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Abstract: We construct one-dimensional potentials V(x) so that if H = — JJT -f-

V(x) on L2(IR), then H has purely singular spectrum; but for a dense set D, φ e D
implies that \(φ,e~ltHφ)\ ^ Q, | f |~ 1 / 2 ln( | f | ) for |ί| > 2. This implies the spectral
measures have Hausdorff dimension one and also, following an idea of Malozemov-
Molchanov, provides counterexamples to the direct extension of the theorem of
Simon-Spencer on one-dimensional infinity high barriers.

1. Introduction

This is a continuation of my series of papers (some joint) exploring singular con-
tinuous spectrum especially in suitable Schrόdinger operators and Jacobi matrices
[3,15,4,8,2,19,17,5,7,16]. Our main goal here is to construct potentials V(x) on

IR so that if H = -j£ + V(x\ then σ(H) = [0,oc), σac(//) = σpp(#) = 0, and

there is a dense set D C L2(IR) so that if φ 6 D, then

\(<P,eitHφ)\ ^ CφΓl/2]n(\t\) (1.1)

for \t\ > 2. (We say \t > 2 because of the behavior of ln(|φ for \t ^ 1; note all
matrix elements are bounded by 1, so control in \t ^ 2 is trivial.)

Equation (1.1) is interesting because the stated bound on Fφ(t) ~ (φ,e~ltHφ) is
just at the borderline for operators with singular continuous spectrum. Indeed, if
t~l/2 in (1.1) were replaced by t~a for any α > \, then Fφ(t) would be in L 2 and

so the spectral measures dμφ(E) = F(E)dE for F £ L2; that is, dμφ would be a.c.
and so σac(//)φ0.

As an indication of the borderline nature of (1.1), we note that by Falconer
[6], (1.1) implies dμφ is a measure carried on a set of Hausdorff dimension 1 in
the sense that it gives zero weight to any set of Hausdorff dimension strictly less
than 1.

* This material is based upon work supported by the National Science Foundation under Grant
No. DMS-9401491. The Government has certain rights in this material.
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The potentials V are sparse potentials in the sense that they are mainly zero.
They are examples of the type already studied in [19]. We will have examples
where V — » 0 at infinity but also examples where lim^-too V(x) — oo. The latter
are of some interest because of an idea of Malozemov-Molchanov [13], which was
the starting point of our work here.

This idea is related to results of Simon-Spencer [18]. To describe it, we need
some notions. Call a barrier a compact subset B C RΛ so that Ί&.n\B has exactly
one bounded component and so that ]R.n\B has two components if n ^ 2 and three
if n — 1. If B\ and B^ are barriers, we say 82 surrounds B\ if B\ is contained in
the bounded component of Rw\#2

By the width of a barrier B, we mean the distance between the bounded compo-
nent of Rw\# and the unbounded component (in case n = 1, the union of the two
unbounded components). By the diameter of B, we mean max{|x — y\ x, y £ B}.

We say a potential V on Rw has a sequence of high barriers if

(i) V is globally bounded from below and locally bounded.
(ii) There is a sequence E\,B^,... of barriers so Bk+\ surrounds B^.

(iii) The width of each barrier is at least 1.
(iv) There exists a^ — > oo so V(x) ^ a^ if x £ B^.

Then Simon-Spencer proved:

Theorem 1.1 [18]. If n = 1, H = - J^ + V(x\ and V has a sequence of high

barriers, then σac(//) = 0.

Malozemov-Molchanov [13] have studied extensions of this result to higher
dimensions, which require some relations between the size of a^ and diameter of
Bk. It is clearly expected that the result does not extend without restriction to n ^ 2
but it is unclear how to make counterexamples. Malozemov-Molchanov noted that
there exist purely singular measures dv on IR so that the convolution dv * dv is
absolutely continuous. Moreover, if V\ is a potential on IR with such a spectral
measure dv and

is a potential V on IR2, then — A + V has dv * dv as spectral measure (specifically,
if φ(x) has spectral measure dv, then φ(x, y) = φ(x)φ(y) has spectral measure
dv * dv). Finally, if V\ has a sequence of high barriers, so does V .

Our examples in obeying (1.1) will let us implement this strategy and so prove:

Theorem 1.2. If n ^ 2, there exist potentials V with a sequence of high barriers
so that —Δ + V has purely absolutely continuous spectrum. If n g: 3, there are
such V's for which the spectrum is purely transient.

