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Abstract: A recently established general trace formula for one-dimensional Schrod-
inger operators is systematically studied in the context of short-range potentials,
potentials which approach different spatial asymptotes sufficiently fast, and appro-
priate impurity (defect) interactions in one-dimensional solids. We prove the abso-
lute summability of the trace formula and establish its connections with scattering
quantities, such as reflection coefficients, in each case.

1. Introduction

This paper is the third in a series on a general trace formula and its ramifications in
(inverse) spectral theory for one-dimensional Schrodinger operators started in [16]
and continued in [19]. The main theme in [16] concentrates around a general trace
formula for self-adjoint Schrodinger operators H in Z 2 (R) of the type

H = -^2+V, (1.1)

where we assume that the real-valued potential V is continuous and bounded from
below. In order to gain some information on V(y)9 we shall compare H with
the associated self-adjoint Dirichlet operator Hy obtained from H by imposing
an additional Dirichlet boundary condition \\mειo\jj{y ± ε) = 0 at the point y G 1R.
Since the resolvent difference [(H» - z)~ι - (H - z)~ι] is rank one (cf. (2.37)),
Krein's spectral shift function ζ(λ,y) [25, 33] for the pair (H^,H) exists for all
y G IR and a.e. λ <E IR (with respect to Lebesgue measure) and one obtains for all

Ύτ[f(H?) - /(#)] = Jdλf'(λ)ξ(λ,y) , (1.2)
IR

0 S ξ(λ,y) ^ 1 a.e. λ e R , (1.3)

ίίλ. vϊ = 0 λ < inf σ(H) (IΛ)
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for any / G C 2 (R) with (1 + A 2 ) / ω G Z2((0,oo)),y = 1,2 and f(λ) = (λ-z)~\
z e C\[infσ(7/),oo). (Here σ( ) denotes the spectrum.) A closer look at the rank-
one resolvent difference of H^ and H reveals the additional result that for each
y G IR and a.e. I G R ,

{ [ ( 9y,y)]}9 (1.5)

where G(z,x,xf) denotes the Green's function of H (i.e., the integral kernel of
(H - z)~ι). The main results proven in [16, 19] then revolve around the following
general trace formula.

Theorem 1.1. [16, 19] Let V be a measurable function on IR satisfying

n+\
(i) sup / dx\V_(x)\ < oo,

«GN n

(ii) 7 dx\V+(x)\ < oo for all n G N ,
n

where V±(x) = [\V(x)\ ± V(x)]/2 and suppose Eo ^ inf σ(H). If x is a point of
Lebesgue continuity for V, then

oo

V(x) = E0 + lim Jdλe-ελ[l - 2ξ(λ,x)] . (1.6)
εi°Eo

The proof of (1.6) combines (1.2) for f{λ) = e~ελ,ε > 0 with path integral
arguments to control the trace of the heat kernel difference as ε j 0.

In the particularly simple case V(x) = 0,G(λ,x,x) = i/λι/2,lm(λι/2) ^ 0 for

λ ^ 0, and hence ξ(λ,x) = < n ' ? n . Further explicit examples can be found
I U, Λ "C U

in Remark 2.5 in the context of reflectionless (7V-soliton) potentials and in (4.18)-
(4.20) in connection with periodic potentials. In fact, historically, after the pio-
neering work by GeΓfand and Levitan [12] on regularized traces for Schrodinger
operators on a compact interval, the trace formula (4.19) for periodic (and certain
classes of almost periodic) potentials was one of the two previously systematically
studied trace formulae of the type (1.6) for Schrodinger operators on the whole real
line (see, e.g., [8, 11, 22, 30, 34] and more recently [5, 24, 27, 28]). The other
case studied in detail by Deift and Trubowitz [7] in 1979 was concerned with short-
range potentials V(x) decaying sufficently fast as \x\ —> oo under the assumption that
H = - ĵ 2 + y n a s no eigenvalues. They proved that

^ | | ] (1.7)

(where f±(k,x) are the Jost functions at energy E = k2 and R(k) is a reflection
coefficient) which is an analog of (1.6). In the special case of positive C°°-potentials
of compact support, a trace formula of the type

V(x) = Jdλ[l - 2ξ(A,jc)], x e IR (1.8)
o

has recently been found by Venakides [35]. However, the equivalence of (1.7) and
(1.8) was not established in [35]. Moreover, ξ(λ,x) was not identified as Krein's
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spectral shift function for the pair (H^,H) and also the connection (1.5) between
ζ(λ,x) and the Green's function of H was not made.

The analog of the trace formula (1.6) and the associated formalism for second-
order finite-difference (Jacobi) operators, a summability result for operators H with
purely discrete spectrum along with a powerful new characterization of the abso-
lutely continuous spectrum σac(H) of H as

σac(H) = {λ G R|0 < ξ(λ,x) < 1} (1.9)

for each fixed x G 1R and some of its applications to the almost Mathieu equation
or Harper's model (here e s s denotes the essential closure) are presented in the
first paper [16] of our series.

The case of general self-adjoint boundary conditions of the type ψ'(x) + βφ(x) =
0,β G IRU {oo} together with trace formulas for all higher-order KdV invariants
(expressed as differential polynomials in V) are studied in detail in the second
paper [19] of our series.

In the present third paper of our series, we shall give a systematic study of
short-range perturbations in which the regularization (Abelian limit) ε j 0 in (1.6)
can be removed and prove the absolute summability of the trace formula (1.6).
Specifically, we shall study the following three situations:

(i) Sufficiently short-range potentials with certain regularity properties (typically,
V e H2>λ(WL), see (2.1)) in Sect. 2.

(ii) Potentials which tend to different asymptotes as x —> ±oo sufficiently fast in
Sect. 3.

(iii) Impurity (defect) scattering in connection with potentials of the type V =
V° -f- W, where V°(x + a) = V°(x) for some a > 0 represents the periodic
background and the short-range perturbation W models impurities (defects) in
a one-dimensional crystal, are treated in Sect. 4.

In each of these three situations, we establish the connection between ξ(λ,x) and
appropriate scattering quantities, such as reflection coefficients and Jost functions,
and prove the absolute summability of the trace formula (1.6),

oo

J d λ \ l - 2 ξ ( λ , x ) \ < o o , Λ e R , (1.10)
R

removing the Abelian limit ε j 0 in (1.6).
It should be pointed out at this occasion that the Abelian limit ε j 0 in (1.6)

cannot be removed in general if V(x) —> oo as x —> oo or x - > - oo irrespec-
tive of the regularity properties of V(x). This is particularly plain in the case
where V(x) —• oo as x —• ±oo, since then for each x G R, |1 - 2ξ(λ9x)\ — 1 for
a.e. λ G IR. But even if V(x) tends to a constant sufficiently fast as x —> -oo
and V{x) —• oo, explicit examples (such as, e.g., V(x) = ex) in [26] show that
[1 - 2ξ(.,x)] i Lι((R,oo);dλ)9R9x G IR. In these situations, the Abelian limit ε | 0
in (1.6) represents a genuine summability method.

