H ?]ill ~< I1?]i+1 II 

with ei>e~+l if II?]ill = II?]i+l II- This involves a permutation 7c so that  

e~new) old 
= eTr( i  ) , 

?]}new) old 
= ?]~(i)" 

_(old) B e c a u s e  ?]}old) and ~i are Borel functions, the set E (~) a,l on which a given permutation 
Anew) 7r is used is a Borel set. ~i is built out of Borel functions on each E (') and so we have 

measurability with the changed labeling. 

Once we change labeling, ei's and ?]i's are defined consistently on Ea,L as k, 1 vary, 

and so, using Proposition 2.6, on all ft. [] 

Note that  although the set of all eigenvalues can be naively considered a non- 

measurable "function" of w, since it is invariant but nonconstant, we have shown that  it 

admits a measurable selection. 
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As a final remark on the issue of this section, we want to rewrite (2.1) in a useful way. 

Taking w~(0)=A cos(Trcm+0) embeds the circle 0e  [0, ~r) into ft, so we define uz (n; 8) 

uz(n; 8, 0), the eigenvectors with leftmost maximum at 0. Note that 

u~(. -j; O+jafc) = uz( ' ;  O,j). 

In particular, (2.1) becomes 

E ut,(n-j; O+jaTr) u,(n; 8) = 0  (2.3) 
n 

for all l, l ~ (even with l=l') and j # 0 .  If we extend u z - 0  on the set where there are not 

t eigenvectors with leRmost maximum at 0, then (2.3) holds for all 8. 

3. D u a l i t y  

Fix c~ irrational throughout this section. 

Let ~=L2(( [0 ,  27Q, dO/21r)x Z), that  is, functions 9~: [0, 27r)x Z--~C with 

nZ/ Iw(0,n)12 

Define Qa on 7-/by 

(Q~ ~) (8, n) = ~(0, n § 1) + ~(0, n -  1 ) + A cos (~r~n § ~(~, n), 

that is, Q~ is the direct integral in 0 of h~,~,o. 

Following Chulaevsky-Delyon [9] we define U: ~---~7-/by the formal expression 

(U~) (7], m) = E . /e- i (v+~"m)~e-i~e~(O,  n) --.dO (3.1) 
n - -  2~l- 

In terms of the Fourier transform ~(m, ~) we have 

U~) (~], m) = ~(m, 7/+~ram), (3.2) 

which gives a precise definition even for cases where the sum in n may not converge 

absolutely and shows that U is unitary. Here is a precise version of Aubry duality [2], [3]: 
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THEOREM 3.1. 

Proof. A straightforward calculation. For example, if (T~)(O, n)=~(0 ,  n + l ) ,  then 

(U-1TU~)(O, n)=e-~(~+~ n) so 

(U-1Q~U~) (0, n) = 2 cos(~an+0) ~,a(O, n ) +  �89 ~(0, n +  1) + ~(0, n -  1)] 

= �89 [] 

Remark. Theorem 3.1 also provides a proof of duality for the integrated density of 

states first rigorously proven in [4]. For let 

g(0, n) = 5~0. 

Then, Ug=g. Moreover, if kx(E) is the integrated density of states, then for any contin- 

uous function f ,  

(g, f(Q~)g) = / f ( E )  
P 

dk~ (E). 

Thus Theorem 3.1, which implies 

(g, f(Q~)g) = (Ug, U f(Q~)U-lUg) = <g, f (�89 

yields the duality of k. 

We need one more simple calculation: 

PROPOSITION 3.2. For any ~E~t, IEZ, define a unitary operator St by 

(S~ ~)(0, n) = ~(0 + ~o~Z, n-Z). (3.3) 

Then 
(USI p)(~;, m) = e -izv (Up)(~, m). (3.4) 

Proof. Let ~ be such that  there exists No with ~(n, 0)=0 if I~l>N0- Then (3.4) 

is a simple change of variables in the integral (3.1). Since such ~o's are dense and Sz is 

bounded, (3.4) holds for all ~. [] 

PROPOSITION 3.3. Let ~ETI so that for all 1r (St~,p)=O. Then 
2 

m 

is a.e. independent of ~. 

Proof. Note that  since U~ETI, geLl([O, 2r), d0/2~). We compute f eitVg(~) d~/27r= 
(U~o, eitvU~}=(U~, US-t ~)=(~ ,  S_t~}=0,  l~0,  by hypothesis. By the weak-* density 

of finite linear combinations of s#lv~oc in L ~ ,  t "  Jz=-or we conclude that  g(~) is constant. [] 

We come now to the main result of this section. 
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THEOREM 3.4. Fix ~ and fix a irrational. Let ul (. ; O, j) be the measurable function 

described in Theorem 2.2 for the Hamiltonian h4/x,~,o. Let f(O) be an arbitrary function 

in L2([0, 2~), dO/2~r). Let ~(0, n) = f (0)ul (n; O, j) for some fixed l, j .  For each 7, let 

~, (n) = (u~)(7, n) 

and let d#v(E ) be the spectral measure for Hamiltonian hx,a,v and vector Cv" Then dpv 
is a.e. q-independent. 