We'll discuss transient and recurrent spectrum further below. It was in thinking
of how to implement this Malozemov-Molchanov strategy that I was led to think
of time decay and (1.1).

The potentials V which implement (1.1) will be chosen even, so we may as
well consider half-line problems with Dirichlet or Neumann boundary conditions at
x — 0. The half-line potentials will have the form

oo

V(x)=Y,Vn(x-Cn), (1.2)
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where Vn is a potential of compact support and the Cw's are sufficiently large. In
principle, our constructions let us determine how large the C/7's must be, but since
the main point of this construction is existence, we won't completely track the
restrictions on Cn.

Section 4 is the technical core of the paper where we prove a critical lemma
about half-line potentials V(x) of the form

VL(x}=V00(x)+W(x-L) (1.3)

with FOG, W bounded non-negative of compact support. We obtain some uniform
in L bounds on the time decay of |(φ, e~ltHφ)\. This lemma is used in Sect. 2 to
make the construction of V obeying (1.1). The application to Theorem 1.2 is found
in Sect. 3. Finally, Sect. 5 contains some remarks about how big the CM's in (1.2)
need to be.

While Sect. 4 is somewhat technical, it is technicality with an elegant physical
interpretation and technology we expect will be useful in other contexts.

It is a pleasure to thank Y. Last, L. Malozemov, and S. Molchanov for useful
discussions.

2. The Construction Modulo the Main Technical Lemma

In this section, we'll construct potentials V on IR so that — j^ + V(x) has purely
singular continuous spectrum, but (1.1) holds for a dense set of φ's. The construc-
tion will depend on a lemma only proven in Sect. 4.

Our F's will obey

V(-x) = V(x) ,

so — -JTΣ + V(x) is a direct sum of two operators, unitarily equivalent to the half
line with Neumann and Dirichlet boundary conditions. We'll prove the result for
the Neumann boundary condition case. The argument for the Dirichlet boundary
condition case is similar: One replaces the Neumann m-function m^(E) by m^(E) =
-mN(E)~] and the "vector" δ(x) by δ'(x) (δ(x) lies in ffi_\ for the Neumann case
but δ'(x) is only in J^f-2 (e.g., [9], but this doesn't change the analysis in any
essential way).

Suppose V is bounded below and let H be the Neumann b.c. operator — Ĵ -

+ V(x) on L2(0, oo ). Let ^s be the usual scale of spaces associated to H [14]
(so, e.g., Jf+i is the form domain of //). Then δ(x), the delta function at 0, lies
in $?-\\ so, in particular, f(H)δ G L2 for any function / e C£°(1R).

The technical lemma we will prove in Sect. 4 is

Theorem 2.1. Suppose Vι has the form (1.3) with KOO, W fixed bounded non-
negative functions of compact support. Let /, g £ C^°(0) with support in (0, oo).
Then

(i) lim^oo(/(//L)(5, e-ltHtg(HL)δ) = ( f ( H ) δ , e~ltR g(H)δ) uniformly for
in compact subsets of (— 00,00).

(ii) There exist C independent of L and t so that

\(f(HL)δ, e-"Hίg(HL)δ)\ g Cr1/2 . (2.1)
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Remark. This is in essence a diffusion bound. For each fixed L, eventually
(f(HL)δ, e~ltHlg(HL)δ) decays faster than any power o f f . However, suppose / = g
is supported very near energy E = k2. Then at time t = ±L/k we should expect a
bump in ( f ( H L ) δ , e~ltHlg(HL)δ) due to return of a reflected wave (the distance
traveled there and back is 2L but since the free energy is p2, not \p2, the veloc-
ity is near 2k). Because of diffusion, this reflected bump will decay but only as
t~l/2 for this particular t. Similarly, there will be multiple reflection bumps at times
/ = ±nL/k. Our proof in Sect. 4 will essentially invoke a rigorous multi-reflection
expansion.

A sequence Vn non-negative potentials of compact support will be called trap-
ping if ^

-~Γi + Σ \-yn(x ~ Ln) + Vn(-x - Ln)) (2.2)
ax n=ι

has no a.c. spectrum if the Z,rt's are sufficiently large. Trapping potentials are con-
structed in Simon-Spencer [18] and Last-Simon [11]. They are of three types:

1) High barriers: What we have called sequence of high barriers where Vn(x) ^
an on (~\,\) and an —> oo.