The fourth paper [17] in our series is devoted to various multidimensional trace
formulas in terms of heat kernel asymptotics. A brief announcement of our results
appeared in [18], expository accounts of this circle of ideas can be found in [14,
33]. Papers exploring several new solutions of inverse spectral problems are in
preparation.
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2. Short-Range Potentials

In this section we illustrate the trace formula (1.6) in the particular case of short-
range potentials satisfying

V G Z/2 '1(R), V real-valued . (2.1)

Here Hm'p(R.), m, p G IN denotes the usual Sobolev space whose elements have
up to m distributional derivatives in LP(R). The regularity condition on V in (2.1)
is essential in connection with our main result in Theorem 2.3, the removal of
a regularization procedure (Abelian limit) in our trace formula (1.6) (cf. (2.39)-
(2.41)).

The associated self-adjoint Schrόdinger operator H in Z 2 (R) is then defined by

(2.2)
ax"

and the spectrum σ(H) of H is of the type

σ(H) = σd(H) U [0, oo), σess(H) = [0, oo) . (2.3)

Here σess(//) is the essential spectrum of H and the discrete spectrum σd(H) of H
is a bounded subset of (—oo,0) which may be empty, finite, or countably infinite.
We denote the latter by

σd(H) = {ej}jeJ, βj < ej+x , (2.4)

where

J={ {0,1,2,...,7V} (2.5)

= N u { 0 }

is an appropriate index set. For later purposes we will also need the notation

2,...,7V,7V+1}, eN+ι=0 (2.6)

N

depending on whether J is empty, finite, or infinite. We also remark that each
eigenvalue of H is simple, H has no eigenvalues embedded into (0,oo), and the
spectrum of H in (0, oo) is purely absolutely continuous and of uniform multiplicity
two under hypothesis (2.1). It should perhaps be noted that the weak falloff con-
dition of V{x) as |x| —» oo in (2.1) admits situations where zero is a (necessarily
simple) eigenvalue of H though these cases can easily be excluded by adding the
assumption V £Lι(ΉL\(\ + |x|)<ix) in (2.1). For details in connection with these
spectral properties of//, see, for example, [4, 6, 7, 13], and the references therein.

In addition to H we also need to introduce the closely associated self-adjoint
Dirichlet operator H^ in Z 2 (R) defined by

Hy = - T T + v>V(Hy) = {Q£ ^ r l '2(lR)n//2 '2(R\{;;}) | g(y) = 0} , y e R.

(2.7)
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The spectrum of Hy is then given by

σ(H°) = σd(H°)U[0,<x>), σ e s s ( / ^ ) = [O.oo), (2.8)

where

σd(H^)^{μj(y)}jej+n(eo,O),
(2.9)

eo < μι(y) ̂  eu <?y-i S μj(y) S eJ9 j G J+\{\} .

(In the special case where J+ — {1,2,... ,N + 1} is finite and μN+\(y) = eN+\ — 0,
our notation in (2.9) indicates that μ#+i(>0 = 0 is not a discrete Dirichlet eigen-
value though it may be a (non-isolated) eigenvalue of Hy due to. our weak falloff
conditions on V as \x\ —> oo.) In particular,

H» ^H . (2.10)

Since the resolvent of Hy is a rank-one perturbation of that of// (see (2.37)) and

H°=H^y®H^y, (2.11)

where H±y denote the corresponding half-line Dirichlet operators in L 2 ((j,±oo)),

the spectrum of H^ in (0, oo) is purely absolutely continuous and of uniform multi-

plicity two. The discrete spectrum σd(H^) however, in contrast to that of//, is not

necessarily simple. More precisely, μj(y) is a simple eigenvalue of Hj? if and only

if βj-\ < μj(y) < βj. In this case, μj(y) is a (simple) eigenvalue of either H^_y

or / / + , r but not of both. Whenever μj(y) G {βj-uβj} (possibly excluding the case

μN+\(y) — 0 as explained after (2.9)), the multiplicity of μj(y) is two and μj(y)

is a (simple) eigenvalue of both H^y and / / + > r

As a final preparation for the main results of this section, we briefly recall a
few basic formulas in connection with scattering theory for the pair (H,H0), where

Ho = —jj^,V(H0) = // 2 ' 2 (R). Details can be found, for example, in [2-4, 7, 13,
28], Ch. 6, [29], Sect. 3.5, and the references therein. The Jost solutions f±(z,x)
of H are defined by

f±(z,x) = e±lz '*- J dx'z-V2 sm[zι'2(x - * ' )]F(x ')/± (*,*'), ,_ 1 0 ,

z G C\{0},Im(z1/2) ^ 0,x G IR ,

such that

Hf±(z,x) = zf±(z,xl z G €\{0} (2.13)

in the distributional sense. The unitary scattering matrix S(λ), λ > 0 in <C2 as-
sociated with the pair (H,H0) then explicitly reads in terms of transmission and
reflection coefficients from left and right incidence

/ T(λ) Rr(λ)\
S(λ)=( , ) , λ>0, (2.14)

\R'(λ) T(λ) J
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where

l 1 k ^ ^ , (2.15)

where

f±(λ,x) = limf±(λ + iε,x), A > 0 (2.18)
ε|0

and W(f,g)(x) = f(x)g'(x) — f'(x)g(x) denotes the Wronskian of / and g. In
addition, we recall that

T ( λ ) f ± ( λ , x ) = R r ( λ ) f τ ( λ , x ) + f τ ( λ , x ) , λ > 0 (2.19)

and that the Green's function of H (the integral kernel of (H — z ) " 1 ) is given by

Ψ^Yr x>^*'zeC\w>Im(zl/2)^° (2.20)

Specializing to x = x', G(z,x,x) is well known to be Herglotz function in z e C + =
{z e C|Im(z) > 0} for all x e IR, that is, G(z,x,x) is analytic in <C+ and

Im[G(z,x,x)] > 0, G(z9x,x) = G{z,x,x\ z e C+,x G IR . (2.21)

As a consequence (see, e.g., [1] or, for a different approach, [16, 33]) G(z,x,x)
admits the exponential representation.

