
commun. Math. Phys. 165,201-205 (1994) Communications in

Mathematical
Physics

© Springer-Verlag 1994

Operators with Singular Continuous Spectrum:
III. Almost Periodic Schrόdinger Operators

S. Jitomirskaya, B. Simon
Department of Mathematics, University of California, Irvine, CA 92717, USA
Division of Physics, Mathematics and Astronomy, California Institute of Technology 253-37,
Pasadena, CA 91125, USA

Received: 19 October 1993

Abstract: We prove that one-dimensional Schrodinger operators with even almost
periodic potential have no point spectrum for a dense Gδ in the hull. This implies
purely singular continuous spectrum for the almost Mathieu equation for coupling
larger than 2 and a dense Gδ in Θ even if the frequency is an irrational with good
Diophantine properties.

1. Introduction

This is a paper that provides yet another place where singular continuous spectrum
occurs in the theory of Schrodinger operators and Jacobi matrices (see
[5,6,2,10,3]). It is especially interesting because it will provide examples where
a non-resonance condition in a KAM argument is not merely needed for technical
reasons but necessary.

Our main results, proven in Sect. 2, do not deal directly with singular continu-
ous spectrum but only with continuous spectrum.

Theorem IS. Let V be an even almost periodic function on (— oo, oo) and let Ω be the
hull of V and Vω(x) the corresponding function for ωeΩ. Then there is a dense Gδ, U in

Ω (in the natural metric topology), so that if ωeU, then Hω= 2 + Vω(x) has no
eigenvalues as an operator on L2(IR).

For the Jacobi case, we let h0 be the operator on ί2(Έ) defined by

Theorem 1J. Let V be an even almost periodic function on Z, Ω its hull, and Vω(n) the
function associated to ωeΩ. Then there is a dense Gδ, U in Ω so that if ωeU, then
Hω = h0+ Vω(n) has no eigenvalues as an operator on ί2(Z).
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The Gδ set U will be rather explicit - see Sect. 2. By combining this with the
machinery of [10], we can sometimes get singular continuous spectrum.

Theorem 2. In the context of Theorem 1, suppose there is a single ωeΩ so that Hω

has no absolutely continuous spectrum. Then for a dense Gδ, U9 Hω has purely singular
continuous spectrum.

Proof Let ί/i = {ωeΩ | Hω has no a.c. spectrum}. By [10], 1/χjs a Gδ. By hypothe-
sis, ω 0 and its translates lie in Uu so U1 is a dense Gδ. Thus, U= Uy n U is a dense
Gδ. Π

Example 1. Consider the Jacobi matrix with

Vθ{n) = λcos(πβn + Θ) . (1)

If λ>2, the Lyapunov exponent is positive ([1, 7]) so if β is irrational, there is no
a.c. spectrum for Lebesgue a.e. θ (see e.g. [1]), so hθ has purely singular continuous
spectrum for a dense Gδ of θ.

Sinai [11] and Frohlich-Spencer-Wittwer [4] have proven for λ large and
β having good Diophantine properties, a.e. θ has pure point spectrum, and
Jitomirskaya [8] has proven that for λ ^15. In that case there are intertwined
locally uncountable sets of θ with only pure point and with only singular continu-
ous spectrum. For λ = 2, spec(/zθ) has zero measure for many irrational /Γs [9] and
so no a.c. spectrum. We conclude

Theorem 3. For the example (1), hθ has purely singular continuous spectrum for
a dense Gδ ofθ's if β is irrational and λ>2 or if the continued fraction expansion of
β has unbounded integers and λ = 2.

Example 2. Consider the Schrodinger case with Vθ(x)= — fc[cos(2πx) +
cos(2π/?x + 0)]. Then, Frδhlich-Spencer — Wittwer [4] have proven for a.e. θ (k
large enough), there is pure point spectrum for low energies. Sorets-Spencer [12]
have proven positivity of the Lyapunov exponent for a wider area of low energy.
We conclude that for a dense Gδ of 0, there is purely singular continuous spectrum
for low energies.

2. Proof of Theorem 1

We'll consider the Jacobi case in detail and then discuss the changes for the
Schrodinger case. Let VΦo be the even almost periodic function on TL\

Vωo(-n)=Vωo(n) .

Fix once and for all a number B so

jB>41n(3 + 2sup| VωQ{n)\) = 4lna . (2.1)

[E— V(U) —1\
α is chosen so that the matrix I J has norm bounded by α if
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Let Ω be the hull of V, that is, the closure in || || <*> of translates of V; it is compact
by hypothesis. Define p on Ω by

and define maps R and T on Ω by

VRω(n) = Vω(-ή) VTω(n) = Vω(n-1) .