2) Long random barriers: If Vn(x) is the sample of a random potential on the

interval ( n ( n~ λ ̂ , ̂ y-^), there is no a.c. spectrum so long as Ln is large enough.
3) Very long decaying barriers: If Vn is the sample of \x\~yW(x) (with W(x)

random and α < |) on (an-\9an) and an is large enough, then for Ln large, there
is no a.c. spectrum.

Potentials of type 1,2 are discussed in [18]. [11] has a method that handles
all these cases. In all cases, the Ln 's need only be so large that the support of
Vn(x - Ln) is to the right of the support of Vn-\(x — Ln_\). Our main theorem in
this paper is

Theorem 2.2. Let {Vn} be a sequence of trapping potentials and let V be defined
by (2.2). Then the Ln's can be chosen so that

2

(i) H = — Jji + V(χ) has purely singular continuous spectrum.

(ii) For a dense set D c £2(ίR), and all φ,ψ e D,

\(φ,e-"Hφ)\ g C φ ,^ln( | f | )/ | f | 1 / 2

far \t\ > 2.

Proof. Without loss, we'll restrict to the half-line Neumann problem as explained.
We'll make the argument for φ = f(H)δ for a single / and then explain the
modifications needed to get a dense set of φ.

Theorem 2.1 implies that

lim sup [(ln|φ-V l / 2 \ ( f ( f f L ) δ , e - i t H L f ( H L ) δ )

= 0.

Thus in adding in Vn, we can choose Ln so the change in

sup [(In φ-1 t\ll2(f(H(n})δ, e-itH(n}f(H(n])δ)} (2.3)
|ί|>2
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from the same quantity for n — 1 is at most ^. Here

(on (L2(0,oo)).
Since H^ —> H in strong resolvent sense, we have the result for H by taking

n —> oo and noting X)^ 2~" < oo. To get a dense set of vectors, choose /^,C°°
functions on (0, oo) so the /j 's are dense in || ||oo norm in the continuous functions
on [0, oo) vanishing at zero and infinity. Then {fk(H)δ} is a dense set in L2(0, oc).
At step «, arrange for the change in (2.3) to be no more than 2~n for f = fk with
k = !,...,«. Then each of

\(fk(H)δ,e-itHfk(H)δ)\ ^ Q|/ |- 1 / 2 ln(|/ |)

for \t\ > 2. D

Note. ln( |/ |) plays no special role in the proof or statement of the theorem. It could
be replaced by any function l(\t\) so long as limα_>oo /(α) = oo.

Corollary 2.3. For any potential V of the form given in Theorem 2.2, H has
singular continuous spectrum of Hausdorff dimension 1 in the sense that its spectral
measures EΔ have E$ = 0 if S is a Borel set of Hausdorff dimension α < 1.

Proof. Follows from Falconer [6], p. 67.

Corollary 2.4. For any potential V of the form of Theorem 2.2, we have

lim -^-\\xe-
itHδQ\\2 = oo

for any ε > 0.

Proof Follows from the results of Last [10].

3. High Barriers in Dimension Two or More

In this section, we carry through the strategy of Malozemov-Molchanov described
in the introduction.

For this section, we'll fix once and for all a function V\ on R so that

(i) Vι(-x)=
(ii) There is an — > oo so V\(x) ^ n on [an,an + 1].

(iii) σ(H\) = [0, oo) and is purely singular continuous where H\ = -4~j +

ViW
(iv) For a dense set Dλ C I2(R), \(φ,e~ltH^\l/)\ ^ Cφ^\t\-l/2 ln(|φ for |ί| ^ 2

and any φ,ψ £ D\.

On Rw define

and on
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Theorem 3.1. (a) If n ^ 2, there is a dense set Dn in L2(IR/7) so that for
φ,ψe Dn, (φ,e-ltίl»\l/) G Lp for all p > 1.

(b) If n ^ 3, there is a dense set Dn in L2(IR'7) so that for φ, ψ G Dn,
(φ,e-"Hψ) G L 1 ΠL00.