, z G C+,% G IR , (2.22)

where

c G IR, 0 ^ ξ(λ,x) <, 1 for a.e. λ G IR . (2.23)

Fatou's lemma then implies that

ξ(λ,x) = lim Tu-^ImOntG^ + iε,x,x)]} (2.24)

exists for all x G IR and a.e. λ G IR. The normalization

ξ(λ,x) = 0, /I < Eo = inf σ(7/) (2.25)

is then consistent with (2.23), (2.10) and the fact that

G(λ + /0,x,x) > 0, λ<Eo. (2.26)
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As pointed out in Theorem 1.1 of the introduction, the general trace formula for
V G C(R), V bounded from below, proven in [16] then reads

V(x) =E0 + lim /dλe~ελ[l - 2ξ(λ,x)]9

εi°
(2.27)

Before we discuss how to remove the Abelian limit in (2.27) in the present short-
range case, it should be pointed out that ξ(λ,x) is Krein's spectral shift function
[25] for the pair (H?,H). In particular, for λ e σac(H)° (A0 denotes the interior of
a subset A C 1R), ζ(λ,x) is essentially the scattering phase shift for the pair (H^,H)
since one verifies that

det [S(λ,H?,H)] = λ € σ

where S(λ,H^,H) denotes the unitary scattering matrix in C 2 for the pair
We start our analysis with the following lemma.

Lemma 2.1. Suppose V e H2Λ(Έί) is real-valued. Then for all x e IR,

ξ(λ,x) = 0, λ < Eo = inf σ(H),

>, λ > 0 .

In particular, ξ(λ9x) is continuous for λ > 0. Moreover,

\l-2ξ(λ,x)\S\Rr{l\λ)\, λ>0,

and
[l-2ξ(λ,x)] = o{λ-"2)

Λ—>CX)

uniformly with respect to x G IR. In addition,

' 0, if /I < β0 or if μy(x) < /I < βj

ξ(λ,x) =
1, if ej-i < λ

_ ( 0, if ey_i < A < βj and μy(x) = ey

1, if e/_i < /i < βj and μy (x) = β/_i

whenever

Proof Equation (2.30) follows from (2.24) and

= (i/2λι/2)\f±(λ,x)f , λ > 0 ,

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)

(2.34)

(2.35)

which in turn is implied by (2.15), (2.18)-(2.20). Continuity of ξ(λ,x) for λ > 0
follows from the fact that G(λ + iθ,x,x) is continuous and zero-free for λ € (0,oo).
Inequality (2.31) follows from (2.30) and an elementary geometrical argument.
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(In fact, |arg(l +Reiφ)\ ^ arcsin(|iφ ^ π/2 for \R\ ^ l,φ G JR. and sin(x) ^ 2x/π
for 0 ^ x ^ π/2 imply |arg(l +/?e^) | ^ π|i?|/2.) Relation (2.32) is then implied
by (2.31) and

RrV\λ) = o(/L"3 / 2), (2.36)

which is a consequence of (2.15)—(2.17) and two integrations by parts applying
the Riemann-Lebesgue lemma. Relation (2.33) directly follows from (2.24) and the
fact that G(z,x,x) is real-valued for z < 0 with zeros precisely at the Dirichlet
eigenvalues μ7(x) of H^ since

- G(z,x,x)-\G(z,x, .), .)G(Z,.,JC),

z G C\{σ(#f) U σ(#)} . (2.37)

Here ( , ) denotes the scalar product in Z 2 (R). Relation (2.34) then follows
from (2.33) by a continuity argument. D

Remark 2.2. (i) Inequality (2.31) holds for any real-valued potential satisfying
V eLι(Wi), and hence

[1 -2ξ( ,x)] G ̂ ((0,00);dλ) if Rr(l) G Lι((0,oo);dλ). (2.38)

In particular, Rr{l) G Lι((0,oo);dλ) together with (2.31) are all that's needed to
remove the Abelian limit in (2.27) (see Theorem 2.3). We also note that (2.36)
(and hence (2.32)) holds if V is merely piecewise absolutely continuous admitting
finitely-many jump discontinuities (i.e., there exists a finite partition of R, -oo =
XQ < x\ < - - - < XM < XM+\ — oo such that V is (locally) absolutely continuous
on each interval (xm,xm+i), 0 ^ m ^ M).

(ii) Obviously, (2.33) and (2.34), in contrast to (2.30) , are generally valid in
spectral gaps of H and by no means linked to the short-range nature of V subject
to (2.1). In particular, (2.33) is a general property of Krein's spectral function as
long as βj and μj(x) are simple eigenvalues of H and H^\ respectively.

Given Lemma 2.1, we can now remove the Abelian limit ε | 0 in the trace
formula (2.27) for V(x) and state the principal result of this section. (We recall
our notational conventions in (2.4)-(2.6), (2.8), (2.9), and the paragraph following
(2.9).)

Theorem 2.3. Suppose V G H2>ι(R) is real-valued and denote Eo = inf σ(H). Then
[1 - 2ξ(. ,x)] G Lι((E0,oo);dλ),x G R and

oo

V(x) = E0 + fdλ[l-2ξ(λ,x)] (2.39)

OO

= 2{e0 + Σ [ej ~ μj(x)]} + fdλ[l - 2ξ(λ,x)] (2.40)
0

- (2/π)Jdλ Im/lnίl + R\λ)
 f±^X)'} ),χ G R . (2.41)

o I L ]f±(λ9x)\ 1)f±(λ9x)\

If σd(H) = ψ, the discrete spectrum part 2{...} in (2.40) and (2.41) is to be
deleted.
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Proof. The trace formula (2.39) follows from (2.27), (2.31), and (2.32) applying
the Lebesgue dominated convergence theorem. Equalities (2.40) and (2.41) are then
obvious from (2.39), (2.30), (2.33), and (2.34). D

Remark 2.4. Formula (2.41), in the special case σj(//) = 0, is due to Deift and
Trubowitz [7]. Formula (2.39), on the other hand, again in the special case σp(H) =
0 (more precisely for 0 ^ F G CO°(IR)), appeared in a paper by Venakides [35].
However, the connection (2.24) between ξ(λ9x) and the Green's function G(z,x,x)
of//, and hence the connection between (2.39) and the earlier result (2.41) in [7],
was not establised in [35]. Moreover, ξ(λ,x) was not identified as Krein's spectral
shift function for the pair (H?,H) in [35].

Remark 2.5. It seems worthwhile to point out the particularly simple step function-
like structure of ξ(λ,x) in connection with reflectionless potentials characterized by
RrV\λ) = 0,λ > 0. In this case ξ(λ,x) is given by (2.33), (2.34) for λ < 0 and by

ξ(λ,x)=^9 λ>0 (2.42)

on the (interior of the) absolutely continuous spectrum of H. This applies, in par-
ticular, to all iV-soliton potentials (including V = 0) and to a class of oo-soliton
potentials (having infinitely-many negative eigenvalues accumulating at zero) intro-
duced in [20, 21].

