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ABSTRACT. Given any sequence {En}S%; of positive energies and any mono-
tone function g(r) on (0,c0) with g(0) =1, lim g(r) = oo, we can find a po-

tential V(z) on (—oo, oo) such that {En}32, are eigenvalues of — 5 + V/(x)
and |V (z)| < (Jz| + 1)~ g(lz]).

In [7], Naboko proved the following:
Theorem 1. Let {k,}52, be a sequence of rationally independent positive reals.
Let g(r) be a monotone function on [0,00) with g(0) = 1, lim g(r) = co. Then

T—00
there exists a potential V(z) on [0,00) such that
(1) {k2}2, are eigenvalues of — d%zz + V(z) on [0,00) with u(0) = 0 boundary
conditions.
(2) [V(2)] < 425

Our goal here is to construct V’s that allow the proof of the following theorem:
Theorem 2. Let {k,}52, be a sequence of arbitrary distinct positive reals. Let
g(r) be a monotone function on [0,00) with g(0) = 1 and lim g(r) = oo. Let

T—00
{6,352, be a sequence of angles in [0,7). Then there exists a potential V(z) on
[0,00) such that
(1) For eachn, (—di:g + V(z))u = k2u has a solution which is L? at infinity and
w'(0)
1
1) w0)

@) V)l < 2.

Remarks. 1. These results are especially interesting because Kiselev [6] has shown
that if |V( )| < C(|z| + 1)~ with a > %, then (0,00) is the essential support of
Oac(— —7 +V(z)), so these examples include ones with dense point spectrum, dense
inside absolutely continuous spectrum.

2. For whole line problems, we can take each 6, = 0 or § and let Vo (z) = V(|z])
and specify even and odd eigenvalues.

= cot(6,).

Received by the editors July 26, 1995.

1991 Mathematics Subject Classification. Primary 34199, 81Q05.

This material is based upon work supported by the National Science Foundation under Grant
No. DMS-9401491. The Government has certain rights in this material.

©1997 Barry Simon

203



204 B. SIMON

3. For our construction, we'll have |u,(z)| < C,,(1+|z|)~!. By the same method,
we could also specify {m,}22; 50 |un,(z)| < Cp(1l+ |z])~™".

o0
4. By the same method, if Y |k,| < o0, we can actually take |V (z)| <
n=1

C(1 + |z|)~!, providing an answer to an open question of Eastham-Kalf [4, page
95]. If one takes our construction really seriously, one might conjecture that if
V(z) = O(|z|™!), then zero is the only possible limit point of the eigenvalues E,
and, indeed, even that

S VE < oo
n=1

5. One can probably extend Naboko’s method to allow 8’s so from a technical
point of view, our result goes beyond his in that we show the rational indepen-
dence condition is an artifact of his proof. The real point is to provide a different
construction where the interesting examples of the phenomenon can be found.

Our construction is based on examples of the Wigner-von Neumann type [9)].
They found a potential V(z) = -Ssﬂm + O(r~?) at infinity and such that —u" +

Vu = u has a solution of the form =5~ Sm(r) +O(r~3) at infinity. In fact, our potentials
will be of the form

@ ()W@+z%muﬂ@ﬁi@

where xn(z) is the characteristic function of the region x > R,, for suitable large
R, — 0. Since R, goes to infinity, the sum in (2) is finite for each = and there
is no convergence issue. In (2), W will be a carefully constructed function on [0, 1]
arranged to make sure that the phases 6,, at x = 0 come out right. We’ll construct
V as a limit of approximations

sin(2knz + @r)
x

(3) Vm(x) = Wm(w) + Z4ﬁan(x)

n=0

where W, is supported on [27™, 1] and equals W there. We’ll make this construc-
tion such that:

(a) For n < m, (—% + Vi(2))u(z) = k2u(z) has a solution u{™(z) obeying
u € L? and condition (1).

(b)
(4) ul™ (z) ~

for C,, uniformly bounded (in m but not in n!). Note in (4), the fact that
1/1+ z appears (multiplying the sin) rather than, say, 1/(1+2z)? comes from
the choice of 4 in 4k, in (3) (in general, if 4k, is replaced by vz, the decay

is r=/4),
Central to our construction is a standard oscillation result that can be easily
proven using the method of Harris-Lutz [5] or the Dollard-Friedman method [2, 3]
(see [8, problem 98 in Chapter XI]); results of this genre go back to Atkinson [1].

sin(knZ + 3¢n)

< C,(1 -2
1+2z2 - ( +$)
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It will be convenient to introduce the norm
af
=10+ e+ |0+ ) 5 |
o 0]

for functions on [0, 00).

