THE NEUMANN LAPLACIAN OF A JELLY ROLL

BARRY SIMON

(Communicated by Paul S. Muhly)

ABSTRACT. We consider the Laplacian with Neumann boundary conditions of a bounded connected region obtained by removing a suitable infinite spiral from an annulus. We show that the spectrum has an absolutely continuous component.

This note is a contribution to the study of the spectral properties of Neumann Laplacians, a subject of several recent papers [2–4]. Consider the curve, Γ , in \mathbb{R}^2 given in polar coordinates by

$$r(\theta) = [3\pi/2 + \operatorname{Arctan}(\theta)]/2\pi \qquad -\infty < \theta < \infty,$$

which is asymptotic to the circles $r = \frac{1}{2}$ (resp. r = 1) as $\theta \to -\infty$ (resp. $\theta \to \infty$).

Let Ω be the region

$$\{(x, y) \in \mathbb{R}^2 | \frac{1}{2} < r < 1\} \setminus \Gamma,$$

which is open, connected and bounded. Its boundary is $\Gamma \cup \{r = \frac{1}{2}\} \cup \{r = 1\}$. Let $H = -\Delta_N^{\Omega}$ the Neumann Laplacian for Ω . Since the circular parts of $\partial \Omega$ are singular points, we use the method of quadratic forms to define H. In fact, however, it could be defined by requiring classical $\partial \varphi / \partial n = 0$ boundary conditions on (both sides of) Γ and no boundary conditions on the circles because $\{\varphi \in D(H) | \operatorname{supp} \varphi \subset \{a < r < b\}$ with $\frac{1}{2} < a < b < 1\}$ is a core for H.

Our main result here is

Theorem. (a) $\sigma(H) = [0, \infty);$

- (b) $\sigma_{ac}(H) = [0, \infty)$ of uniform multiplicity 2;
- (c) $\sigma_{\rm sc}(H) = \emptyset$;

(d) Any eigenvalue of H is of finite multiplicity and the only possible limit point of eigenvalues is ∞ .

What is interesting is that Ω is a bounded region but H still has absolutely continuous spectrum. It has been known, at least since the book of Courant-Hilbert [1], that even though Dirichlet Laplacians of bounded regions have

Received by the editors October 11, 1990.

¹⁹⁹¹ Mathematics Subject Classification. Primary 47A10, 35P99.

Research partially funded under NSF grant number DMS-8801918.

BARRY SIMON

purely discrete spectrum, there are bounded regions with σ_{ess} $(-\Delta_N^{\Omega}) \neq \emptyset$. But the Courant-Hilbert example has $\sigma_{ess} = \{0\}$ [3]. Recently Hempel, Seco, and Simon [3] constructed regions with $\sigma_{ess}(-\Delta_N^{\Omega}) = [0, \infty)$ but their examples have empty absolutely continuous spectrum.

In light of Davies-Simon [2] who discuss unbounded but finite volume regions whose $-\Delta_N^{\Omega}$ have absolutely continuous spectrum, our result here should not be surprising—in a real sense, our Ω here is just one of their regions "rolled up." That is why we think of Ω as a jelly roll, albeit one whose jelly, alas, is infinitely thin.

Proof of the theorem. We shift to polar coordinates θ , r with θ running from $-\infty$ to ∞ . Explicitly, we let $\tilde{\Omega}$ be $\{(\theta, r)| -\infty < \theta < \infty; r_{-}(\theta) < r < r_{+}(\theta)\}$ with $r_{-}(\theta) = r(\theta)$ and $r_{+}(\theta) = r(\theta + 2\pi)$. There is an obvious one-toone map from Ω to $\tilde{\Omega}$ under which $L^{2}(\Omega, d^{2}r)$ is unitarily equivalent to $L^{2}(\tilde{\Omega}, r dr d\theta)$ and H is equivalent to the quadratic form, \tilde{H} , given by

$$(g, \widetilde{H}g) = \int \left(\left| \frac{\partial g}{\partial r} \right|^2 r + \left| \frac{\partial g}{\partial \theta} \right|^2 \frac{1}{r} \right) dr d\theta.$$

As in [2], a special role is played by the functions $g(\theta, r) = g(\theta)$; then

$$\|g\|^{2} = \int F(\theta)|g(\theta)|^{2} d\theta, \qquad (g, \widetilde{H}g) = \int G(\theta) \left|\frac{dg}{d\theta}(\theta)\right|^{2} d\theta,$$

where $F(\theta) = \frac{1}{2}[r_+(\theta)^2 - r_-(\theta)^2]$ and $G(\theta) = \ln[r_+(\theta)/r_-(\theta)]$. Since $r'(\theta) \sim \theta^{-2}$ at infinity, $r_+(\theta) - r_-(\theta) \sim \theta^{-2}$ so, F, $G \sim \theta^{-2}$. Explicitly

(1)

$$r'(\theta) \sim \pi^{-1}[\theta^{-2} - \theta^{-4} + O(|\theta|^{-6})];$$

$$r(\theta) - r(\pm \infty) \sim \pi^{-1}\theta - \frac{1}{3}\pi^{-1}\theta^{-3} + O(|\theta|^{-5});$$

$$F(\theta) \sim r(\pm \infty)[\frac{2}{\theta^2} + \frac{\beta}{\theta^4} + O(|\theta|^{-6}];$$

$$G(\theta) = \frac{2}{\theta^2} + \frac{\alpha}{\theta^4} + O(|\theta|^{-6});$$

$$G(\theta)/F(\theta) = r(\pm \infty)^{-1}[1 + O(|\theta|^{-2})].$$

In the usual way, \tilde{H} is unitarily equivalent to \hat{H} on $L^2(\mathbb{R}, d\theta)$ where

$$\widetilde{H} = -\frac{1}{\sqrt{F}} \frac{d}{d\theta} \sqrt{F} \left(\frac{G}{F}\right) \sqrt{F} \frac{d}{d\theta} \frac{1}{\sqrt{F}} = -\frac{d}{d\theta} \left(\frac{G}{F}\right) \frac{d}{d\theta} + V(\theta),$$

where $V(\theta) \sim \theta^{-2}$. Except for the θ dependence G/F in $-d^2/d\theta^2$, the setup looks exactly like that in Davies-Simon [2]. Since (1) holds and the Enss theory easily accommodates principal part perturbations, our proof follows that in [2]. \Box

References

- 1. R. Courant and D. Hilbert, Methods of mathematical physics, Interscience, New York, 1953.
- 2. E. B. Davies and B. Simon, Spectral properties of the Neumann Laplacian of horns, preprint.

- 3. R. Hempel, L. A. Seco, and B. Simon, *The essential spectrum of Neumann Laplacians on some bounded singular domains*, preprint.
- 4. V. Jaksic, S. Molchhonov, and B. Simon, *Eigenvalue asymptotics of the Neumann Laplacian* of the manifolds and regions with cusps, in preparation.

Division of Physics, Mathematics, and Astronomy, California Institute of Technology, 253-37, Pasadena, California 91125