We conclude this section with a few remarks on the low-energy behavior of
ζ(λ,x) as λ I 0. Assuming, in addition to (2.1), that V satisfies

V eL{(Wi\(\+x2)dx), (2.43)

we need to consider the following case distinctions:

Case I. ^(/_(0),/ + (0))φ0 and /_(0,x)/+(0,x)Φ0.
(The first requirement can be expressed as jRί/jcF(x)/±(0,x)φ0 and is equiva-
lent to the fact that H has no threshold resonance; see, e.g. [2, 3]. The second
requirement says \\mxι^xμN+\{x')ή^0). Then

RrV\λ) = -1 + O(λι/2), (2.44)

) ] ' ( 2 ' 4 5 )

J ^ j j ^ )

and hence

ξ(λ,x) = π-ιarg[G(λ + ΪΌ,JC,JC)] = 0(λι/2) in case I, (2.47)

since /±(0,x) are real-valued.

Case II. fΓ(/_(O),/+(O)) = 0 and /_(O,x)/+(O,x)Φθ.
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(The first requirement can be written as J^ dxV(x)f±(Q,x) = 0 and is equivalent
to the fact that H has a threshold resonance, see, e.g., [2, 3].) Then [2, 3]

) , (2.48)

T(λ) = I^I I^I + 0(λ"2), (2.49)

with | c i | Φ | c 2 | and hence i? r (/)(O)φ - 1. Thus

G(/l-MO,x,x) -0/2A 1 / 2 ) | / ± (0 ,x) | 2 [ l+i? / (0) ] + O ( l ) , (2.50)

and hence

£(/l,x) = π^argtGίvl + /0,x,x)] = ^ + <9(/l1/2) in case I I . (2.51)

We emphasize that V = 0 and more generally, all TV-soliton potentials VN mentioned
in Remark 2.5 have a zero-energy resonance and hence belong to case II.

The case where /_(0,x)/ + (0,x) = 0 can be dealt with analogously, but requires
higher-order computations.

3. Cascades

As the title of this section suggests, we shall now indicate how to extend the results
of Sect. 2 to potentials with non-trivial spatial asymptotics. More precisely, we shall
assume that V satisfies

V, V e ^Cioc(R), V real-valued, V', V" e Lι(WL),

/ dx\V(x)\ + Jdx\V(x) - V+\ < oo for some V+ > 0
— oo 0

throughout the major part of this section. (By reflection, x —> —x, it suffices to
consider V+ > 0.)

Since most of the details will be similar to those in the previous section, we shall
mostly refer to Sect. 2 for notations and basic facts and dwell only on situations
markedly different in the present context of (3.1).

Introducing H,H^,J,J+, etc. as in Sect. 2, the absolutely continuous spectrum
of H and Hy now equals [0,oo) with uniform spectral multiplicity one on (0, V+)
and two on (F+,oo). While H has no embedded eigenvalues in (0,oo), H^ may
have (countably infinitely-many) eigenvalues in [0, V+] as briefly discussed in
Remark 3.4.

Concerning the stationary scattering theory for H, one has to replace the Jost
solutions (2.12) by

±oo
f (- γ\ _ p±ik±x Γ rfγ'L.-^ oinΓ£. (r — xfW\V(xrΛ V, 1 f . (7 Ύ1 \

X

k+(z) = (z- V+)ι/2,k-(z) = z1/2, F_ = 0,Im[*±(z)] ̂  0,z € C\{0, V+},x e R
(3.2)
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to obtain

Hf±(z,x) = zf±(z,x), z e C\{0, V+) (3.3)

in the distributional sense. The unitary scattering matrix S(λ),λ > 0 in C, resp. <C2,
now reads as follows:

(note that S(λ) is unimodular in this case since f+(λ,x) is real-valued for 0 < λ <
V+) and

( ί ( l ) m ) λ>v+> < 3 5 >
where

2i[k+(λ)k-(λψ2

n λ ) = ( 1 6 )

W(f.(λ),f+(λ))
( 3 7 )

W(f.(λ),f+(λ))
( 3 8 )

Here f±(λ,x) = limf±(λ + iε,x) and the Green's function G(z,x,x) of H now

satisfies

-\- K yλ)

(3.9)

The above expression for G(λ + zΌ,x,x) involving Rr(λ) (as opposed to that involv-
ing Rι(λ)) appears to be singular at λ — V+, since k+(λ)~ι = (λ — V+ )~1/2 (whereas
k-(V+)~ι = V+1^2). However, this apparent contradiction is easily resolved by ob-
serving that Rr(λ) = —1 + o ( l ) (see also (3.33) for more details).

Remark 3.1. Scattering theory for potentials with different spatial asymptotics has
been studied in detail, for example, in [4, 6, 13], and we have freely used these
results in (3.2)-(3.9). That S(λ) for 0 < λ < V+ is unimodular in (3.4) illustrates
the fact that total reflection occurs from left incidence in this energy regime as
explored in detail in [6] (see also [13]).

Since relations (2.20)-(2.27) are independent of the short-range nature of V,
they apply in the present case. In particular, the definition of ζ(λ,x) in (2.24) and
the trace formula (2.27) remain valid. Similarly, Lemma 2.1 extends to potentials
subject to the hypothesis (3.1) with only one minor change.
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Lemma 3.2. Suppose V satisfies the conditions (3.1). Then (2.29), (2.31)-(2.34)
are valid in the present case. Equation (2.30) turns into

and ξ(λ,x) is continuous in λ > V+.

