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1. INTRODUCTION

This paper is devoted to extensions of the trace formula for the ODE
&d 2�dx2+V(x) to the corresponding PDE, &2+V(x). The simplest of all
the one-dimensional results is the trace formula [1, 6] for the periodic
case. Suppose V is a C 1 function on R obeying V(x+1)=V(x). Let
E0 <E3 �E4 <E7 �E8< } } } be the eigenvalues of the operator on
L2([0, 1])

&
d 2

dx2+V (1)

with periodic boundary conditions (call the operator HP) and E1�E2<
E5�E6< } } } the eigenvalues of (1) with antiperiodic boundary conditions
(call the operator H A). Let +1(x)<+2(x)< } } } be the eigenvalues of the
operator (1) on L2([x, x+1]) with u(x)=u(x+1)=0 Dirichlet boundary
conditions (call the operator H D

x ). Then:

V(x)=E0+ :
�

n=1

[E2n+E2n&1&2+(x)], x # [0, 1]. (2)

One way (see, e.g., [8]) of proving (2) is to derive a heat kernel asymptotic
relation

Tr(e&tHP
+e&tHA

&2e&tHx
D
)=1&tV(x)+o(t) as t a 0 (3)

from which (2) follows from the known convergence of

:
�

n=1

|E2n&E2n&1 |<� (4)

and the relation

E2n&1�+n(x)�E2n .

Equation (3) can be viewed as an Abelian summation method applied to
(2) and holds even in cases where (4) diverges (e.g., if V(x)=the charac-
teristic function of ��

n=&� [n& 1
4 , n+ 1

4]).
Recently, we have described versions of (3) for arbitrary, not necessarily

periodic, V 's by using other boundary conditions, see [2, 3]. For example,
if H is (1) on all of (&�, �) and H D

x is (1) on L2(&�, x)�L2(x, �)
with u(x)=0 Dirichlet boundary conditions, then we proved that

2Tr(e&tH&e&tHx
D
)=1&tV(x)+o(t), as t a 0, x # R (5)
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so as long as x is a point of Lebesgue continuity of V and V is bounded
from below and locally L1.

One of our main accomplishments here is to extend (5) to higher dimen-
sions. Let H N

x denote the operator with Neumann boundary conditions and
suppose V is even about x, that is, V(x& y)=V(x+ y), y # R. Then

e&tHx
Q
(x+ y, x+z)=e&tH(x+ y, x+z)\e&tH(x+ y, x&z)

if yz>0 and the & is used for Q=D and + for Q=N. (Here and in
the remainder of this paper e&tH(x, y), t>0 denotes the integral kernel
of the semigroup e&tH.) From this it follows that Tr(e&tH&e&tHx

D
)=

Tr(e&tHx
N
&e&tH) and so (5) becomes

Tr(e&tHx
N
&e&tHx

D
)=1&tV(x)+o(t), as t a 0, x # R. (6)

But it is easy to see that (6) for V even about x implies it for arbitrary V
since the operators break up into direct sums (see Lemma 2.1 below).

It is (6) that we will generalize to & dimensions. Explicitly, given
A/[1, ..., &], let HA ; x be defined as follows: Let B (x)

: , :/[1, ..., &] be the
2& blocks obtained by removing the hyperplanes P (x)

j :=[ y # R& | yj=xj]
from R&, that is, B (x)

: =[ y # R& | yi>xi if i # :, yi<xi if i � :]. HA ; x is then
defined to be the Schro� dinger operator on �L2(B (x)

: ) with Dirichlet
boundary conditions on [P (x)

j ]j # A and Neumann boundary conditions on
[P (x)

j ]j � A .
Explicitly, for each :=1, ..., 2&, let D (A)

: ; x be the set of functions, ., on
B(x)

: which are C � on B(x) int
: , with derivatives continuous up to �B (x)

: with
bounded support and which obey the boundary conditions:

.( y)=0, y # P (x)
j for j # A,

�.
�yj

( y)=0, y # P (x)
j for j � A.