Proof. If φ = φ\ (g) &><#7, ψ = ψ\® - - <8>ψn with (/)/, I/A/ G Z)ι, then (φ,e~ltH"ψ) =
Π=(P,*- 1 / ' ) so for | f | ^2,

Since it is also bounded, we have the Lp results. Linear combinations of those φ's
are dense. D

Corollary 3.2. If n ^ 2, //„ te purely a.c. spectrum.

Proof. If φ is a measure and /^(O Ξ / e~ίEtdμ(E) is in Z,^ with p < 2, then by the
HausdorfT- Young inequality, dμ(E) = g(E)d(E) with g £ Lq (q = p/ p — 1). D

In [1], Avron-Simon introduced the notion of transient and recurrent a.c. spec-
trum. φ G ̂ fac(^) is transient if it is a limit of φn's where each (φn,e~ltH ' φn)
decays faster than any inverse polynomial in t. If Jftac is the set of such φ's, then
jfja c — ,^fac π Jf7^ is called the set of recurrent a.c. vectors. It is proven in [1] that
if F(t) = (φ,e~ltHφ) lies in I1, then φ is in Jftac. Thus,

Corollary 3.3. If n ^. 3, Hn has purely transient a.c. spectrum.

Thus, if n — 2, it is possible that there is a weakened form of the result of
Simon-Spencer [18], that is,

Open Question. Are there examples of n = 2 with a sequence of barriers with
transient a.c. spectrum or is any a.c. spectrum in such cases of necessity recurrent?

4. The Main Technical Lemma

Our goal in this section is to prove Theorem 2.1. Since — j-% + VL converges to

-J^Ί^VOQ in strong resolvent sense, and δ is in the common form domain, (i) is
elementary but also follows from the discussion below.

Our analysis depends on the Weyl-Titchmarsh theory of spectral measures for
the Neumann problem (see [12]); explicitly, we'll use the form:

Proposition 4.1. Suppose V is bounded and non-negative with compact support in

[0, oo) and H = — J^ + V(x) }V^m u'(®) = 0 boundary conditions. For any E > 0,

let k = \fΈ and let u+(x, E) be the solution of -u" + Vu — Eu which is equal to
elkx for x large. Define m(E) = —w+(0, E)/u\ (0, E\ the Neumann m-function.
Then for f , a smooth function of compact support,

(δ,f(H)δ)= ]-ff(E)[lmm(E)]dE. (4.1)

Because of (4.1), we'll need to estimate integrals of the form:
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Lemma 4.2. Let g be a C°° function of compact support on (0, oc), and let

Then

\Q(y,t)\ g Cr'/2 {\cj(k2)\2 + k2\g'(k2)\2}k2dk '

Proof. Let H0 be the operator -^ on L2(IR). Let /!(>>) be the function Q(y,0).
Then, using the explicit integral kernel of HQ:

Q(y,t) = (e~"

so

1'2

\Q(y,t)\ ^

^by the Schwartz inequality, so by the Plancherel theorem,

\Q(y,t)\ Z (20~1/2 [ J \ f ( k ) \ 2 + \f'(k)\2dk

where f(k) = 2kg(k2) and we are done. D

For the remainder of this section, we'll fix V^ and W and always take L so large
that WL( ) = W( — L) has its support to the right of the support of V^. Thus,
there are a < b < c, so supp(Koo) C [0,α), supp[^/,] C (b,c). In the regions (α,Z?)
and (c, oo), any solution of — u" + F^w = £/, is a linear combination of e±lkx, where
k = λ/E. For u+, we have it equal to elkx on (c, oc) and it will be ~elkx + ψe~lkx

on (a,b). Hence, by general principles, //J2 + r^2 = I and fc ΦO. Since m only
involves a ratio, we can instead look at ύ+ = tLelkx on (c, oc) and = elkx -h
rLe~~lkx on (a,b).

re

Given any complex number r, we can solve on [0,α] for the function—
-ιkx

be the value of — w(0)/z/(0) for the corresponding solution. As indicated, M(r\E)
depends on the value of the reflection coefficient r (r is distinct from x, of course;
beware of the possible confusion) and energy E. It is also a function of V^
but not of W. If we choose r = rL(E) which is dependent on W (and L and
E\ then, of course, mι(E) = M(rL (E\E) is the m for VL. And, of course,
Woc(^) Ξ M(r = 0,£) is the m for V^.