Proof. Except for the analog of (2.32), which follows again from

RrV\λ) = o(/Γ 3 / 2 ) , (3.11)
λ—>oo

everything else is proven as in Lemma 2.1. The actual proof of (3.11), however,
is now more cumbersome since no simple formulas such as the right-hand sides in
(2.15)—(2.17) appear to be available in the present case. Hence, we briefly sketch
a different (though straightforward) approach to (3.11) (following Lemma 2.3 in
[13]). From the outset it is readily verified that

T(λ) = l+O(λ-ι/2), (3.12)
λ

= O(λ~ι/2). (3.13)
λ—>oo

~ι/2

In order to improve on (3.13), using the additional smoothness conditions on V,
we explicitly compute the Wronskian of f_(λ,x) and f+(λ,x) (for simplicity, at

W(f-(λ),f+(λ))(0) = i(k+ - *_) - fdxcos(k+x)[V(x) - V+]f+(λ,x)
0

- / dxcos(k-x)V(x)f-(λ,x) - (ik+/k-) J dxsin(k-x)V(x)f-(λ,x)
— oo

oo

- (ik./k+)Jdxsin(k+x)[V(x) - V+]f+(λ,x)
0

0 oo

+ AC1 / dxsm(k-x)V(x)f^(λ,x)fdx'cos(k+xf)[V(x')- V+]f+(λ,x')
- o o 0

0 oo

- * + ' / dXCos(k_x)V(x)f-(λ,x)Jdx'sin(k+x')[V(x')-V+]f+(λ,x'),λ > V+.
- o o 0

(3.14)
Next, one observes

= {-il2λλ'2)V+ + O(λ~V2), (3.15)

) , (3.16)
—^oo

= λ~ι/2 + O(λ~3/2), (3.17)
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and

\g±(λ,x)\ + \g'±(λ,x)\ + \gΊ(λ,x)\ ^ C, xίθ,λ ^ F+ + 1 , (3.18)
>

where
) . (3.19)

(The estimate (3.18) immediately follows from (3.2).) Employing (3.15)—(3.19),
one arrives at

II ι) (3.20)

after two integrations by parts in (3.14) (and a few tears) using the Riemann-
Lebesgue lemma and

±oo

g±(λ,0) = lτ(l/2iλ{/2) f
Λ — O O

(3.21)

(3.22)

Combining (3.6)-(3.8), (3.12), and (3.20) then proves (3.11). D

The asymptotic behavior (3.11) slightly improves Lemma 1.4 (iv) in [4] since
we arrive at the conclusion o(λ~3^2) instead of O(λ~3^2) and their extra hypothe-
sis J_oodx{\ + |JC|)|K(JC)| + /0°°<ix(l + |x|)|F(x) — V+\ < oo is not needed in our
proof.

Remark 2.2 and the paragraph following it clearly apply in the present context.
Lemma 3.2 enables one to again remove the Abelian limit in the trace formula

(1.6) for V(x). (We recall our notational conventions in (2.4)-(2.6), (2.8), (2.9),
and the paragraph following (2.9).)

Theorem 3.3. Suppose V, V e ΛCΊ0C(R), V is real-valued, V, V" e Lι(Ί&),

flcodxlVix)] + /0°°dx\V(x) -V+\ < oo for some V+ > 0. Let Eo = inf σ(H).

Then [1 -2ξ(.,x)] G L\(E0yoo)\dλ\x G R and

oo

V(x) = E0 + Jdλ[l-2ξ(λ,x)] (3.23)

-Jdλ[\-2ξ{λ,x)} (3.24)
0

= 2{e0 + Σ [ej ~ μj(x)]}

ίl + Rι(λ) f~^x^ ] \

If σp(H) = Φ, the discrete spectrum part 2{...} in (3.24) and (3.25) is to be
deleted.

Given Lemma 3.2, the proof of Theorem 3.3 is identical to that of Theorem 2.3.

Remark 3.4. While ξ(λ,x) is continuous in λ > V+,ξ(λ,x) may have (countably
infinitely-many) jump discontinuities of size one in [0, F+]. These discontinuities
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occur at those special energies μ7(x) G [0, V+] which are eigenvalues of the Dirichlet
operator H+ x (the restriction of/if to (x,oo)). The Green's function G(z,x,x) of
H is of the type

G(z,x,x) = [m-(z) - mj(z)]-1 , (3.26)

where mf(z) are the Weyl m-functions associated with H±x in L2((x, ±oo))
(H^ = H^ x (B H+x) with m~(z) being continuous near μj(x) while m+(z) has
a first-order pole with a negative residue at μ/(x). Thus

G(z,x,x) = φ - μy(x)] + O([z - μ,(x)]2), μj(x) G (0, F+) (3.27)

for some c > 0 and hence ζ(λ,x) has the jump discontinuity

]imξ(μJix)±ε)={°ι (3.28)

at μj(x) G (0, F+). A comparison of formulas (3.10) for ξ(λ9x),λ > V- and (3.7)
for Rι(λ) then shows that

(3.29)

since /+(μ y(x),x) = 0. Clearly ζ(λ,x) is continuous in λ > 0 away from these
special energies μ/(x) £ (0, K+].

Next, we shall briefly consider the behavior of ζ(λ9x) as λ | 0 and as A | F +

(since H changes spectral multiplicity at V+) similarly to the discussion at the end
of Sect. 2. We shall assume

0 oo

/ dx{\ +x2)|F(x)| + fdx(l +x2)|F(x) - K+l < oo (3.30)
- o o 0

in addition to (3.1) and consider the following case distinctions depending on
whether or not H has a threshold resonance at λ = 0.

Case I ^ ( / _ ( 0 ) , / + ( 0 ) ) Φ 0 and /_(0,x)/ + (0,x)Φ0.
Then, since /±(0,x) are real-valued, one infers

Rι(λ) = -\+O(λι/2), (3.31)
x|0

r/wtfZf-m) <332)

and hence
ξ(λ,x) = π'ιarg[G(λ + zΌ,x,x)] = O(λι/2) in case I . (3.33)

λ|0

Case II. JF(/_(O),/+(O)) = 0 and /_(0,αc)/+(0,x)Φ0.
In this case one infers (see, e.g., Proposition 2.4 in [4] or Lemma 2.5 in [13]) that

W(f-(λ),f+W) =Qi7λι/2 + O(λ), y e IR\{0} , (3.34)

G(z + iθ,χ,χ) =(i/y)f+(0,x)f-(P,x)[l + O(λ1'2)]. (3.35)
|0
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Thus we get

ξ(λ,x) = π " 1 arg[G(/l + iθ9x,x)] = ]- + O(λι/2) in case II. (3.36)

Discussion of the case λ I V+ remains. Since f+(V+,x) is real-valued and
W(f-(λ\f+(λ))^0 for λ > 0 (see, e.g., Lemma 1.2 in [4] or Lemma 2.1 in
[13]), one infers that

Rr{λ)=, -\ + 0({λ-V+γ'2), (3.37)

•V+)1'2), (3.38)

and hence

1 Γ Γ , f (V, rΫ 1 Ί 1/0

F+) 1/2). (3.39)

This serves as an illustration that ξ(λ,x) is insensitive to the fact that H changes
its spectral multiplicity at V+.