Obviously, D (A)
: ; x is dense in L2(B (x)

: ). Then . [ 2. is essentially self-
adjoint on D (A)

: ; x , &2A is the direct sum of these operators on �L2(B (x)
: ),

and HA ; x=&2A +4 V as a form sum.
We will prove (see Theorem 4.1) that

Tr \ :
A/[1, ..., &]

(&1) |A| exp(&tHA ; x)+=1&tV(x)+o(t), x # R&. (7)

(Note that for A=[1, ..., &] resp. A=<, HA ; x has exclusively Dirichlet
resp. Neumann boundary conditions on the hyperplanes P (x)

j , 1� j�&.)
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The paper is laid out as follows. In Section 2, we'll use the method of
images to reduce (7) to the study of integrals of the form

2& |
R&

exp(&tH)( y, &y) d &y, (8)

where H=&2+V is a Schro� dinger operator in L2(R&) without any
boundary conditions. In Section 3, we introduce a Gaussian process that
provides a concise Feynman�Kac type formula for integrals of the form
(8), and we'll prove (7) in Section 4. We'll discuss the periodic version of
(7) in Section 5, then prove an abelianized version of a recent conjecture of
Lax [5] that motivated our work. Finally, in Section 6, we'll make a few
remarks on the issue of going beyond Abelian sums in the periodic case.

2. THE METHOD OF IMAGES

We begin with some small arguments to simplify notation and some later
details. First, without loss, we'll suppose x=0, that is, all boundary condi-
tions are on planes through 0 and the final formula is for V(0). Let then
Pj be the coordinate plane [x # R& | xj=0] and let HA #HA ; 0 . Let ?j be
the reflection in Pj , that is,

(?jx) i=xi , i{j

=&xj , i= j.

Call V symmetric if and only if V b ?j=V for all j. For :/[1, ..., &], let
B:=B (0)

: be the blocks introduced previously. Let V: be that symmetric
function with V:=V on B: . Because of symmetry of V: for each A,
exp(&t(&2A+V:)) is a direct sum of 2& pieces (acting on the different
L2(B;)) and each of the pieces is unitarily equivalent to a single operator,
PA ; :, t . On the other hand, exp(&tHA) is also a direct sum, clearly
unitarily equivalent to � :/[1, ..., &] PA ; :, t . It follows that:

Lemma 2.1. To prove (7), it suffices to suppose x=0 and that V is
symmetric.

So, henceforth, we can suppose that V is symmetric, which we do in
Lemma 2.3 and Theorems 2.4�2.5 below.

We are interested in writing the heat kernel for HA using the method of
images. Some group theoretic notation will be useful. P& is the set of subsets
of [1, ..., &] which forms a group under (A, B) [ A q B, the symmetric
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difference. The identity is <, the empty set. As a finite Abelian group,
P& is its own dual. The character /A associated to A # P& acts by

/A(B)=(&1) |A & B|. (9)

In particular, orthogonality of characters implies

Lemma 2.2.

:
B # P&

/A(B) /C(B)=2&$AC .

Given B # P& , define the reflection RB acting on R& by

RB= `
j # B

?j .

The method of images formula then says

Lemma 2.3. If x, y are in the same orthant, then

exp(&tHA)(x, y)= :
B # P&

/B(A) exp(&tH)(x, RB y)

and the integral kernel is zero if x, y are in different orthants.

This immediately yields:

Theorem 2.4. Let Ct=�A # P& (&1)|A| exp(&tHA). Then the integral
kernel of Ct is

Ct(x, y)={2& exp(&tH)(x, &y),
0,

x, y in the same orthant
x, y in different orthants.