Theorem 3. Fiz x > 0. Let Vjy be a continuous function on [0,00) such that
Vo(z) = 4ksin(2kz + ¢o) /||

for x > Ry for some Ry. Let V1,V, be two other continuous functions which obey

(i) Vi)l < Chlz| 7,
(il) Vi(z) = 9L where |Wi(z)| < Calz| ™,
. ()
(iii) e¥2"2V(z) = Wi where W (z)| < Cslz|~".
Let
v Vo(z) + Vi(z) + Va(z), |z| >R,
with V() (z) = B}im VB (x). Then there exists a unique function u(®(z) for
—00
R € [0,00] (including oo) with (u = u(®)
(a) —u" + V By = k2,
sin(nz—i—%«po) _9 , Kcos(nz+%‘po) _2
(b) fu(z) - —33F—1 < Cs(1+2)7* and [v/(z) - —— 37— | < Cs(1+2) 7%
In addition,

(®) Ju® —u© -0

as R — 0o. Moreover, Cy, Cs, and the rate convergence in (5) only depend on Ry,
01, 02, and Cg. '

Since this is a straightforward application of the methods of [5, 3], we omit the

details.
The second input we’ll need is the ability to undo small changes of Priifer angles
with small changes of potential. We’ll need the following lemma:

Lemma 4. Fiz ky,...,k, > 0 distinct and 950), ceey ,(LOS. Let
fi(z) = sin® (ki + 950)).
Fiz a <b. Then {f1,...,fn} are linearly independent on [a,b].
Proof. Relabel so 0 < k1 < k2 < -+ < ky. Suppose there is a dependency relation
of the form g(z) = zn:laj fi(z) = 0 on [a,b]. Without loss, we can suppose that

an # 0 (for otherwise, decrease n). Writing sin?(y) = (e?™ + =2 — 2) /4, we see
that high order derivatives of g(z) are dominated by the f, term, so c, must be
zero after all. O

It will be convenient to use modified Priifer angles, ¢(z), defined by
(6) w'(z) = kR(z) cos(p); u(z) = R(z)sin(p)
where u obeys —u” + V(z)u = k*u(z). Then ¢ obeys

(7) % =k — k71V () sin®(p(z)).
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Explicitly, given V(z) on [0,b] and 8, let ¢(z; 0, V) solve the differential equa-

tion (7) on [0,b] with initial condition ¢(0;6,V) = 6(®). Obviously,
®) p(;0,V =0) = kz + 6.
Theorem 5. Fiz [a,b] C (0,00), ki,...,k, > 0 and distinct, and angles 9%0),...,
O, Define F : Cla,b] — T™ (with T™ the n-torus) to be the generalized Priifer
angles ¢;(b) solving (7) (with k = k; and V(z) = 0 on [0,a) and the argument
of F on [a,b]) with ¢;(0) = 050). Then for any €, there is a 6 such that for any
oM, ..., 05 with

16 — kb — 0] < 6,
there is a V € Cla, b] with |V||e < € and

F(V)=(6",....00).

Proof. F(V =0)is (950) +kb,...,00 +k,b) by (8)b, so this theorem merely asserts
that F' takes a neighborhood of V' = 0 onto a neighborhood of F(V = 0). By the
implicit function theorem, it suffices that the differential is surjective. But

5Fz‘ 1 . 2 (0)
—_= ki + 6
V) |y  sin (ksz +0;)
by (7) and (8). By the lemma, this derivative is surjective. O

‘We now turn to the proof of Theorem 2. The overall strategy will be to use an

inductive construction. We’ll write
[ee]

9) W)= (6Wn)(2)

m=1
with §W,,, supported on [27™,27(m~1)] so that the W, of equation (3) is W, =

m

>~ éWy. Then assuming we have V,,,_1, we’ll choose Ry, ¢m, 6W,, in successive
k=1

order, so

(1) Ry, is so large that
(10) 8&mxm (2)| < 27"g(z)

on all (0,00), that is, g(Rm) > 2™(8km,).