We conclude this section with a brief discussion of the case where
V(x) —> oo, that is, we now assume

o
V e C(R), / dx\V(x)\ < oo, lim V(x) = oo. (3.40)

-OO X^OO

H is then defined as the form sum of HQ = —^ and V in L 2 (R). Then /_(z,x)
can be defined as in (3.2) (or (2.13)) and, since V(x) —• oo as x —> oo, the Weyl
m-function associated with 7/^0 (the restriction of H to (0, oo) with a Dirichlet
boundary condition at x = 0) is meromorphic. Hence, there exists an entire function
/+(z,x) satisfying

/ + ( z , . ) G l 2 ( ( 0 , c x ) ) ) , z e ( C (3.41)

and (3.3). /+(z,x) can be chosen to be real-valued for λ e IR (see, e.g., [26] for
further details). H now has simple spectrum which is purely absolutely continuous
on (0, oo). The reflection coefficient from left incidence is then defined as in (3.4),
that is,

and hence
| ^ ( 2 ) | = 1, λ > 0 (3.43)

proves total reflection from left incidence at all positive energies λ > 0. The Green's
function G(z,x,x) of H now satisfies

l + ̂ ffl,^'^] . λ > 0 , (3.44)
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and one infers

ξ(λ,x) = \+ π-λ\m jln fl + ^

as in (3.10). However, due to the total reflection at all positive energies λ > 0,

Rι(λ) = eir(λ) -h 0 (3.46)
/—•CO

for some real-valued function r and hence

1 - 2ξ(λ,x) /> 0 . (3.47)
Λ—>OO

In fact, in the explicit example V(x) — e* discussed, for instance in [26], where
R\λ) = -exp{2z arg[Γ(l + 2iλι/2)]},λ > 0 (here Γ(.) denotes the gamma function),
one can verify that [1 — 2ξ(.,x)] £ Lι((0,oo);dλ),x G JR. As a consequence, the
Abelian limit in the trace formula (1.6) for V(x), in general, cannot be removed
in the case (3.36) and hence (1.6) represents a genuine summability method in
this situation. As mentioned briefly in the introduction, this becomes even more
transparent in the case where V(x) —» oo since then for all x G 1R and a.e.

jc^ioo

4. Hill Operators with Impurities

In our final section, we shall consider short-range perturbations W of Hill operators

H° — - ĵ 2 + V° * a n ( i hence extend the results of Sect. 2 to scattering off impurities

(defects) in one-dimensional solids.
Again, most of the results in this section are valid under minimal smoothness

assumptions of V° and W. However, since our main result in Theorem 4.3 requires
a certain regularity of V° and W, we shall avoid technicalities and suppose these
regularity assumptions throughout this section.

We start by briefly reviewing the necessary Floquet theory associated with the
periodic background potential V° satisfying

V° G # u ( [ 0 , « ] ) , V° real-valued, V°(x + a) = V°(x), x G R (4.1)

for some a > 0. The corresponding Hill operator H° in Z 2 (R) is then defined by

H° = --^-r + V° , V(H°) = 7/ 2 ' 2(R). (4.2)
ax1

The spectrum of H° is purely absolutely continuous of the type

σ(H°) = ( J [Eo

2(n_X),E°2n_xlE°0 <E1< E°2 < E°3 < E°4 < E°5 < • • • (4.3)

with uniform multiplicity two on σ(H°)°. (We recall that A0 denotes the interior of
^ C R . ) An entire fundamental system of distributional solutions of

H°φ(z,x) = zφ(z,x) (4.4)
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with respect to z is then provided by s°{z,x) and c°(z,x) defined as

s°(z,x) = z-1/2sin(z1/2;c) + jdxfz~ι/2sin[zι/2(x - x')\Vo(xl)so{z,xl) ,
o

c°(z,x) = cos(z1/2x) + fdxz~{/2sm[zl/2(x -x')]V°{x')c°{z,x), z £(£, (4.5)
o

W(s°(z\ c°(z)) = - 1 , z e(£. (4.6)

The discriminant A(z) and Floquet parameter (Bloch momentum) θ(z) are then
defined by

A / \ r o*/ \ I of / /̂ ΛΊ /O (Λ FΊ\

e±ιθ(z)a = Δ ^ τ ^ ^ 1 ^ ) 2 _ ! m ( 4 # 8)

Thus

cos[0(z)α] = zl(z), sin[θ(z)α] = zV^(^)2 - 1 , (4.9)
and the branch of ^J~. is chosen such that γ/Ά(λ)2 — 1 > 0 for / < isg and hence

-iθ(A) > 0,λ < E°o, θ(λ) G l R ^ l G σ(H°) ,

—zθ(yl) G (0,oo) <=^ 2 έ IR\σ(//°). (4.10)

The Floquet solutions of H° are defined by

f°±(z9x) = c°(z,x) + s°(z,x) [A(Z) T V^)2 ~ 1 " c°(z,a)\ /s°(z,a)

= e±ιθ(z)xp±(z,x), p±(z,x + a) = p±(z,x) . (4.11)

They satisfy

f°±(z,.) G I2((i?? dzoo)), i?GlR, z G (C\σ(//°) , (4.12)

f°Λλ,x) = fo

+(λ,x)9 λeσ(H°), (4.13)

A,A:) are real-valued for λ G WL\σ(H°)° , (4.14)

= -2y/A(zY-l/s°(z,a) , (4.15)

l θ 5 l e R \ ( j ( f f 7 . (4.16)

For details in connection with (4.3)-(4.16), see, for example, [9, 10, 28], Sect. 7.4,
[29], Sect. 3.4, [36, 37], and the references therein.

If H°'D denotes the associated Dirichlet operator in Z 2 (R) defined analogously
to (2.7) with spectrum

σ(H°y'
D) = {μ°n{y)}n€K U σ(H°), σess(H°y'

D) = σ{H°),

E°2n-x<μ°n(y)<E0

2n, « 6 N , (4.17)
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the trace formula (1.6) applied to V°(x) yields (see [16, 19])

V°(x) = E°Q + lim Jdλe~ελ[l - 2ξ°(λ,x)] (4.18)
ε|0

-i +E°2n - 2K(x)] (4.19)
n=\

Here π£°(Λ,,jc) denotes the argument of the Green's function G°(z,x,x) of H° (see
(2.24)) and one explicitly obtains

f \,E°n_γ < λ < μ°n(x)

ξ°(λ,x)=l 0,μ°n(x)<λ<E°2n

[ 3'£2V-i) < λ < E°2n_λ . (4.20)

Moreover, the assumption V° e Hl>2([0,a]) implies the finiteness of the total gap
length (see, e.g., [23] or Theorem 1.5.2 in [29])

oo

Σ\E°2n-E°2n-l\ < OO , (4.21)

and this has been used to infer (4.19) from (4.18) and (4.20).
Next we briefly turn to the impurity potential W assuming

W e H2Λ(WL), W real-valued, ^ G I 1 ( 1 R ; ( 1 + |jc|)djc). (4.22)

The total Hamiltonian H in Z2(1R) is then defined by

H = - ^ + V, V{H) = #2 '2(R), V(x) = V°(x) + W(x). (4.23)

The spectrum σ(H) of H is now of the type

σ(H) = σp(H) U σ(H°), σess(/ί) = σ(H°), (4.24)

where the point spectrum σp(H) (the set of eigenvalues) of H may be denoted by

n=0

(4.25)

with

an appropriate index set. Similarly to Sect. 2, we shall also need the notation

(4.27)
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depending on whether Jn is empty or finite. Each eigenvalue of H is simple,
σp(H) Π σ(H°) = 0, and the spectrum of H in σ(H°)° is purely absolutely con-
tinuous and of uniform multiplicity two under hypotheses (4.1) and {A.22).