Proof. By (2.3), Sk~ is orthogonal (in 7-/) to ~ for any kr  Moreover, since 

(F(�89 n) = F(  l/~el(O,j) )q~(O, n), 

we have that  Sk(p, kT~O, is orthogonal to F(Q4/),)(p for any continuous function F. As 

in Proposition 3.3, we conclude that  

E (U(p)(7], m) (UF(1.~Q4/),)~)(r], m) (3.5) 
m 

is independent of r]. But by Theorem 3.1, UF(�89 So (3.5) is just 

f F ( E )  dpv(E ). Since this is a.e. rl-independent for each continuous F (and the set of 

continuous F ' s  is separable), we conclude that  d#,~ (E) is a.e. rl-constant. [] 

4. A.e.  mutual  singularity of  the singular parts 

In this section we want to note a simple consequence of Deift-Simon [1@ 

THEOREM 4.1. Let h~ be an ergodie family of Jacobi matrices and let d#~ be the 
d s s singular part of a spectral measure for h~. Then for a.e. w and w', #~ and d#~, are 

mutually singular. 

Remark. This is an analog of the celebrated result of Aronszajn [1] and Donoghue [13] 

of mutual singularity under rank-one perturbations; see [26]. 

Proof. Let G~(n, m; z) be the Green function for h~o (matrix elements of ( h ~ - z )  -1) 

and let | be the set of E0 in R so that 

lim {Im[G~ (0, 0; Eo+iC)]+Im[G~(1, 1, Eo +it)I} = oc. 
e].0 

By the theorem of de la Vall6e-Poussin, dp~ is supported by | Deift-Simon [10] prove 

that  for every EoER,  {w'lEoE| has measure 0. Thus, 

f meas({w'lEo E | dp~(Eo) = O, 
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and we see tha t  

p=(~= , )  = 0  

for a . e . J .  Thus for each fixed w, d#~, is mutually singular to d#,o for a . e . J .  [] 

Remark. Note that  dp~ in Theorem 4.1 only needs to be "a spectral measure",  

namely, the theorem holds regardless of how it is chosen. In particular, d#~ can be 

chosen as the spectral measure for some fixed vector, or it can be chosen as the spectral  

measure for an w-dependent vector. In the next section we apply Theorem 4.1 to some 

particular choice of an w-dependent vector. 

5. P u t t i n g  it all together  

THEOREM 5.1. Fix )~ and fix (~ irrational. Let u z ( . ; 0 , j )  be the measurable function 

described in Theorem 2.2 for the Hamiltonian h4/~,~,e. Let f(O) be an arbitrary function 

in L2([O, 27r),dO/2~r). Let ~(O,n)=f(O)ut(n;O,j) for some fixed l,j .  For each ~1, let 

~v(n)=(U~)(71, n) and let d#,(E) be the spectral measure for Hamiltonian h~,~,v and 

vector Cv" Then d#v is purely a.c. for a.e. 7 l. 

Proof. By Theorem 3.4, dpv is a.e. constant. By Theorem 4.1, this means that  d#~ 

is a.e. zero. [] 

THEOREM 5.2. Fix .~ and fix a irrational. If  ha/~,c~,e has point spectrum for a set 

of 0 's of positive measure, then h~,a,e has some a.c. spectrum for a.e. O. 

Remark. It  then follows by [24] that  hx,~,0 has some a.c. spectrum for all O. 

Proof. {uz(' ; O,j)}l,j span the point spectrum for h4/~,~,o, so if there is point spec- 

t rum, some Ul ( -; -, j )  is a nonzero function in 7-/. Thus by Theorem 5.1, d~v is a.e. purely 

absolutely continuous. Since f d#v (E) d~ = ~,~ f l ul (n; O, j)l 2 dO/27r > 0, we conclude tha t  

f d # , ( E ) r  for a set of rfs of positive measure and so for a.e. r] since d#v(E ) is a.e. 

r~-independent. [] 

THEOREM 5.3. Fix/~ and fix c~ irrational. If h4/~,~,o has only point spectrum for 

a.e. O, then h~,a,o has only a.e. spectrum for a.e. 8. 

Proof. Let fm(O) be an orthonormal basis for L2([0, 27r), dO/27r). By hypothesis for 

a.e. 0, {ul( . ;  0,j)}z,j is an orthonormal basis for 12(Z) where we run over those l , j  for 

which u z ( - ; 0 , j ) ~ 0 .  It  follows tha t  if 9~m,l,j(O,n)=fm(O)uz(n;O,j), then {~m,l,j}m,~,j 

is a complete orthogonal set (but not necessarily normalized). By the unitari ty of U, 

{Ugz,~,l,j}m,Z,d is also a complete orthogonal set. Thus for a.e. r/, {Ug~m,l,j(T],')} is a 

complete set. But these vectors lie in the a.c. spectral subspace by Theorem 5.1. [] 
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Proof of Theorem 1. Last [22] has shown for such a,  the Lebesgue measure of the 

spectrum a~=2,~ is zero. It  follows that  there is no a.c. spectrum for such a and /k=2. 

By Theorem 5.2, there can ' t  be any point spectrum a.e. since such point spectrum would 

imply a.c. spectrum. Thus for a.e. 8, the spectrum is purely singular continuous. [] 

Proof of Theorem 2. This is just a restatement of Theorem 5.3. [] 

Proof of Theorem 3. Let )~<2. Then h4/~,~,o has no a.c. spectrum since 4/)~>2 

(see [3], [5]). Thus by Theorem 5.2, h~,~,o can have no point spectrum. [] 
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