Lemma 2.1. Zeί ί / n = | J | m | > n { ω | p ( ^ Γ 2 m ω , ω ) < e ~ β | m | } and let U=f)™=l Un. Then
Un is a dense open set and U is a dense Gδ in Ω.

Proof. Let ωm = T~ mω0. Then RT2mωm = ω w since Rω0 = ω0, so ωme Un if | m | > n. It
is easy to see the set of {ωm| \m\ > n} is dense in Ω, so Un is dense. It is clearly open
and so U=nUn is a dense G^ by the Baire category theorem. •

U is the set of ω's for which there exists an infinite sequence m{ with |mf| -• oo
withp(jRΓ2 m iω,ω)<e~β | m ί l. For a subsequence, either m̂  -• oo or mj-> — oo and by
reflection invariance, we can suppose mt -> oo. Thus, Theorem 1J follows from

Theorem 2.2. Suppose that V is a function obeying

I K(2mf - n) - F(n) \Se~Bmι (2.2)

/or α sequence nit -» oo, wterβ 5 is gfii en foy (2.1). Γ/ẑ «

φ +1) + w(n - 1 ) + K(φ(w) = Eu(n) (2.3)

/ẑ 5 /to ί2 solutions for any E.

Remark. The intuition behind the proof is that any u obeying (2.3) has to be close
to being even or odd about m£ so u(n)++0.

Proof. Suppose not. Then we can find a solution u of (2.3) in *f2 which we
normalize, so that

We let ui(n)Ξiι(2mI—n). Let W(fg)(ή)=f(n+l)g(n)-f(n)g(n+l) be the
Wronskian as usual, and let

u(n)

as two component vectors.

Step 1. Almost constancy of W(u,Ui). By a standard calculation using (2.3)

Se'Bmι (2.5)
by (2.2) and (2.4).

Step 2. Smallness of W(u, ut)for mi large. Since u and ut are in / 2 with i2 norm 1,
the Schwarz inequality implies that £«| FF(n)| ^ 2 . Thus for some n with |n| ^ β β m ί / 2 ,
we must have that \W(n)\^e'Bmil2. By (2.5) we see that for \n\<>eBrnil2, we have that

mi/2 (2.6)

and in particular for n = mt.
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Now define uf = u±uh Φf = Φ±Φι.

Step 3. Smallness of Φ? (rrii) or Φ^ (mi). Since W(u^, u^) = 2W(u, ut) and u^ (mf) = 0,
we see that

so either

\u + (mi)\^^/6e-Bm/4 (2.7)

or

\uΓ(mi+l)\^^6e-Bm^. (2.8)

We claim that this means either

| |Φί (mf)|| ^Ce~Bm/4 (for o ^ of + or - ) . (2.9)

If (2.8) holds, (2.9) is immediate since uΓ (mf) = 0. If (2.7) holds, note that by (2.3),

so (2.9) holds for Φ f

+.

Step ^. Smallness ofΦf (0). Let Γί1} be the transfer matrix for (2.3), taking Φ(ra ) to
Φ(0) and let Γί2) be the same with K(2m f-n) so

Writing out Γ£ as a product and using the definition of α and (2.2), we have that

Writing

we see that

||Φ±(0)|| ^ m i

goes to zero as mf -> oo.

5. Completion of the proof By the last fact, ||Φ(0)|| - ||Φ(2m/)|| -*0 which is
only consistent with ue/2 if ||Φ(0)|| = 0 which implies that u = 0. •

For the continuum (Schrόdinger case), here are the changes: We can suppose
(2.2) holds, but with e~Bm replaced by e~m* (any f(m) with
lim^oo mlγ In f(m~ *) = oo will do). We normalize u so that

f [M(x)2 + « '(x) 2 ]dx=l . (2.10)

Step 1. By (2.10) and a Sobolev estimate, u and u' are uniformly bounded so

i W ' ^ <Ce-mi for some C.(u,Ui)
ax
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Step 2. j\W(u,Ui)\dχ ζ2, so, by the same argument

Step 3. This is actually easier since (w*)' (mi) = 0 and uf(mi) = 0.

Step 4. This is similar. The transfer matrix is bounded by eCm\ where C is in-

dependent (and goes to infinity as E -> oo) which is always beaten out by e~m?/2).

Step 5 is unchanged.
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