Theorem 4.3. For each fixed E > 0, M(r,E) is analytic in the complex disc
{r r\ < 1}. Similarly, |j /Λ analytic there too. Moreover, both functions are uni-

formly bounded as E run through compact subsets 0/(0, oo) and r through compact
subsets of {r\ r\ < 1}. In particular, for any RQ < 1 and compact K c (0, oo),
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an(E)\ ^

dan ^

dE

(4.2a)

(4.2b)

i f E e K .

Remark. The proof actually shows more, as we'll note in the next section; namely,
an(E)\ g C, dE

Proof Let ( I ( ) be the transfer matrix from a to zero, that is,

w(0)
for solutions of — w" -f (V — E)w = 0 .

Then M(E,r) is the fractional linear transformation

M(r) = -
α(ω ίkβ(ω — rω

y(ω

where ω = elka. The denominator vanishes exactly if ΓQ = ω2(—y + ikδ)/(y + /£c>).
Notice that since y, <5 are real, |ΓQ| = 1, so as claimed, M is analytic in \r < 1.
The uniform bounds on M follow by noting that α,/?,y,<5 are uniformly bounded.
Similarly, ^ has a second order pole on the unit circle and we get its uniform
bounds. D

1. A convenient way to write M is in terms the zeros ΓQ and r\ of the denom-
inator and numerator of M. As in the proof, \ΓQ\ = r\ —\ and

M(r) - M(0)

so, in fact an(E)\ ^ 2|M(0)| (just expand the geometric series and multiply out).

Similarly, we can control ^~\.
2. That the zero of the denominator has |r0 = 1 just happens in the proof. But

one can understand it from two factors. First, every r with r < 1 occurs with some
as we run through all possible Ws. Thus, since m is finite for any +

of compact support, M must be analytic in \r < 1. Moreover, M(r ) = M(r), so
we have analyticity also in > 1. D

Proof of Theorem (2.1). Let r(E) be the reflection coefficient on the whole line
2

for — ̂ T + W(x). Then by translation covariance, rL(E), the reflection coefficient
for w(x-L\ is

rL = e

Thus, in terms of the expansion above Eq. (4.2):

Sn(L,t) ,
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where

Sn(L,t) =

J,/ f(k2)g(k2)e-'k l+2ikL"an(k2)r(k2)"d(k2); n

/ f(k2)g(k2)e-ίk Ίmm^k^dk2; n = 0

I -^,!f(k2)g(k2)e-'k <-2ίkL><a,,(k2)r(k2) d(k2); n ̂

where m^ is the Neumann m-function for VQQ. Since supp(fg) C (0,oo), we know
that on that support sup r(k2)\ is some α < 1. So in (4.2), take R0 > α and
use Lemma 4.2 to be able to sum up the ί~1//2 contributions and so obtain the
theorem. D

5. Towards Explicit Estimates of the Ln

Our goal here is to explain why for the \n(t)/tl/2 bound we believe that one needs
to take Ln ~ exp(exp(G?3/2)) for the case where, say, Vn = ^#(-1/2,1/2)- If we only
wanted t~λl2+κ behavior for fixed ε, these same considerations would only require
Ln ~ exp(Cβft3/2) (consistent with the behavior needed in [19]).

As noted in the remark after Theorem 4.3, we have \an(E)\ ^ 2|M(0)|,

\%$(E)\ ^ \2M(0)nd^. Thus, if

A = inf(l - r|)

on the support in question, \M(r)\ ^ 2\M($}\A~l and ^ ^ 2QA~2 with Q

bounded by |M(0)^(0)|. Because of the definition of the transfer matrix, in adding

bump n, the transfer matrix for V^ is of order Π/=ι £Cv/^ ~ exp(Q/73//2), so M and

jjr are bounded by exp(Cιft3/2). On the other hand, \r\ for nth bump is of order

1 — e~^" by tunneling estimates, so the A~λ term in IM^O)^"1 is much smaller
than the |M(0)| bound. Thus, the change in (f,e~ίtHg) is of order

and only for t's of order at least L\~δ for any δ > 0. Thus, to get a \n(t)/tl/2

bound, we need only arrange

and to get t ]/2+c, we can have

L'n^n2

as claimed at the start of the section.
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