Proof. Let B0=[1, ..., &] so RB0
y=&y and /B0

(A)=(&1) |A| so if x, y
lie in the same orthant:

Ct(x, y)= :
A # P&

/B0
(A) exp(&tHA)(x, y)

= :

B # P&
A # P&

/B0
(A) /B(A) exp(&tH )(x, RB y) (by Lemma 2.3)

=2& :
B # P&

$B0B exp(&tH)(x, RBy) (by Lemma 2.2)

=2& exp(&tH)(x, &y). K
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Theorem 2.5. Let V be bounded below and t>0. Then the operator Ct

of Theorem 2.4 is a trace class operator in L2(R&) and

Tr(Ct)=2& |
R&

exp(&tH)(x, &x) d &x.

Proof. Let St=exp(&tH). For : # Z� &#Z&+( 1
2 , ..., 1

2) let /: be the
characteristic function of [x | |xi&:i |<

1
2 , all i], and let P: be the projec-

tion which is multiplication by /: . Let Z� &
+=[: # Z� & | :i>0].

Ct is a direct sum of 2& operators, each unitarily equivalent to C� t :=
Ct �[x | xi>0]. Let RB0

be the reflection x � &x. Then by Theorem 2.4:

C� t=2& :
:, ; # Z� &

+

P: RB0
St P; .

By the lemma below, P: RB0
St P; is trace class with trace norm bound by

C1 exp(&C2 |:+;| ) and trace given by the integral of the diagonal
integral kernel. Since �:, ; # Z� &

+
exp(&C2 |:+;| )<�, the result follows. K

Lemma 2.6. In the notation of the last proof, P:RB0
StP; is trace class

with trace norm bounded by C1 exp(&C2 |:+;| ) and trace given by the
integral of the diagonal of the (continuous) integral kernel.

Proof. P: RB0
StP;=�# # Z� & RB0

(P&:St�2 P#)(P#St�2P;). By a standard
estimate (see, e.g. [9]):

|Su(x, y)|�C1, u exp(&C2, u |x& y| )

(of course one can even have |x& y| 2 but we don't need that), so by
integrating the square of the integral kernel:

&P:St�2P# &�C3 exp(&C2 |:&#| ),

where & }&2 is the Hilbert�Schmidt norm. Summing over #, we obtain the
trace class result and bound since

:
# # Z� &

exp(&C2 |:+#| ) exp(&C2 |;&#| )�C5 exp(&C4 |:+;| ).

Since the trace of a product of Hilbert�Schmidt operators is given by the
integral of the diagonal integral kernel, we obtain the trace result. K

3. A GAUSSIAN PROCESS

In this section, we present a Feynman�Kac type formula for Tr(Ct)
where Ct is the operator of Theorem 2.4. If V is bounded, (7) is an
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immediate consequence of this formula. For V unbounded (from above) at
infinity, we will need an additional estimate on the Gaussian process, L(t),
used in this formula and that estimate appears at the end of this section.
(We shall employ the notation used in [8], i.e., E( f )=�0 f d+, E(A)=
�A d+=+(A), E( f ; A)=�A f d+, etc., where (0, F, +) denotes a probability
space, A # F, f : 0 � R is F-measurable.)

All Gaussian processes considered in this paper have mean zero and we
will suppose that without explicitly saying it each time. Recall [8] that the
Brownian bridge [:(s)]0�s�1 is the Gaussian process with covariance:

E:(:(s) :(t))=min(s, t)(1&max(s, t))

= 1
2 (s+t&|s&t| )&st. (10)

If b(s) is Brownian motion, then :(s)=b(s)&sb(1) is an explicit realization
of the Brownian bridge. The &-dimensional Brownian bridge is & inde-

pendent copies of :(s) thought of as a vector-valued process and one still
has for the &-dimensional objects

:(s)=b(s)&sb(1). (11)

Let gx,y(s)=sx+(1&s) y be the straight line from x to y. Then, [8] shows
that for any V bounded from below (and locally bounded from above,
say), if H=&2+V in L2(R&),

exp(&tH)(x, y)=exp(t2)(x, y) E:

_\exp \&|
t

0
V \gx,y \s

t++- 2t : \s
t++ ds++ . (12)

We have - 2t rather than the - t on pg. 564 of [8] because we use &2
rather than &1

22. Plugging (12) into Theorem 2.5 we find that

Tr(Ct)=|
R&

d &xNt(x) E:\exp \&|
t

0
V \gx,-x \s

t++- 2t : \s
t++ ds++ ,

where Nt(x)=2& exp(t2)(x, &x)=2& exp(t2)(2x, 0)#>&
i=1 N� t(xi). Notice

that N� t (xi) is a Gaussian probability distribution with variance (x2
t, i) =

2t�(2)2=t�2= 1
4(- 2t)2, so if we let x0, i be a Gaussian variable of variance

(x2
0, i)= 1

4 , then xt, i=- 2t x0, i . Note that gx,-x (s�t)=- 2t x0(2(s�t)&1).
This suggests we define a new process

L(s)=x0(2s&1)+:(s), 0�s�1, (13)
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where the components of x0 are independent Gaussian variables with
(x2

0, i)= 1
4 and independent of : so

E(Li (s) Lj (w))=E:(: i (s) : j (w))+
$ij

4
(2s&1)(2w&1)

=$ij _1
4

&
1
2

|s&w|& . (14)

We have thus proven that:

Theorem 3.1. Let L be the Gaussian process with covariance (14). Then
(with Ct given by Theorem 2.4):

Tr(Ct)=E \exp \&|
t

0
V \- 2t L \s

t++ ds++ .

We need the following estimate on L:

Theorem 3.2. E([[sup0�s�1 |L(s)|]�a])�C1 exp(&C2a2) for some
C1 , C2>0.

Proof. By the realizations (13) and (11), L(s)=b(s)&sb(1)+x0(2s&1) so

sup
0�s�1

|L(s)|�|x0 |+|b(1)|+ sup
0�s�1

|b(s)| (15)

and for the sup0�s�1 |L(s)| to be larger than a, one or more of the three
terms on the right side of (15) must be larger than a�3. Each has a
Gaussian bound since x0 and b(1) are Gaussian and sup0�s�1 |b(s)| has a
Levy inequality estimate (see [8], pp. 64 ff). K

Remarks. 1. Each component of L(t) is an independent copy of the
one-dimensional L(t). L(t) is intimately related to the xi process, |, we
introduced in [2]; namely

L(t)=|(t), t�T|

=&|(t), t�T| ,

where T| is the first time that |(t)=0, that is, | and L are related by
reflection at a first hitting time. Theorem 3.2 is thus another proof of the
estimate we proved on the xi process in [2].

2. The covariance (14) associated with L(t) is just the zero energy
Green's function for &(d 2�dx2) on L2([0, 1]) with antiperiodic boundary
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conditions, just as (10) is the Dirichlet Green's function. Note that L(1)=
&L(0) is related to the antiperiodicity.

4. THE MAIN RESULT IN UNBOUNDED SPACE

Given Theorems 2.5, 3.1, and 3.2, the proof of (7) is easy following the
methods of [2, 8]:

Theorem 4.1. Let V be bounded from below and continuous on R&. Let
Ct=�A # P& (&1)|A| exp(&tHA), t>0. Then Ct is a trace class operator in
L2(R&) and

Tr(Ct)=1&tV(0)+o(t) as t a 0.

Proof. As noted in Lemma 2.1, we can suppose that V is symmetric. By
Theorems 2.5 and 3.1:

Tr(Ct)=E \exp \&|
t

0
V \- 2t L \s

t++ ds++
=T1(V)+T2(V),

where

Ti (V)=E \/i, t(L) exp \&|
t

0
V \- 2t L\s

t++ ds++
and /1, t is the characteristic function of [L | sup0�s�1 |L(s)|<t&1�3] and
/2, t=1&/1, t .

