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ABSTRACT. We consider the Laplacian with Neumann boundary conditions of a 
bounded connected region obtained by removing a suitable infinite spiral from 
an annulus. We show that the spectrum has an absolutely continuous compo- 
nent. 

This note is a contribution to the study of the spectral properties of Neumann 
Laplacians, a subject of several recent papers [2-41. Consider the curve, I-, in 
R2 given in polar coordinates by 

which is asymptotic to the circles r = 3 (resp. r = 1) as 8 + -oo (resp. 
8 + o o ) .  

Let R be the region 

which is open, connected and bounded. Its boundary is I-U {r  = k) U { r  = 1). 
Let H = -A: the Neumann Laplacian for R . Since the circular parts of dR  
are singular points, we use the method of quadratic forms to define H .  In 
fact, however, it could be defined by requiring classical d q / a n  = 0 boundary 
conditions on (both sides of) I- and no boundary conditions on the circles 
because { q  E D(H)I supp q c { a  < r < b )  with ;< a < b < 1) is a core for 
H .  

Our main result here is 

Theorem. (a) a (H)  = [0, m); 
(b) aaC(H)= [0, oo) of uniform multiplicity 2 ; 
(c) asc(H) = 0 ; 
(d) Any eigenvalue of H is of3nite multiplicity and the only possible limit 

point of eigenvalues is r x  . 

What is interesting is that R is a bounded region but H still has absolutely 
continuous spectrum. It has been known, at least since the book of Courant- 
Hilbert [I], that even though Dirichlet Laplacians of bounded regions have 
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purely discrete spectrum, there are bounded regions with cess(-A$) # 0 .  
But the Courant-Hilbert example has Oess = (0) [3]. Recently Hempel, Seco, 
and Simon [3] constructed regions with oeSs(-~$)= [0, oo) but their examples 
have empty absolutely continuous spectrum. 

In light of Davies-Simon [2] who discuss unbounded but finite volume re-
gions whose -A$ have absolutely continuous spectrum, our result here should 
not be surprising-in a real sense, our R here is just one of their regions "rolled 
up." That is why we think of R as a jelly roll, albeit one whose jelly, alas, is 
infinitely thin. 

Proof of the theorem. We shift to polar coordinates 8 ,  r with 8 running from 
-m to oo. Explicitly, we let h be ( (8 ,  r)l-m < 8 <  m ;  r-(8)< r < r+(8)) 
with r-(8) = r(8) and r+(8) = r(8 + 211). There is an obvious one-to-
one map from R to 6 under which L2(R,d2r) is unitarily equivalent to 
L 2 ( h ,r d r d 8 )  and H is equivalent to the quadratic form, H ,  given by 

2 

, f i g  = ( 1 .+ % I 2  i)drd8 .  

As in [2], a special role is played by the functions g (8 ,  r) = g(8) ;then 

where F(8)  = i[r+(8)2- r- (8)2] and G(8) = ln[r+(O)/r-(8)]. Since 
r'(8) - 8-2 at infinity, r+(8)- r-(8) - 8-2 so, F , G - 8-2. Explicitly 

In the usual way, fi is unitarily equivalent to on L2(iR,dB) where 

where V(8) N 19-~. Except for the 8 dependence G/F in -d2/d02, the 
setup looks exactly like that in Davies-Simon [2]. Since (1) holds and the Enss 
theory easily accommodates principal part perturbations, our proof follows that 
in [2]. 
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