(2) R, is chosen so large that steps (3), (4) work.

(3) Let u(®(z) solve —u” + Vin_1u = k2,u with u'(0)/u(0) = cot(6,,). We show
that (so long as R,, is chosen large enough) we can pick @, so this v matches
to the decaying solution guaranteed by Theorem 3.

(4) By choosing R., large, we can be sure that [Ju"" " — a{™|| < 2-™~1 where
ﬁ%m) obeys the equation for V,,, — §W,, and that the modified Priifer angles

for ﬂ%m) at b, = 2~™*! are within a range that can apply Theorem 5 with

[a,b] = [27™, 27"

and € < % By applying Theorem 5, we'll get éW,,+1 to assure 'u,,(lm) obeys
the boundary conditions at zero.
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Here are the formal details:
Proof of Theorem 2. Let
a (6V2)(@) = rnxa(e) THERE L En)

where x,, is the characteristic function of [R,, ) and ¢,, R, are parameters we’ll
pick below. R, will be picked to have many properties, among them

8W,, will be a function supported on [27™,27"*1) chosen later but obeying
1
(13 16Wallo < 3.
We’'ll let
Vin() = ) (6Vn + 6W,) ()
n=1
and

Viz)= mlg}]rlmJ Vi ()

where the limit exists since V,,(z) is eventually constant for any z.
By (12), (13), we have

(14) Vi (@) < g(2)/(J2] +1),  m=1,2,...,00.
For each m and each n = 1,...,m, we have by Theorem 3 a unique function
ui™ (z) obeying
(15) —u" + Vou = k24,
(16) lu = sin((kn + 59n) )L+ -[) 71 < oo
We will choose 6V, §W,, so that
(17) Jul™ — u{m=D| < 27™, n=12,...,m—1,
(18) u{™ obeys eqn. (1), n=1,...,m.
Let u, = || - ||-lim ul™. Writing the differential equation as an integral equation,

m—0o0
we see that u, obeys —u” + V(u) = k2u. By (18), u, obeys equation (1) and by
Il - || convergence, u, obeys (16) and so lies in L?. Thus as claimed, —3%27 +V has
{K2}22, as eigenvalues.

Thus we are reduced to showing that §V,,,, §W,, can be chosen so that (17), (18)
hold. .

Let 050) be defined by k; cot(«‘)go)) = cot(f;) so 050) are the generalized Priifer
angles associated to the originally specified Priifer angles. Look at the solutions
uﬁ"‘l’, i =1,...,m — 1. These match to the generalized Priifer angles ;2™ +
0 at x = 2-m+1,

We'll choose 6V, so that the new solutions ﬁgm) (t=1,...,m—1) with 6V,
added obey [|@{™ — u{™ V|| < 2=™~1. We can find €, such that if [|§Wp|| < €m,
then the new solutions u{™ obey |Ju{™ —@{™|| < 2=™~1. So using Theorem 5, pick
§ so small that the resulting V given is that theorem with a = 27™,b = 2=™*! has

|-l bounded by min(3, €,). In that theorem, use &1, ..., Ky, and 01@’ i=1,...,m.
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According to Theorem 3, we can take R,, so large that uniformly in ¢,, (in
[0, 27 /2%,]), we have [Ju{™ P —a{™ | < 2=™~1fori =1,...,m—1 and so large that
again uniformly in ¢,,, the generalized Priifer angles 950) for ﬂgm) at b, = 2-m+1
obey |0§1) - 0§O) — Kb <éfori=1,...,m—1.

Thus, if we can pick the angle ¢, in (11) so that a,(;” ) obeys the boundary
condition at zero (and so 05 — 0% — kb = 0), then the construction is done.

By condition (b) of Theorem 3, for |z| large, as ¢, runs from 0 to 27/2k,,
(lz|u(z), |z|u'(x)) runs through a complete half-circle. Thus, by taking R,, at least
that large and choosing ,, appropriately, we can match the angle of the solution
of u” + V,,_1u = k2,u which obeys the boundary condition at = = 0. O

NOTE ADDED IN PROOF

A. Kiselev, Y. Last, and this author (paper in preparation) have shown that if
C =Tim|z||V(z)| < 0o, then the positive eigenvalues {E,}52, obey 3 E, < <.
This partially answers the questions in Remark 4 after Theorem 2.
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