Remark 4.1. We have chosen to add the hypothesis W G Lι(R;(l + |x|)ί/x) from
the outset in (4.22) since it guarantees finiteness of the discrete spectrum σPfn of
H in any of its essential spectral gaps (—oo,^), ( i ^ - i ? ^ ^ ) a s P r o v e n m P l ]
Moreover, it can be shown that H has at most two eigenvalues in (βin-i^in) ^ o r

n sufficiently large (i.e., Nn < 2 for n large enough), and if J R dxW(x) φ 0 precisely
one eigenvalue in {E°ln_x,E°ln) for n sufficiently large (i.e., Nn = 1 if ^dxW(x) Φ
0 for n large enough), see [9, 15, 32, 36, 37]. The following material can be
developed without the assumption W G L ! (R;(1 + |JC|)ΛC) but only at the expense
of introducing a considerably more involved bulk of notations since elements of
σPin may then accumulate at CEf/1-1 and/or E^n)-

Next we briefly introduce the associated Dirichlet operator Hy in L2(1R) defined
as in (2.7). Its spectrum is then given by

)Uσ(H°), σtss(H^) = σ{H°), (4.28)

where

oo

n=0

)j(y) < eoj9 j G /o,+\{l} , (4.30)

Π(^2n-i^2ιι)» « € l N , (4.31)

<V/-i < μ«,y(^) < e n J , 7 G Λ,+, n ^ N .

(Our notation in (4.30), (4.31) indicates that the limiting cases μn,o(y) — £o,-i —
E°ln_x,n G N,μw?Ar,7+i(.y) — £«,Nn+i = E°ln,n G N are not Dirichlet eigenvalues since
H has no L2((y,±oo)) eigenfunctions at £ J , « G N O . ) The spectrum of Hy in
σ(H°)° is purely absolutely continuous and of uniform multiplicity two. Similarly to
Sect. 2, μnj(y) is a simple eigenvalue of Hy if and only if enj-\ < μn,j(y) < enj,
whereas if μnj(y) £ {enj-ι9enj}9 then μnj(y) has multiplicity two (excluding the
cases μn,j(y) = ̂ 2«-i>^2«) ^ o r details in the context of (4.24)-(4.31) see, for ex-
ample, [9, 10, 15, 31, 32, 36, 37], and the references therein.

Impurity (defect) scattering associated with the pair (H,H°) can then be sum-
marized as follows (see, e.g., [9, 10, 13], and the references therein). The Jost
solutions f±(z9x) of H are defined by

±oo
f (7 γ\ _ fo ί Ύ\ _ f J /Ωo, r'ΛWίr'Λ £^(7 Ύ'Λ 7 f= (Γ\ ίF°\ îκτ (A 3?ϊ

/(z,x,x') = [/^(z,x)/0_(z,y) - /°(z,x')/l(z^)]/Ff(r_(z),/^(z)), (4.33)

such that

Hf±(z,x)=zf±(z,x), z € <C\{E°n}neNo (4.34)
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in the distributional sense. The unitary scattering matrix S(λ),λ G σ(H°)° in (C2

associated with the pair (H,H°) then reads as follows:

/ Tyλ) R (λ) \ . -(IJO\O (Λ -jς\

I $}(χ\ T(λ) I ' ' ' ' (.4 >-v

_
(T(λ) ~ W{f-{λ),f+{λ))

(4.36)

R {λ) ~ 2/ sinW)]Γ

where /±(^,x) = lim/±(/l + iθ,x). The Green's function of H satisfies
ε|0

(4.39)

Since V = V° + W is continuous and bounded from below, relations (2.20)-
(2.27), in particular, the definition (2.24) of ξ(λ,x) and the trace formula (2.27),
are valid.

In attempting to generalize Lemma 2.1, however, one is faced with the following
problem. Although

s°(λ,a) = λ-ι/2sm(λι/2a)-(2λyιcos(λι/2a)fdxVo(x) + O(λ-3/2), (4.40)
Λ->OO 0

θ(λ) = Λ1/2 + O ( l ) , (4.41)

and hence

T(λ) ^ 1, Rr(l)(λ) ^ 0 pointwise for λ e σ(H°)° , (4.42)
A >OO

that is, away from the essential spectral band edges {E^}ne^0 of H, the factors
sin[0(Λ,)<2] in the denominators of (4.36)-(4.38) prevent the convergence in (4.42)
at the band edges. In fact, as we will briefly explore at the end of this section,
one generally has Rhr(E°n) = - 1 , and hence a result such as Rl(r\λ) = o(λ~3/2)

A—>oo

in (2.36) is usually false in the present impurity scattering situation. Neverthe-
less, by separately considering sufficiently small compact intervals σn C σ(H°) with
E° e dσn and the remaining spectral band [££(„_i)»i£2n-i]\{σ2/!-i Uσ 2 w}, a device
studied in detail by Firsova [9,10], we will be able to prove a suitable analog of
Lemma 2.1.
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Lemma 4.2 Suppose V = V° + W, where V° G Hl>2([0,a]) is real-valued, V°(x +
a) = V°(x) for some a > 0, We / / 2 1 ( R ) is real-valued, and W G Lι(ΊBL;(l +
\x\)dx). Then for all x G R,

ξ(λ,x) = 0, λ < Eo = inf σ(H), (4.43)

ίl + 7 ? 7 ( A ) , ^ ^ ^ l ] } > λ e σ(H°) 9 (4.44)

and ζ(λ,x) is continuous for λ £ σ(H°)°. Moreover,

\l-2ξ(λ,x)\<\Rr«\λ)\, λ€σ(H°)°. (4.45)

In addition, there exist compact intervals σn C σ(H°),E° G dσn,n G No wfίA
Σ « G N lσ«l < °°(l ' I denoting Lebesgue measure) such that

[l-2ξ(λ,x)] - o(λ~3/2) for λ e σ(H°)\ ( J σw (4.46)

n6N 0

uniformly with respect to x G R. /« addition,

Rr{l) eLι(σ(H°);dλ). (4.47)

Finally, we note that

ίθ,λ < eOβ,μnJ(x) < λ < enJ

ξ(λ,x) = <̂  if μπ J(x) G ( ^ j - i , ^ ) , (4.48)

-i < A < eΛf7 if ^,y(x) - enJ-ι
-x < λ < enJ if μnJ(x) = e Λ j

whenever σp,n(H) ^ 0.