By Theorems 3.2, |T2(V)|�C1 exp(&t inf |V(x)| ) exp(&C2�t2�3)=o(t)
and E(/1, t(L))=1+o(t), thus

lim
t a 0

(T1(V)&1)�t=lim
t a 0

E \/1, t (L) t&1 {exp \&|
t

0
V \- 2t L \s

t++ ds&1+=+
=V(0)

by continuity and dominated convergence (since V is bounded near 0). K

Remark. Because we use path integral estimates, continuity of V is not
needed. One only needs conditions that can be stated in terms of the Kato
class K& defined as

K&={V | lim
; a 0 _ sup

x # R& ||x& y|�;
|x& y|&(&&2) |V( y)| d &y=0&=
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(if &=2, |x& y|&(&&2) is replaced by ln ( |x& y|&1)) and in terms of the
Stummel class M2&:, 1 (see, e.g., [9]):

M2&:, 1={V | sup
x # R& ||x& y|�1

|x& y| &(&&2)&: |V( y)| d &y<�=.

By using the methods of [2], one can prove Theorem 4.1 if

(a) min(V, 0) is in the Kato class K& .

(b) V is in a local Stummel class M2&:, 1 for some :>0 (i.e.,
V/R # M2&:, 1 for all R>0, where /R denotes the characteristic function of
the ball [x # R& | |x|�R]).

(c) 0 is a point of Lebesgue continuity for V for averaging over balls
shrinking to zero.

Just as we could write the one-dimensional trace formula as either (5) or
(6), in low dimension one can use the method of images to write Ct

in alternate ways that avoid mixed boundary conditions. For example, in
two dimensions, let HD be what we called HA=[1, 2] resp. HN=HA=<

correspond to Dirichlet resp. Neumann boundary conditions on both axes.
Then by the method of images (i.e., Lemma 2.3):

e&tHD
(x, x)+e&tHN

(x, x)=2e&tH(x, x)+2e&tH(x, &x), x # R2

so we have

Proposition 4.2. In two dimensions

Tr(Ct)=2 |
R2

[e&tHD
+e&tHN

&2e&tH](x, x) d 2x.

Remark. Note we have not stated in the proposition that [. . .] in the
last integral is trace class because it is not in general. For example, if V=0,
it is not even Hilbert�Schmidt because of the contribution of the integral
kernel &2e&tH(x, y) with x=(u1 , v1), y=(&u2 , v2), 0<ui<1, 0<vi<�,
|v1&v2 |<1.

Remark. There are also results for Dirichlet conditions only. Explicitly,
for A/[1, ..., &], let H� A ; x be the operator with Dirichlet boundary condi-
tions on the planes P (x)

j with j # A but not conditions on the places with
j � A (i.e., free boundary conditions, so, e.g., if A=<, then H� A ; x is just
&2+V). Then we can show that if

Bt= :
A/[1, ..., &]

(&1) |A| exp(&tH� A ; x)
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has a continuous integral kernel, then

|
R&

Bt ( y, y) d &y=2&&[1&tV(x)+o(t)].

This generalizes (5). We believe that Bt is always trace class but have only
proven that if V is symmetric under reflection in each of the planes P(x)

j .

5. THE MAIN RESULT IN A BOX

Our main goal here is to prove:

Theorem 5.1. Let V be continuous on [0, 1]&. For A/[1, ..., &], let HA

be &2+V on L2([0, 1]&) with Dirichlet boundary conditions on the hyper-
planes with xj=0 or xj=1 and j # A and Neumann boundary conditions on
the hyperplanes with xj=0 or xj=1 and j � A. Let (V) be the average of
V at the 2& corners of [0, 1]&. Then

:
A/[1, ..., &]

(&1) |A| Tr(e&tHA)=1&t (V)+o(t) as t a 0.

Remarks. 1. We take a unit cube for notational simplicity only. The
result holds without change on _&

i=1 [ai , bi]. But rectangular symmetry is
critical. It may be possible to extend the result to the unit cells for some
other space groups with enough reflections.

2. If V is continuous and periodic with period one in each direction,
then of course (V) =V(0).

3. All one needs is that V lies in the Kato class and suitable Lebesgue
continuity of V at each corner.

In the group theoretical part of the proof we gave of (7), the key was
that P& was the group generated by the ?j 's. Let \j be the reflection in
xj=1, that is,

[\j (x)] i=xi , i= j

=2&xj , i{j.

Let G& be the group of actions on R& generated by the ?j 's and \j 's. Then
it is easy to see that V has a unique extension to R& which is G& invariant
and this extension, which we'll also call V, is continuous on R&. Let
H=&2+V on L2(R&).
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G& is a semidirect product 2Z& �S P& , so every G # G& can be written as
G=(a, B) where 1

2a # Z& and G acts by

Gx=RBx+a.

Define for A # P&,

/A(G)=(&1) |A & B|.

Then the method of images formula for e&tHA is:

Proposition 5.2. If x, y # [0, 1]&, A # P& , then

e&tHA(x, y)= :
G # G&

/A(G) e&tH (x, Gy).

As in Section 2, let RB0
be the inversion in 0, that is, RB0

x=&x. Then
Lemma 2.2 implies

:
A # P&

(&1) |A| /A(G)={2&

0
if G=(a, B0)
if G=(a, B) with B{B0

and we conclude that

Proposition 5.3.

:
A # P&

(&1)|A| Tr(e&tHA)= :
a # Z&

M(a, t),

where

M(a, t)#2& |
[0, 1]&

e&tH(x, 2a&x) d &x.

With these preliminaries we are ready for the

Proof of Theorem 5.1. Let Q be the set of 2& corners of [0, 1]& as points
in Z&. If a # Z&"Q, then

min
x # [0, 1]&

dist(x, 2a&x)=2 min
x # [0, 1]&

&x&a&�2. (16)

Since (see, e.g., [9])

|e&tH(x, y)|�C1 exp(&C2(x& y)2�t), (17)
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(16) implies

:
a # Z&"Q

M(a, t)=O(e&c�t)

so by Proposition 5.3, it suffices to prove that for a # Q:

M(a, t)=2&&[1&V(a) t+o(t)]. (18)

By translation and reflection symmetry, we need only prove (18) for
a=0. But by (17):

M(0, t)=2& |
xi�0

e&tH(x, &x) d &x+O(e&c�t)

=|
R&

e&tH(x, &x) d &x+O(e&c�t)

so (18) is precisely (7) given Theorem 2.5. K

Remark. Because V is bounded, we do not need the estimate in
Theorem 3.2 to prove Theorem 5.1.

The proof of Theorem 5.1 shows:

Theorem 5.4. Let V be continuous on [0, 1]&. For A/[1, ..., &], let H� A

be &2+V on L2([0, 1]&) with Dirichlet boundary conditions on the
hyperplanes with xj=0 for j # A and Neumann boundary conditions on the
hyperplanes with xj=0 for j � A or xk=1 for all k # [1, ..., &]. Then

:
A/[1, ..., &]

(&1) |A| Tr(e&tH� A)=2&&[1&tV(0)+o(t)] as t a 0.

Proof. We still use the same group G& . Define with G=(a, B) # G&

/~ A(G)=(&1) |A & B| (&1)(1�2) �j # A |aj |.

G& is generated by [?j] _ [\j] and

/~ A(?j)=&1 (resp. 1)
/~ A(\j)=1

for j # A (resp. j � A)
for all j=1, ..., &

and /~ is a character. Hence we have our method of images formula

e&tH� A(x, y)= :
G # G&

/~ A(G) e&tH(x, Gy)

with H associated to the G invariant extension of V as in Proposition 5.2.
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Note that for G # G& fixed, A [ /~ A(G) is a character on P& . By the
orthogonality of characters

:
A # P&

(&1) |A| /~ A(G)={2&

0
if /~ A(G)#(&1) |A|

if /~ A(G)�(&1) |A|.