Proof Equations (4.43), (4.48) and (4.49) reflect the general behavior of ξ(λ,x) in
spectral gaps of H since G(z,x,x) > 0 forz < inf σ(H) and G(z,x,x) is real-valued
for z in any (non-empty) spectral gap of//. Equation (4.44) follows from (2.24) and
(4.39) (we note that s°{λ,a) is real-valued for λ G IR and θ(λ) G R for λ G σ(//°)
by (4.10)). Since G(2 + /0,x,x) is continuous and zero-free for λ G σ(H°)°,ξ(λ,x)
is continuous in 2 G σ(H°). Inequality (4.45) is then clear from (4.44). For the
explicit construction of the compact intervals σn with E% G dσn, ΣneΉ lσ«l < °°
such that

Rrυ\λ) = o(λ~ι/2) for λ G σ(H°)\ I J σn , (4.50)
«GN0

we refer to [9,10]. Here we only mention that (4.50) is implied by the asymptotic
relation (4.41) and, assuming λ G σ(//°)\UΛ G N <τΛ, by

+O(|A |- 1 / 8 )] , (4.51)

T(λ) = l+(l/2α 1 / 2)[/Jx^(x) + O(μ|-1/8)l , (4.52)

( 4 5 3 )
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as proven in [9] (see also [10]). In particular, in order to arrive at (4.52), (4.53)
one combines (4.41), (4.51), (4.36)-(4.38), and

P±{λ,x) = 1 + O(μ|"1/8), λ e σ(H°)\ I ) σn , (4.54)

\f±(λ,x)\ £ C(l + |* |), λ e σ(H°) , (4.55)

\f±(λ,x) - f°±(λ,x)\ ύ C(l + |JC|X1 + \λ\)-ι'\ λ e σ(H°). (4.56)

Here p±(λ,x) has been introduced in (4.11), and (4.55) and (4.56) follow from
(4.32), (4.33) (see [9, 10]). Analogous relations for the first and second x-
derivatives of p±(λ,x) and f±(λ,x) then yield

**'>(*) = o(λ-3/2\ λeσ(H°)\\Jσn (4.57)
neN0

after two integrations by parts in (4.37), (4.38). Together with (4.45) this proves
(4.46). Using \Rr(l)(λ)\ ^ l,λe σ(H°) (as a consequence of the unitarity of the
scattering matrix (4.35)), one then infers (4.47) from

/ dλ\Rr(l\λ)\ S f dλ+ f \o(λ-3/2)\ < oo . D (4.58)

V
As in the previous sections, Lemma 4.2 will enable us to remove the Abelian

limit in the trace formula (2.27) for V(x) and state the principal result of this
section. (We recall our notational conventions in (4.3), (4.17), (4.25)-(4.31).)

Theorem 4.3. Suppose V = V° + W9 where V° e Hιa([0,a]) is real-valued,
V°(x + a) = V°(x) for some a > 0, W e H2>ι(ΈL) is real-valued, and We
Lι(WL;(l + \x\)dx). Let E0 = mfσ(H). Then [1 - 2ξ(.,x)] e Lι((E0,oo);dλ),
x e IR and

V(x) = V°(x) + W(x) =E0 + Jdλ[l - 2ξ(λ,x)] (4.59)
Eo

[eOj-μoj(x)]-E°o}

+ Σ {Ήn-i + 2 Σ Ky - μnJ(x)] - E°2n} + Jdλ[l - 2ξ(λ,x)] (4.60)
w=l J€Jn,+ σ{H°)

o,o 4- 2 Σ [eOj - μOJ(x)] - E°o}

oo

+ Σ {4,-1 + 2 Σ K ; - μnj(x)] ~ E°2n}

- (2/π) / dλ Im {in Γl-+- ̂ ^ W . ^ j ^ j l i } , x e R . (4.61)
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Similarly,

W{x) = 2 K o -f Σ [eoj ~ μoj(x)] - E°o}

*) + Σ [enj ~ μnj(x)] - E°2n} + Jdλ[\ - 2ξ(λ9x)] (4.62)
n=\ J£Jθ,+ σ{H°)

[eOj-μoj(x)]-E°o}

+ 2 Σ {£(*) + Σ Ky - μnj(x)] - E°2n}

-(2/π) / ^Im(ln[ l+^^α){ ± ( ^ζ | } ; x G R . (4.63)

If σp/ι(H) = Φ, the corresponding expression {...} in (4.60), (4.61) is to be re-
placed by {E°2n_x - 2μn${x) + E°2n} if n e N and deleted if n = 0. Similarly, if
σP)n(H) = 0, ίAe corresponding expression 2{...} /w (4.62), (4.63) w /6> fe^ re-

ώ r f ^ { ( C ) - μΠ,o(*)} ifneΉ and deleted if n = 0.

Proof The trace formula (4.53) follows from (1.6), (4.45)-(4.47), and the Lebesgue
dominated convergence theorem. Equalities (4.54) and (4.55) are then clear from
(4.59), (4.44), (4.48), and (4.49). Equations (4.62) and (4.63) are obtained
by combining (4.60), (4.61) and (4.19) observing the finite total gap length
(4.21). D

We note that the analog of Remark 2.2 clearly holds in the present context.
Moreover, the threshold behavior of ξ(λ,x) in (2.43)-(2.51) near λ = 0 extends to
the essential spectral band edges {E^}n^N0 of H in the current impurity scattering
situation. In particular, assuming

J F e Z ^ R O +x2)dx) (4.64)

in addition to (4.22), one again distinguishes two cases depending on whether or
not H has a threshold resonance at E%.

Case L W(f-(E°n)J+(E°n))*0 and / _ ( £ » / + ( £ » Φ O .
Then

-1 (4.65)

and

ξ(λ,x) =o O(\λ - E°n\
ι/2) in case I . (4.66)

λeσ(H°)

Case II. W(f_(E°n),f+(E°n)) = 0 and f.{E°n,x)f+{E°n,x)*0.
Then one can show that

ξ(λ,x) = I + O(\λ - E°n\
m) in case I I . (4.67)

Λ-+E° Z

λ£σ(H°)
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