But /~ A(G)#(&1) |A| if and only if G=(a, B) with B=B0 and each 1
2ai is

even. Thus, as in the proof of Proposition 5.3,

:
A # P&

(&1)|A| Tr(e&tH� A)= :
a # 2Z&

M(a, t)

with the same M's. This completes the proof. K

Our next result, an analog of Proposition 4.2, is an abelianized version
of a formula that Lax [5] derived formally in two dimensions:

Theorem 5.5. Let V be a continuous periodic function on R2 with
V(x1+n1 , x2+n2)=V(x1 , x2) for n=(n1 , n2) # Z2. Let HP , HA , HAP ,
HPA , HN , HD be the operators on L2([0, 1]2) with periodic, antiperiodic,
AP, PA, Neumann, and Dirichlet boundary conditions, where AP (resp. PA)
means antiperiodic in the x1 (resp. x2) direction and periodic in the x2

(resp. x1) direction. Then

Tr(e&tHP+e&tHA+e&tHPA+e&tHAP&2e&tHN&2e&tHD)

=&1+tV(0)+o(t) as t a 0. (19)

Proof. Let V� be the extension of V given by reflection, and H� =
&2+V� . By the method of images as above,

2Tr(e&tHN+e&tHD)= :
a # Z2

M� (a, t)+ :
a # Z2

N� (a, t),

where M� is defined in Proposition 5.3 (with H replaced by H� ) and

N� (a, t)=4 |
[0, 1]2

e&tH� (x, x+2a) d 2x.

By (17) and (18)

2Tr(e&tHN+e&tHD)=1&tV(0)+N� (0, t)+O(e&c�t).

Now let H=&2+V. Then

4Tr(e&tHP)= :
a # Z2

N( 1
2a, t)
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with

N( 1
2a , t)=4 |

[0, 1]2
e&tH(x, x+a) d 2x.

By (17) again

4Tr(e&tHP)=N(0, t)+O(e&c�t).

Similar formulae show that

4Tr(e&tHA)=N(0, t)+O(e&c�t)

and for HAP and HPA . Thus

LHS of (19)=&1+tV(0)+o(t)+[N(0, t)&N� (0, t)]

and (19) follows from the following assertion (20):

N(0, t)&N� (0, t)=o(t). (20)

The proof of (20) is a little subtle because the integral kernel e&tH(x, x)
is O(t&1) as t a 0 in two dimensions. In terms of a path integral expansion,
only points O(t1�2) from the border contribute. Thus to get an o(t) error,
we must have complete cancellation of the O(t) terms in the expansion of
the exponentials in the path integral.

So let wt(s) be x+- 2t :( s
t) where : is the Brownian bridge and x is

independent of : and uniformly distributed on [0, 1]2. Define

g(wt , t) :=|
t

0
V(wt(s)) ds

and g~ with V replaced by V� and let

f ( y)=e&y&1+ y.

Then

N(0, t)&N� (0, t)=(4?t)&1 E(e&g&e&g~ )

#A+B,

where

A=&(4?t)&1 E(g& g~ ),

B=(4?t)&1 E( f (g)& f (g~ )).

We'll prove that A=0 and B=O(t3�2&=), =>0.
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That B=O(t3�2&=) follows by noting first that | f ( y)|�Cy2 on [&1, 1]
and that | g(wt , t)|�Ct uniformly in w so | f (g)& f (g~ )|�Ct2 uniformly in
w. On the other hand, if dist(x, �[0, 1]2)�t1�2&=, Prob(x+- 2t :(s�t) �
[0, 1]2 for some s) �exp(&C�t2=), so, since f (g)= f (g~ ) if wt(s) # [0, 1]2

for all s, we have

E( | f (g)& f (g~ )| )�O(exp(&t&2=))+Ct2t1�2&=

and we conclude that B=O(t3�2&=) as required.
A=0 because of a cancellation. Let \t(x) be the probability density of

wt(s) where s is uniformly distributed in [0, 1]. Then

A=&(4?)&1 |
R2

\t(x)[V(x)&V� (x)] d 2x. (21)

For each : # Z2, let g: be the square centered at ( 1
2 , 1

2)+:. There is a sym-
metry S: : g: � g&: so that V b S:=V� and \t b S:=\t so that the con-
tribution of V over g: in (21) cancels the contribution of V� over g&: . K

A different kind of a two-dimensional trace formula for V(x) by com-

paring heat kernels for H=&2+V and Ho=&2 with Dirichlet boundary
conditions on a rectangular box was recently studied in [7].

6. SUMS WITHOUT ABELIAN SUMMATION

An interesting issue on which we haven't much to report is the extent to
which a formula like (2) holds. We note:

Theorem 6.1. In the context of Theorem 5.1, let [En]�
n=0 be a listing of

all the eigenvalues of [HA | |A| is even] and [E� n]�
n=1 for [HA | |A| is odd]

ordered so En�En+1 ; E� n�E� n+1. Suppose that

:
�

n=1

|En&E� n |<�. (22)

Then

(V)=E0+ :
�

n=1

(En&E� n).

Remark. Note that the counting of En starts at 0, but for E� n at 1.

464 GESZTESY ET AL.



File: 580J 294817 . By:CV . Date:29:10:96 . Time:10:34 LOP8M. V8.0. Page 01:01
Codes: 2558 Signs: 1617 . Length: 45 pic 0 pts, 190 mm

Proof. Theorem 5.1 says that

(V) =lim
t a 0 _t&1(1&e&tE0)+ :

�

n=1

t&1(e&tE� n&e&tEn)&.

If 0�t�1, then

|e&ta&e&tb|�[e&t min(a, b)+1] |a&b|

and

lim
t a 0

t&1(e&ta&e&tb)=b&a

so the result follows by dominated convergence. K

When V=0, it is easy to see that En=E� n , n # N, so (22) holds. It
remains to be seen if one can prove it for sufficiently smooth V 's.

ACKNOWLEDGMENTS

We thank Peter Lax for telling us of his work prior to publication. F. G. is indebted to
M. Aschbacher and G. Neugebauer for the hospitality at Caltech where some of this work was
done. F. G. and H. H. were also supported in part by the Norwegian Research Council for
Science and the Humanities (NAVF).

REFERENCES

1. H. Flaschka, On the inverse problem for Hill's operator, Arch. Rat. Mech. Anal. 59 (1975),
293�309.

2. F. Gesztesy, H. Holden, B. Simon, and Z. Zhao, Higher order trace relations for
Schro� dinger operators, Rev. Math. Phys. 7 (1995), 893�922.

3. F. Gesztesy and B. Simon, The xi function, Acta Math. 176 (1996), 49�71.
4. H. Hochstadt, On the determination of a Hill's equation from its spectrum, Arch. Rat.

Mech. Anal. 19 (1965), 353�362.
5. P. Lax, Trace formulas for the Schro� dinger operator, Comm. Pure Appl. Math. 47 (1994),

503�512.
6. H. P. McKean and P. van Moerbeke, The spectrum of Hill's equation, Invent. Math. 30

(1975), 217�274.
7. V. G. Papanicolaou, Trace formulas and the behavior of large eigenvalues, SIAM J. Math.

Anal. 26 (1995), 218�237.
8. B. Simon, ``Functional Integration and Quantum Physics,'' Academic Press, New York,

1979.
9. B. Simon, Schro� dinger semigroups, Bull. Amer. Math. Soc. 7 (1982), 447�526.

465A TRACE FORMULA


